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1. Model problem & overview

Domain decomposition

m Domain Q: Q:=Q,UQ

m Interface I': I':= 001 NN
Qo nr

= Jump across I':  [ulr :=wuje, — o, Fig. 1: Model problem
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1. Model problem & overview

Domain decomposition

::mUQQ

o]

m Domain Q:

m Interface I': I':= 001 NN
Qo nr

= Jump across I':  [ulr :=wuje, — o, Fig. 1: Model problem

Elliptic interface problem

m Strong form: Find u € H! (€21 U Q2) such that
-V (Iivu) = f in Q1 U Qs
[[u]]r =dgp on I’
[£Vu]r - nr = gn on I

u=0 on 0f2
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1. Model problem & overview

Unfitted methods

m Minimize complexity of mesh generation
m Handle cut cells by doubling unknowns
m Need to integrate polynomials in cut cells (e.g. by submeshing)

m Price to pay : Need to stabilize ill-cut cells
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1. Model problem & overview

m Minimize complexity of mesh generation
» Handle cut cells by doubling unknowns
m Need to integrate polynomials in cut cells (e.g. by submeshing)

m Price to pay : Need to stabilize ill-cut cells

Introduced by [Hansbo and Hansbo, 2002]
m Standart technique for stabilization: Ghost penalty [Burman, 2010]

@ e, o0
Q
o @80
1 ADD GHOST
PENALTY
Q2
o0 o o)

Fig. 2: Doubling of Q1-FEM unknowns, ill-cut cells (dashes) and set of ghost-penalty faces
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1. Model problem & overview

Fitted HHO methods

m Seminal papers: [Di Pietro, Ern, and Lemaire, 2014], [Di Pietro and Ern, 2015]

m Main features:
» Design based on cell and face unknowns
» General meshes: polyhedral meshes, hanging nodes
> Attractive computational cost: Static condensation
» Local conservativity at the cell level
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1. Model problem & overview

Fitted HHO methods

m Seminal papers: [Di Pietro, Ern, and Lemaire, 2014], [Di Pietro and Ern, 2015]

m Main features:
» Design based on cell and face unknowns
» General meshes: polyhedral meshes, hanging nodes
> Attractive computational cost: Static condensation
» Local conservativity at the cell level

Unfitted HHO methods

m Seminal papers: [Burman and Ern, 2018] [Burman, Cicuttin, Delay, and Ern, 2021]

m Main features:
» Doubling of cell and face unknowns in cut cells
» Cut stabilization by cell agglomeration

m New approach for cut stabilization: Polynomial extension

» Use of similar technique for unfitted FEM [Badia, Verdugo, and Martin, 2018]

o
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2. Some details on fitted HHO methods
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2. Some details on fitted HHO methods

m Polynomial unknowns attached to mesh cells and faces

4 4
¢ © 9 s & ¢
4 4

@ Cell unknowns, degree k/ € {k,k+ 1} ¢ Face unknowns, degree k >0

HHO unknowns:

ap = (u,ur) €Uy

Fig. 3: Local HHO unknowns. Left: ¥’ = k = 0. Right: k' =k +1=1.

» Equal-order: k' = » Mixed-order: k' =k +1
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. Some details on fitted HHO methods

Degrees of freedom

m Polynomial unknowns attached to mesh cells and faces

4
¢ © ¢ é ‘ é HHO unknowns: )
ap = (ur,ur) €U
4

@ Cell unknowns, degree k/ € {k,k+ 1} ¢ Face unknowns, degree k >0
Fig. 3: Local HHO unknowns. Left: ¥’ = k = 0. Right: k' =k +1=1.

