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Entropic Multi-Marginal Optimal Transport



Definition of the problem

Consider

- 'm > 2 probability measures p; compactly supported on €2 submanifolds X; C R" of dim d; ;
- a cost function ¢ : X — Ry (e.g. continuous or lsc) where X := xX; ;
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MOT, = inf {/C(Xq,...,xm) dy(X1, . .., Xm) + eEnt(y| ®, ,u,')},
X

where II(p, . .., um) is the set of couplings v € 22(X) having p; as marginals, Ent(y | P) is the
Boltzmann-Shannon entropy (= [ plog pdP if v = pP), and e > 0 is a small noise parameter.

- m = 2. Classical Entropic Optimal Transport.
- ¢ = 0and m = 2. Classical Optimal Transport problem. Convex problem, but

- & > 0. Strictly convex cost —>
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What are we interested in?

Asymptotics for e — 0 of
- the cost MOT.
- the optimal entropic plan . and optimal Schrodinger potentials (e, ¥ )
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(Altschuler, Niles-Weed, Stromme ; 2021) (Delalande ; 2021);

- Convergence rate in the continuous case under strong regularity assumptions (Pal, 2019),
second-order expansion for dynamical quadratic OT (Conforti-Tamanini, 2019)

- Convergence rate for 2—marginal and a general class of 4 non-degenerate costs (Carlier,
Pegon, and Tamanini 2022), more precise estimates by (Malamut, Sylvestre ; 2023)

- Upper bound for the multi-marginal (Eckstein and Nutz 2022) with a condition on the optimal
transport plans in terms of quantization dimension ;
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Direction of our work

Goal

- Asymptotics as € — 0 (lower and upper bounds) for multi-marginal optimal transport cost;
- Possibly degenerate ground costs ¢ (for 2-marginal, D;,c not necessarily invertible);
- No assumption on the optimal transport plans for MOTy;
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Direction of our work
Goal

- Asymptotics as € — 0 (lower and upper bounds) for multi-marginal optimal transport cost;
- Possibly degenerate ground costs ¢ (for 2-marginal, D;,c not necessarily invertible);
- No assumption on the optimal transport plans for MOTy;

In particular we obtain:

Theorem (Nenna - P.)

Let u; be compactly supported measures over X; with L™ densities. Assume that ¢ € €*(X) and
satisfies a signature condition on second mixed derivatives. Then

m
1
MOT. = MOTo + 5 (Z di — max d,v) elog(1/e) + O(e).

i=1

Application for Wasserstein barycenters (more later).
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The upper bound

Assumptions
- u; are compactly supported measures in L*°(X;) where X; are €2 submanifolds of dimension d; ;

-ceg

loc

(X) or more generally locally semi-concave (also, weaker upper bound ¢ € €%"(X));

Goal: get an upper bound of the form

MOT. — MOT, < 1 elog(1/e) + O(e).
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(X) or more generally locally semi-concave (also, weaker upper bound ¢ € €%"(X));

Goal: get an upper bound of the form

MOT. — MOT, < 1 elog(1/e) + O(e).
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Tamanini 2022) on €2 submanifolds:
- Build a suitable competitor for the entropic (primal) problem
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using an optimizer for (MOTy) and a block-approximation of (Carlier, Duval, et al. 2017).
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Assumptions

- u; are compactly supported measures in L*°(X;) where X; are €2 submanifolds of dimension d; ;
-ceE!!

loc

(X) or more generally locally semi-concave (also, weaker upper bound ¢ € €%"(X));

Goal: get an upper bound of the form

MOT. — MOT, < 1 elog(1/e) + O(e).

Strategy. Straightforward (almost) generalization of the upper bound in (Carlier, Pegon, and
Tamanini 2022) on €2 submanifolds:
- Build a suitable competitor for the entropic (primal) problem

YEIL (@15,

MOT, = inf : {/C(Xw, ooy Xm) dy (X, .-, Xm) + eEnt(y | QL ,u,-)}.
HKm X

using an optimizer for (MOTy) and a block-approximation of (Carlier, Duval, et al. 2017).

- Show and use some integral variant of Alexandrov theorem on convex functions.
49



Upper bound: some details for m = 2, marginals =, u*

For blocks |_|n An = R" of diameter < §, take as competitor

LA ptla
(A) — pt(4)

7 = E (A x A E—
“ M
i,jeN

5/9



Upper bound: some details for m = 2, marginals =, u*

For blocks |_|n An = R" of diameter < §, take as competitor

s pm LA ptLA
v = Yo (Ai X Aj .
2 XA =G ® e
i,JEN
- Plug this competitor into the primal problem, write £ = ¢ — ¢ @& ) the duality gap, then:

MOT. < / cdy’ + eEnt(y°|p~ @ uT) = MOT, +/ Ed(v’ —2°) + eEnt(y’|p~ @ ™)
RI xRY R

d wRd
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MOT. < / cdy’ + eEnt(y°|p~ @ uT) = MOT, +/ Ed(v’ —2°) + eEnt(y’|p~ @ ™)
R4 xRd RY xRA

- Bound the entropy term, for well-chosen blocks:

_ Ai x A
Ent(y’ [p~ @ pt) =D 70(A x A) 10g< %((A) +(j)>
i,JEN #
v A — gt
<>t A)log(1/ it (A)) = d*+log(1/8) + O(1).
JEN
* Show that [oq, ga Ed(y® —~°) = 0(6?) then take e = 4’ (integral Alexandrov-type estimate):

