

Innin

Convergence rate of entropy-regularized multi-marginal optimal transport costs CANUM 2024

Paul Pegon Joint work with L. Nenna May 31, 2024

CEREMADE, Université Paris-Dauphine & MOKAPLAN, Inria Paris

1. Entropic Multi-Marginal Optimal Transport

2. The upper bound

3. The lower bound

Entropic Multi-Marginal Optimal Transport

Consider

- $m \ge 2$ probability measures μ_i compactly supported on \mathscr{C}^2 submanifolds $X_i \subseteq \mathbb{R}^N$ of dim d_i ;
- a cost function $c: X \to \mathbb{R}_+$ (e.g. continuous or lsc) where $X := \times_i^m X_i$;

Consider

- $m \ge 2$ probability measures μ_i compactly supported on \mathscr{C}^2 submanifolds $X_i \subseteq \mathbb{R}^N$ of dim d_i ;
- a cost function $c: X \to \mathbb{R}_+$ (e.g. continuous or lsc) where $X := \times_i^m X_i$;

Entropic Multi-Marginal Optimal Transport problem

It reads as:

$$\mathsf{MOT}_{\varepsilon} := \inf_{\gamma \in \Pi(\mu_1, \dots, \mu_m)} \left\{ \int_{\mathsf{X}} c(x_1, \dots, x_m) \, \mathrm{d}\gamma(x_1, \dots, x_m) + \varepsilon \mathrm{Ent}(\gamma \mid \bigotimes_{i=1}^m \mu_i) \right\}$$

where $\Pi(\mu_1, \ldots, \mu_m)$ is the set of *couplings* $\gamma \in \mathscr{P}(X)$ having μ_i as marginals, $\operatorname{Ent}(\gamma | P)$ is the Boltzmann-Shannon entropy (= $\int \rho \log \rho \, dP$ if $\gamma = \rho P$), and $\varepsilon > 0$ is a small noise parameter.

Consider

- $m \ge 2$ probability measures μ_i compactly supported on \mathscr{C}^2 submanifolds $X_i \subseteq \mathbb{R}^N$ of dim d_i ;
- a cost function $c: X \to \mathbb{R}_+$ (e.g. continuous or lsc) where $X := \times_i^m X_i$;

Entropic Multi-Marginal Optimal Transport problem

It reads as:

$$\mathsf{MOT}_{\varepsilon} := \inf_{\gamma \in \Pi(\mu_1, \dots, \mu_m)} \left\{ \int_{\mathsf{X}} c(x_1, \dots, x_m) \, \mathrm{d}\gamma(x_1, \dots, x_m) + \varepsilon \mathrm{Ent}(\gamma \mid \otimes_{i=1}^m \mu_i) \right\}$$

where $\Pi(\mu_1, \ldots, \mu_m)$ is the set of *couplings* $\gamma \in \mathscr{P}(X)$ having μ_i as marginals, $\operatorname{Ent}(\gamma | P)$ is the Boltzmann-Shannon entropy (= $\int \rho \log \rho \, dP$ if $\gamma = \rho P$), and $\varepsilon > 0$ is a small noise parameter.

• m = 2. Classical Entropic Optimal Transport.

Consider

- $m \ge 2$ probability measures μ_i compactly supported on \mathscr{C}^2 submanifolds $X_i \subseteq \mathbb{R}^N$ of dim d_i ;
- a cost function $c: X \to \mathbb{R}_+$ (e.g. continuous or lsc) where $X := \times_i^m X_i$;

Entropic Multi-Marginal Optimal Transport problem

It reads as:

$$\mathsf{MOT}_{\varepsilon} := \inf_{\gamma \in \Pi(\mu_1, \dots, \mu_m)} \left\{ \int_{\mathsf{X}} c(x_1, \dots, x_m) \, \mathrm{d}\gamma(x_1, \dots, x_m) + \varepsilon \mathrm{Ent}(\gamma \mid \otimes_{i=1}^m \mu_i) \right\}$$

where $\Pi(\mu_1, \ldots, \mu_m)$ is the set of *couplings* $\gamma \in \mathscr{P}(X)$ having μ_i as marginals, $\operatorname{Ent}(\gamma | P)$ is the Boltzmann-Shannon entropy (= $\int \rho \log \rho \, dP$ if $\gamma = \rho P$), and $\varepsilon > 0$ is a small noise parameter.