» Equal-order: k' =k » Mixed-order: k' =k +1

v
Global degrees of freedom

m Mesh 75, with faces Fp,

m Global HHO spaces: U, = X ]P’k,(T; R) X X PF(F;R)
TET, FeF,
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. Some details on fitted HHO methods

Design of the local gradient reconstruction operator

m Gradient reconstruction operator:
(V'u,)‘T — Gr(ar) € ]Pk(T; Rd)

Design of G (@) mimics an integration by parts

(Gr(ar),q)r = (Vur,q@)r — (ur — uar,q-nr)or, Vq € P*(T;R?)
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. Some details on fitted HHO methods

Design of the local gradient reconstruction operator

m Gradient reconstruction operator:
> (V'u,)‘T — Gr(ar) € Pk(T; Rd)

Design of G (@) mimics an integration by parts

(Gr(ir),q)r = (Vur, @)1 — (ur — uor,q - nr)or, Vq € P*(T;RY)

Design of the local stabilization operator

m Stabilization operator: dsr(dr) := usr — urjor = 0

Matching of cell dofs trace with face dofs (weakly)

» Equal-order discretization: Specific stabilization to HHO
(not used in unfitted HHO)

» Mixed-order discretization: Same as HDG (Lehrenfeld-Schoberl)

st (tir, wr) == &k hy' My (ur — uar), wr — war)or
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s on fitted HHO methods

Main advantages of HHO methods

m Improved error estimates for

smooth solutions:
» H'l-error: O(hk’H)
» [2-error: (’)(hk"'z)

Romain Mottier Unfitted HHO metho



2. Some details on fitted HHO methods

m Improved error estimates for m Attractive computational costs:
smooth solutions: Elimination of cell unknowns by Schur
> Hlerror: O(h*+Y) complement (static condensation) :

» Global problem couples only face dofs
» [L2-error: O(hk+2) P P Y
» Cell dofs recovered by local post-processing

Space semi-discretization Assembly Static condensation

—
VvV v A4

{a] [a] ala

{a] [a] Sl

Mesh Local dofs Global dofs Coupled dofs (faces)

Fig. 4: Assembly and Schur complement procedure in the framework of HHO schemes
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3. Setting for unfitted HHO methods
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3. Setting for unfitted HHO metho 3.1. Unfitted meshes and local unknow

Unfitted meshes and local unknowns

m Mesh partitioning: Tn o= T2 U TR U TKO

> 771KO’1 U 7;}(0,2 = if mesh fine enough [Burman and Ern, 2018]
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3. Setting for unfitted HHO methods 3.1. Unfitted meshes and local unknowns

m Mesh partitioning: Tn o= T2 U TR U TKO

> TN UTE9? =0 if mesh fine enough [Burman and Ern, 2018]

m Doubling local unknowns in cut cells:

Ur = (ﬁ,T1,fLT2) = (uT1,u(8T)1,uT2,u<BT)2) E Z:[\T = Z:{\Tl X Z;{\TQ

(oT)* (OT)?

Fig. 5: Left. Types of cells involved in unfitted meshes.
Right. Local dofs in cut cell. )
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3. Setting for unfitted HHO methods 3.2. Pairing operator

Ni:TEO 5 S+ T e (TRUTLRKUTEO) NAL(S), Vie{1,2}

m A(S) : first layer of neighboring cells of S

1 7'1
;h h
7777717177777
2002002052057

T2 M

KO,2
T,

7777777777777
1777777777777

oK N T

YY)

Fig. 6: Pairing of ill-cut cells
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3. Setting for unfitted HHO methods 3.2. Pairing operator

e
/( v(v

=3
v
4+

A

N

-

77LKO,1 : _ Jf

N EENEF
" NEp s

Fig. 7: Exemple of pairing procedure for coarse Cartesian mesh cut by circular
interface
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3. Setting for unfitted HHO methods 3.3. Agglomeration vs. Polynomial extension

== T T
A\ o Ry
[ \ [ \ 15 I
\ ] \\ /) [ i
s [ [V
= —t ==

Fig. 8: Left. Initial mesh with circular interface. Middle. Cell agglomeration.
Right. Stencil modification for polynomial extension
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3. Setting for unfitted HHO methods

3.3. Agglomeration vs. Polynomial extension

¥[v

ALp—tr—14

v

N~ [

A

]

Nl o[ o[ o

<

Fig. 8: Left. Initial mesh with circular interface. Middle. Cell agglomeration.