+

MOT. < MOTo 4 0(8%) + dtelog(1/8) + O(e) = MOT, + %Elogm/a) + O(e). /
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A signature condition on the second mixed derivatives

e Consider a c € €°(X) and let P be the set of partitions of {1,..., m} into two non empty disjoint
subsets: p:={p_,p4+} € P,
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e Consider a c € €°(X) and let P be the set of partitions of {1,..., m} into two non empty disjoint
subsets: p:={p_,p4+} € P,
e For each p € P we denote by g, the bilinear form on TX as

0,

i€Ep_,j€Epy+ aja; i

2
2 2 2 o°c a a
gp = E D€ 4 Dy € where Dy xC = E e ax;! ®dxj’.
X ]
J

e Define G := {Zpeptpgp | (tp)per € Ap} to be the convex hull generated by the gp.

Theorem (Upper bound on the dimension of the support of the optimal plan (Pass 2011))

Let vo a solution to MOT, and suppose that at some point x € X, the signature of some g € G is
(d*(g),d(g),d’(g)). Then, there exists a neighbourhood Ny of x such that Ny (" spt(yo) is
contained in a Lipschitz submanifold with dimension no greater than > . d; — d™(g).
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e 11; be compactly supported measures over X; with L* densities;
e Cc € X);

eforeveryx € X, 3gx € G, dT(gx) >d*;

Goal: get a lower bound of the form

MOT. — MOTq > %elogO/e) — Le.
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e 11; be compactly supported measures over X; with L* densities;
e Cc € X);

eforeveryx € X, 3gx € G, d*(gx) > d*;

Goal: get a lower bound of the form

MOT. — MOTq > %elogO/e) — Le.

Strategy

- Use the dual regularized problem (in log form):

- Take Kantorovich potentials (solution to un-regularized dual) as competitors and show that the
duality gap £ = c — ®,¢; grows enough near 3 = {E£ = 0}.
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Lower bound: some details

Let {1,...,m} = p_ Upy, we identify x € X with (x_,x4) and write ¢+ (y) = Ziepi (V).
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- If (¢;) are c-conjugate, for x, x” € X, we have:
E(X') = c(x_,x4) — 6 (<) — ¢4 (x4)
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Lower bound: some details

Let {1,...,m} = p_ Upy, we identify x € X with (x_,xy) and write ¢+ (y) = Ziepi i (Vi)
- If (¢;) are c-conjugate, for x, x” € X, we have:
E(X') = c(x_,x4) — 6 (<) — ¢4 (x4)
> c(xX_,xy) = (€O x1) — 6 (x4)) — (C(x=, Xy ) — 6 (x))
=c(x_, X)) — c(x, x4) — c(x—, X)) + c(x=, x4) — E(x).

- By Taylor’s integral formula

E(X') 4+ E(x) > /O /O Dp p, C(Xst) (X1 — X, X} — x4) = %gp(i)(x' —X) + Ox(|IX" = x]|*)

8/9



Lower bound: some details

Let {1,...,m} = p_ Upy, we identify x € X with (x_,x4) and write ¢+ (y) = Ziepi (V).
- If (¢;) are c-conjugate, for x, x” € X, we have:
E(X') = c(x_,x4) — 6 (<) — ¢4 (x4)
> c(d_,x}) — (€, x4) — 1 (x1) = (€x=, X4 ) — 6 (x-))
=c(x_, X)) — c(x, x4) — c(x—, X)) + c(x=, x4) — E(x).
- By Taylor’s integral formula
1 ll
/ / / 1 = ’ ’
B0 +E0 2 [ [ 0hp, clrad =1 Xh = x2) = 3R =)+ Ox(IX = xIP)
0 0
and taking a convex combination g = > t,g,, for diagonalizing coordinates (u™, u™,u°)
E(X) + E() > |ut (X)) — u (0)* = [u™(x') = u~ ()" + O(x" —xI*)

— quadratic detachment of the duality gap E in d*(g) > d* dimensions.
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0 0
and taking a convex combination g = > t,g,, for diagonalizing coordinates (u™, u™,u°)
E(X) + E() > |ut (X)) — u (0)* = [u™(x') = u~ ()" + O(x" —xI*)

— quadratic detachment of the duality gap E in d*(g) > d* dimensions.
- Taking (¢i)1<i<m as competitor in the dual of the entropic MOT:

MOT. > MOT, — elog (/ 67g d ®1<i<m u,-) > MOTo + %Elogﬂ/a) —O(e).
* H1§/§mx
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Consequences and some examples
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Tamanini 2022);
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Consequences and some examples

e m = 2 and non-degenerate cost function, then we retrieve the bounds in (Carlier, Pegon, and
Tamanini 2022);
e m = 2 and degenerate cost function such that D5 ,¢ has rank r then the lower bound is such that
d*=r;
em =2, d;, < d (aka the unequal dimensional case) and Dﬁ,yc has full rank d, then
a;

MOT. = MOT, + TElog(T/E) + O(e)

e Consider d; = d for all i and the cost c = h(}_ x;) with D’h < 0 then d* = (m — 1)d and

MOT. = MOT, + welogﬁ/s) +0(e).

This is the case of Gangbo-Swiech cost, that is Zm Ix; — x;|*> which corresponds to the
multi-marginal formulation of the Wasserstein barycenter problem.
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Thank You.
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