- *m* = 2. Classical Entropic Optimal Transport.
- $\varepsilon = 0$ and m = 2. Classical Optimal Transport problem. Convex problem, but may have several solutions γ , with or without finite entropy!

Consider

- $m \ge 2$ probability measures μ_i compactly supported on \mathscr{C}^2 submanifolds $X_i \subseteq \mathbb{R}^N$ of dim d_i ;
- a cost function $c: X \to \mathbb{R}_+$ (e.g. continuous or lsc) where $X := \times_i^m X_i$;

Entropic Multi-Marginal Optimal Transport problem

It reads as:

$$\mathsf{MOT}_{\varepsilon} := \inf_{\gamma \in \Pi(\mu_1, \dots, \mu_m)} \left\{ \int_{\mathsf{X}} c(x_1, \dots, x_m) \, \mathrm{d}\gamma(x_1, \dots, x_m) + \varepsilon \mathrm{Ent}(\gamma \mid \otimes_{i=1}^m \mu_i) \right\}$$

where $\Pi(\mu_1, \ldots, \mu_m)$ is the set of *couplings* $\gamma \in \mathscr{P}(X)$ having μ_i as marginals, $\operatorname{Ent}(\gamma | P)$ is the Boltzmann-Shannon entropy (= $\int \rho \log \rho \, dP$ if $\gamma = \rho P$), and $\varepsilon > 0$ is a small noise parameter.

- *m* = 2. Classical Entropic Optimal Transport.
- $\varepsilon = 0$ and m = 2. Classical Optimal Transport problem. Convex problem, but may have several solutions γ , with or without finite entropy!
- $\varepsilon > 0$. Strictly convex cost \implies unique solution γ_{ε} with finite entropy.

- the cost MOT_ε
- \cdot the optimal entropic plan $\gamma_{arepsilon}$ and optimal Schrödinger potentials $(\phi_arepsilon,\psi_arepsilon)$

- the cost MOT_{ε}
- · the optimal entropic plan γ_{ε} and optimal Schrödinger potentials $(\phi_{\varepsilon},\psi_{\varepsilon})$

- · the cost MOT_{ε}
- \cdot the optimal entropic plan $\gamma_{arepsilon}$ and optimal Schrödinger potentials $(\phi_arepsilon,\psi_arepsilon)$

First remark: depends heavily on $c = c(\mathbf{x})$ and the marginals μ_i 's.

- the cost MOT_{ε}
- \cdot the optimal entropic plan $\gamma_{arepsilon}$ and optimal Schrödinger potentials $(\phi_arepsilon,\psi_arepsilon)$

First remark: depends heavily on $c = c(\mathbf{x})$ and the marginals μ_i 's. What is known?

- · the cost MOT_{ε}
- \cdot the optimal entropic plan $\gamma_{arepsilon}$ and optimal Schrödinger potentials $(\phi_arepsilon,\psi_arepsilon)$

First remark: depends heavily on c = c(x) and the marginals μ_i 's. What is known? Mostly for the m = 2 case.

- the cost MOT_{ε}
- · the optimal entropic plan $\gamma_{arepsilon}$ and optimal Schrödinger potentials $(\phi_{arepsilon},\psi_{arepsilon})$

First remark: depends heavily on $c = c(\mathbf{x})$ and the marginals μ_i 's. What is known? Mostly for the m = 2 case.

• Convergence rate in the discrete case (Cominetti, San Martin ; 1994) and semi-discrete case (Altschuler, Niles-Weed, Stromme ; 2021) (Delalande ; 2021);

- the cost MOT_ε
- · the optimal entropic plan $\gamma_{arepsilon}$ and optimal Schrödinger potentials $(\phi_{arepsilon},\psi_{arepsilon})$

First remark: depends heavily on $c = c(\mathbf{x})$ and the marginals μ_i 's. What is known? Mostly for the m = 2 case.

- Convergence rate in the discrete case (Cominetti, San Martin ; 1994) and semi-discrete case (Altschuler, Niles-Weed, Stromme ; 2021) (Delalande ; 2021);
- Convergence rate in the continuous case under strong regularity assumptions (Pal, 2019), second-order expansion for dynamical quadratic OT (Conforti-Tamanini, 2019)

- the cost MOT_ε
- $\cdot\,$ the optimal entropic plan γ_{ε} and optimal Schrödinger potentials $(\phi_{\varepsilon},\psi_{\varepsilon})$

First remark: depends heavily on c = c(x) and the marginals μ_i 's. What is known? Mostly for the m = 2 case.