Right. Stencil modification for polynomial extension
m Cell agglomeration:
v Leverages on polyhedral capacity of HHO methods

X Intrusive on mesh data structure
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3. Setting for unfitted HHO methods

3.3. Agglomeration vs. Polynomial extension

¥[v

ALp—tr—14

v

N~ [

A

]

Nl o[ o[ o

<

Fig. 8: Left. Initial mesh with circular interface. Middle. Cell agglomeration.

Right. Stencil modification for polynomial extension
m Cell agglomeration:
v Leverages on polyhedral capacity of HHO methods
X Intrusive on mesh data structure
m Polynomial extension:
v/ Works on initial mesh (non-intrusive)

X Requires modification of the stencil (intrusive at the assembly level)
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4. Local HHO operators with polynomial ext
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4. Local HHO operators extended

s UNCUT CELLS: T €7},

» Stencil includes
dofs of ill-cut cell(s)

at = (ar, (4s)sen—1(1))

Romain Mottier
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Fig. 9: Pairing configuration

Unfitted HHO methods with polynomial extension

4

<

17/24



4. Local HHO operators extended

s UNCUT CELLS: T €7}

» Stencil includes
dofs of ill-cut cell(s)

at = (ar, (4s)sen—1(1))

TF

s?

4

* H

N
N

N
NN

DO

b4

NNNNNN

¢
&

N(8%)

Tt

1%

Fig. 9: Pairing configuration

m Classical gradient reconstruction:

(Gr(ar), @) = (Vur,q)r — (ur — uor,q  nT)oT

4

<
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4. Local HHO operators extended

s UNCUT CELLS: T €7}

» Stencil includes
dofs of ill-cut cell(s)

at = (ar, (4s)sen—1(1))

TF

s?

4

* H

DO

b4

NNNNNN

¢
&

N(8%)

Tt
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Fig. 9: Pairing configuration

m Classical gradient reconstruction:

(Gr(ar), @) = (Vur,q)r — (ur — uor,q  nT)oT

>
7 7T

*—6—
=

m Gradient reconstruction with polynomial extension:

(GE(aF), q)r = (Vur,q)r — (ur — uor, - nr)or
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4. Local HHO operators extended

s UNCUT CELLS: T €7}

» Stencil includes
dofs of ill-cut cell(s)

at = (ar, (4s)sen—1(1))

TF

s?

4

* H

DO

b4

NNNNNN

¢
&

N(8%)

Tt
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Fig. 9: Pairing configuration

m Classical gradient reconstruction:

(Gr(ar), @) = (Vur,q)r — (ur — uor,q  nT)oT

>
7 7T

*—6—
=

m Gradient reconstruction with polynomial extension:

(GE(aF), q)r = (Vur,q)r — (ur — uor, - nr)or

+ >

SeN;H(T)
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4. Local HHO operators extended

s UNCUT CELLS: T €7}

» Stencil includes
dofs of ill-cut cell(s)

at = (ar, (4s)sen—1(1))
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Fig. 9: Pairing configuration

m Classical gradient reconstruction:

(Gr(ar), @) = (Vur,q)r — (ur — uor,q  nT)oT

4

m Gradient reconstruction with polynomial extension:

(GE(aF), q)r = (Vur,q)r — (ur — uor, - nr)or

+ > { (Vur,@)si — (ur — u(as)i, 4 - 1s)(as)i

SeN;H(T)

<
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4. Local HHO operators extended

s UNCUT CELLS: T €7}

» Stencil includes
dofs of ill-cut cell(s)

at = (ar, (4s)sen—1(1))
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Fig. 9: Pairing configuration

m Classical gradient reconstruction:

(Gr(ar), @) = (Vur,q)r — (ur — uor,q  nT)oT

4

m Gradient reconstruction with polynomial extension:

(Gh(a}), @)1 = (Vur,a)r — (ur — uar,q - nr)or

+ Z { (Vur,q)gi — (ur — Uogyird - nS)((i’)S)" *511:‘{1(717 — Ug7,q - nr)gr}

SeN;H(T)

<
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4. Local HHO operators extended

m WELL-CUT CELLS: T e 7,.°K

» Stencil includes
dofs of ill-cut cell(s)

u; = (U, (ﬂsi)SENiil(T)% Vi e {1,2}

Fig. 10: Pairing configuration
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4. Local HHO operators extended

m WELL-CUT CELLS: T e 7,.°K

» Stencil includes
dofs of ill-cut cell(s)

ot N

Uy 1= (i, (usi)SENfl(T))’ Vi e {1,2}

Fig. 10: Pairing configuration

m Classical gradient reconstruction: Vi € {1,2},
(G}%i (ﬁq—t)JI)Ti = (Vugi, @)pi — (Wpi —Uaryi, @°7r) o1y — Sink1(ugi —ure, ¢ mr)pr

» choice d;1x1 robust with respect to strong contrast: k1 <K Ko
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4. Local HHO operators extended

m WELL-CUT CELLS: T e 7,.°K

» Stencil includes
dofs of ill-cut cell(s)

ot N

Uy 1= (i, (usi)SENfl(T))’ Vi e {1,2}

Fig. 10: Pairing configuration

m Classical gradient reconstruction: Vi € {1,2},
(Gl%z' (ﬁj—t)vq)Ti = (Vugi, @)pi — (Wpi —Uaryi, @°7r) o1y — Sink1(ugi —ure, ¢ mr)pr
» choice d;1x1 robust with respect to strong contrast: k1 <K Ko
m Gradient reconstruction with polynomial extension: Vi€ {1,2},

(G (at), @) s == (Vs @)ps — (ugi —Uar)i, 4 MT)ory: — iK1 (upi — Uri, g nr)pr
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4. Local HHO operators extended

m WELL-CUT CELLS: T e 7,.°K

» Stencil includes
dofs of ill-cut cell(s)

ot N

Uy 1= (i, (usi)SENfl(T))’ Vi e {1,2}

Fig. 10: Pairing configuration

m Classical gradient reconstruction: Vi € {1,2},
(G (@), @)ri = (Vugs, @)pi — (upi —u(oryi, 47T (oryi — Si1k1 (ugi —urs, g-nr)pr
» choice d;1x1 robust with respect to strong contrast: k1 <K Ko
m Gradient reconstruction with polynomial extension: Vi€ {1,2},
(G (aF), @)pi = (Vurs, @)pi — (urs —uoryi» @ 1) (oryi — Skt (ugs —uge, g - nr)gr

4F Z {(V?;T,,',,q)si — (uri — ugsyi, a4 Ms)(as)yi — dirk1(upi —ugt, q- nr‘)sr}
SeEN;H(T)
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4. Local HHO operators extended

» ILL-CUT CELLS: T ¢ 7,X°"

» Stencil of paired cell includes
dofs of ill-cut cell(s)

ats o= (Are, Upreryi, (@st) senr 1)

Fig. 11: Pairing configuration
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4. Local HHO operators extended

» ILL-CUT CELLS: T ¢ 7,X°"

» Stencil of paired cell includes
dofs of ill-cut cell(s)

’lAL;:,L = ('lAl/Ti7 ,ﬁ‘j\/(T)iv ('&Si)SEN{I(T))

Fig. 11: Pairing configuration

m Classical gradient reconstruction: Vi € {1,2},

(Gljc*i (ﬁq—t)"I)Ti = (VUTM‘I)TZ‘ - (“Ti *u(aT)MCI‘"T)(aT)i — 1K1 (“Ti *UTiyq'nF)TF
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4. Local HHO operators extended

» ILL-CUT CELLS: T ¢ 7,X°"

» Stencil of paired cell includes
dofs of ill-cut cell(s)

ats o= (Are, Upreryi, (@st) senr 1)

Fig. 11: Pairing configuration

m Classical gradient reconstruction: Vi € {1,2},
(Gljc*i (ﬁq—t)"I)Ti = (VUTM‘I)TZ‘ - (“Ti *u(aT)MCI‘"T)(aT)i — 1K1 (“Ti*UTiyq'nF)TF

m Gradient reconstruction with polynomial extension:
(Ghi(@f),@)gi = 0
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4. Local HHO operators extended
z

» ILL-CUT CELLS: T ¢ 7,X°"

» Stencil of paired cell includes
dofs of ill-cut cell(s)

ats o= (Are, Upreryi, (@st) senr 1)

Fig. 11: Pairing configuration

m Classical gradient reconstruction: Vi € {1,2},
(Gljc*i (ﬁq—t)"I)Ti = (VUTM‘I)TZ‘ - (“Ti *u(aT)MCI‘"T)(aT)i — 1K1 (“Ti*UTiyq'nF)TF

m Gradient reconstruction with polynomial extension:

(GE (), @) -

0

(GE: (@), @) == (Vups, @) s —(ups —wor)s, @1r) (970
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4. Local HHO operators extended
z

» ILL-CUT CELLS: T ¢ 7,X°"

» Stencil of paired cell includes
dofs of ill-cut cell(s)

ats o= (Are, Upreryi, (@st) senr 1)

Fig. 11: Pairing configuration

m Classical gradient reconstruction: Vi € {1,2},
(Gljc*i (ﬁq—t)"I)Ti = (VUTM‘I)TZ‘ - (“Ti *u(aT)MCI‘"T)(aT)i — 1K1 (“Ti*UTiyq'nF)TF

m Gradient reconstruction with polynomial extension:

(GE (), @) -

0

(Gh:(0), @) e == (Vurs, @) —(urs—ugarys, @1r) (or)ys — 0r1k1 (Ugs — Up(pyi, @ - 1) o
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4. Local HHO operators extended
z

» ILL-CUT CELLS: T ¢ 7,X°"

» Stencil of paired cell includes
dofs of ill-cut cell(s)

ats o= (Are, Upreryi, (@st) senr 1)

Fig. 11: Pairing configuration

m Classical gradient reconstruction: Vi € {1,2},
(Glr}i (ﬁq—t)"I)Ti = (VUTM‘I)TZ‘ - (“Ti *u(aT)MCI‘”T)(aT)i — 1K1 (“Ti*UTiyq'nF)TF

m Gradient reconstruction with polynomial extension:

(GE (), @) -

0
(Gh:(0), @) e == (Vurs, @) —(urs—ugarys, @1r) (or)ys — 0r1k1 (Ugs — Up(pyi, @ - 1) o

+ Z {(V’llwﬁ)sz — (ure — U(asyrﬁ'ns)(as)l — dukr(ugs —ugi, q - "F)SF}

SeN; (1)

v
19/24
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4. Local HHO operators extended

HHO stabilization

m Classical HHO stabilization: Vi € {1,2},
sy (fpis, Wps) 1= Kihp (Morys (Upi — Uary), Wre — Weary)or):
m Stabilization with polynomial extension (e.g. T € T°¥): Vi€ {1,2},
Sti (a;,w;) = Hih;l(H?BT)i(uTi - u(BT)i)vai - w(aT)i)(aT)i

-1 k
+ D kb Mgy (ur — tgs)i), Wri — Wasyi) (as):
SeN;HT)
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4. Local HHO operators extended

HHO stabilization

m Classical HHO stabilization: Vi € {1, 2},
s7e (Gips, e 1= kihp (Wfprys (ugs — tesrys), Wrs — Wearys Yoy
m Stabilization with polynomial extension (e.g. T € T°¥): Vi€ {1,2},
STi (ﬁ%‘,w;) o= Hih;l(H?BT)i(uTi - u(BT)i)vai - w(aT)i)(aT)i

-1 k
+ D kb Mgy (ur — tgs)i), Wri — Wasyi) (as):
SeN;HT)

v

Design of the cut stabilization operator (Nitsche’s term)

m Classical cut stabilization operator: Vi € {1,2},

sps(@F,@F) i= Suumihg! ([ur]r, [wr]r)pr
m Cut stabilization with polynomial extension (e.g. T € 7,°¥): Vi € {1,2},

spi(af, o) = Sukihy ([urlr, [wrlr)re + > Sasihz! ([ushr, [ws]r)sr
SeN;H(T)
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5. Discrete problem
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ete problem 5.1. Global discrete problem

Global discrete problem

an(in, Wn) = €n(@r) Vibn € Uno,
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5. Discrete problem 5.1. Global discrete problem

Global discrete problem

an(in, Wn) = €n(@r) Vibn € Uno,

m ap(Up, Wn) = Z Z aTi(":";vw’.—lt‘_)

TeTy, ie{1,2}

> api(@f,0F) = ri(Ghi(0F), Ghi (7)) i + spi (@F, 0F ) + shpa (aF, )
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5. Discrete problem 5.1. Global discrete problem

an (i, 0n) = €n(@r)  Vin € Uno,

m ap(Up, Wn) = Z Z aTi(ﬁil—tvwi—t)

TeTy ie{1,2}

> api(if, o) = ki(Ghi (&), G (BF))rs + spi(iF, BF) + s (aF, B7)

L (in) =Y (fywpe) g

TET?
+ ), {(fva(T)i)Ti"'(fvai)T”'} + Y > (frwpi)p
TeTKO TeTPK ie{1,2}

» For simplicity, we consider gp = gy =0
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5. Discrete problem

Algebraic realization for gradient reconstruction

m Algebraic realization of (GE, (ﬁ;t), G’%i (11);)):,” (e.g. VT € TOK):

vie{1,2}, GLMI!Gr =Gl MG+ > {GLMI!Gg}
SeN;H(T)
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5. Discrete problem 5.2. Algebraic realization

m Algebraic realization of (GT1 (uT) G (wT Nri (e.g. VT € TOK):

vie{,2}, GLMI!Gpn=GLMIGn+ Y {G MGy}
SeN;H(T)
> Mr := (¢7, ¢1,5)T, 0<1i,j < N*:=dim(P*(T;R)), (componentwise mass matrix)
° N(’ic :=d x Nk ® Ngr := number of faces of T'
® Ng:= #./\/'fl(T) ® Njg := number of faces of S

Romain Mottier Unfitted HHO methods with polynomial extension 23/24



5. Discrete problem 5.2. Algebraic realization

m Algebraic realization of (GT1 (uT) G (wT Nri (e.g. VT € TOK):

vie{,2}, GLMI!Gpn=GLMIGn+ Y {G MGy}
SeN;H(T)

> Mr := (¢7, ¢1,5)T, 0<1i,j < N*:=dim(P*(T;R)), (componentwise mass matrix)

° N(’ic :=d x Nk ® Ngr := number of faces of T'

® Ng:=#N;Y(T)

Nk/ Naor X Nﬁ,l Ng X A“Tg:/ Ns X Nps X ;\“Y(Ilﬂ:/

d s

® Npg := number of faces of S
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5. Discrete problem 5.2. Algebraic realization

m Algebraic realization of (GT1 (uT) G (wT Nri (e.g. VT € TOK):

. t -1 _ ot -1 ) T -1 )
vie{1,2}, GI,M_lGpi:=GIM_!Gpr + > {G[, M G}
SeN; (T)
> My := (¢r, d1,5)T, 0<4,5 < N*:=dim(P*(T;R)), (componentwise mass matrix)

° N(’ic :=d x Nk ® Ngr := number of faces of T'

® Ng:=#N;Y(T)
Nk/ Naor X Nﬁ,l Ng X A“Tg:/ Ns X Nps X ;\“Y(Ilﬂ:/

d s

® Npg := number of faces of S

> Extension of local bilinear form — Modification of assembly
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5. Discrete problem

Error analysis

m Based on [Burman, Cicuttin, Delay, and Ern, 2021]
> Stability (coercivity)
» Consistency

» Quasi-optimal error estimates
> For smooth solution, H'-error: O(h*+1)
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5. Discrete problem 5.3. Error analysis

m Based on [Burman, Cicuttin, Delay, and Ern, 2021]
> Stability (coercivity)
» Consistency
» Quasi-optimal error estimates
> For smooth solution, H'-error: O(hF*!)

m Implementation in progress )

Thank you for your attention !
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