- Convergence rate in the discrete case (Cominetti, San Martin ; 1994) and semi-discrete case (Altschuler, Niles-Weed, Stromme ; 2021) (Delalande ; 2021);
- Convergence rate in the continuous case under strong regularity assumptions (Pal, 2019), second-order expansion for dynamical quadratic OT (Conforti-Tamanini, 2019)
- Convergence rate for 2−marginal and a general class of C² non-degenerate costs (Carlier, Pegon, and Tamanini 2022), more precise estimates by (Malamut, Sylvestre ; 2023)

- the cost MOT_ε
- · the optimal entropic plan $\gamma_{arepsilon}$ and optimal Schrödinger potentials $(\phi_{arepsilon},\psi_{arepsilon})$

First remark: depends heavily on c = c(x) and the marginals μ_i 's. What is known? Mostly for the m = 2 case.

- Convergence rate in the discrete case (Cominetti, San Martin ; 1994) and semi-discrete case (Altschuler, Niles-Weed, Stromme ; 2021) (Delalande ; 2021);
- Convergence rate in the continuous case under strong regularity assumptions (Pal, 2019), second-order expansion for dynamical quadratic OT (Conforti-Tamanini, 2019)
- Convergence rate for 2—marginal and a general class of \mathscr{C}^2 non-degenerate costs (Carlier, Pegon, and Tamanini 2022), more precise estimates by (Malamut, Sylvestre ; 2023)
- Upper bound for the multi-marginal (Eckstein and Nutz 2022) *with a condition on the optimal transport plans* in terms of quantization dimension ;

Direction of our work

Goal

- · Asymptotics as $\varepsilon \to 0$ (lower and upper bounds) for multi-marginal optimal transport cost;
- Possibly degenerate ground costs c (for 2-marginal, D_{xy}^2 c not necessarily invertible);
- No assumption on the optimal transport plans for MOT₀;

Direction of our work

Goal

- · Asymptotics as $\varepsilon \to 0$ (lower and upper bounds) for multi-marginal optimal transport cost;
- Possibly degenerate ground costs c (for 2-marginal, D_{xy}^2 c not necessarily invertible);
- No assumption on the optimal transport plans for MOT₀;

In particular we obtain:

Theorem (Nenna - P.)

Let μ_i be compactly supported measures over X_i with L^{∞} densities. Assume that $c \in \mathscr{C}^2(X)$ and satisfies a signature condition on second mixed derivatives. Then

$$MOT_{\varepsilon} = MOT_0 + \frac{1}{2} \left(\sum_{i=1}^{m} d_i - \max_i d_i \right) \varepsilon \log(1/\varepsilon) + O(\varepsilon).$$

Application for Wasserstein barycenters (more later).

Assumptions

- μ_i are compactly supported measures in $L^{\infty}(X_i)$ where X_i are \mathscr{C}^2 submanifolds of dimension d_i ;
- $c \in \mathscr{C}_{loc}^{1,1}(X)$ or more generally locally semi-concave (also, weaker upper bound $c \in \mathscr{C}^{0,1}(X)$);

Goal: get an upper bound of the form

$$MOT_{\varepsilon} - MOT_{0} \leq \frac{1}{2} \Big(\sum_{1 \leq i \leq m} d_{i} - \max_{i} d_{i} \Big) \varepsilon \log(1/\varepsilon) + O(\varepsilon).$$

Assumptions

- μ_i are compactly supported measures in $L^{\infty}(X_i)$ where X_i are \mathscr{C}^2 submanifolds of dimension d_i ;
- $c \in \mathscr{C}_{loc}^{1,1}(X)$ or more generally locally semi-concave (also, weaker upper bound $c \in \mathscr{C}^{0,1}(X)$);

Goal: get an upper bound of the form

$$MOT_{\varepsilon} - MOT_0 \leq \frac{1}{2} \Big(\sum_{1 \leq i \leq m} d_i - \max_i d_i \Big) \varepsilon \log(1/\varepsilon) + O(\varepsilon).$$

Strategy. Straightforward (almost) generalization of the upper bound in (Carlier, Pegon, and Tamanini 2022) on \mathscr{C}^2 submanifolds:

• Build a suitable competitor for the entropic (primal) problem

$$\mathsf{MOT}_{\varepsilon} = \inf_{\gamma \in \Pi(\mu_1, \dots, \mu_m)} \Bigg\{ \int_{\mathbf{X}} c(X_1, \dots, X_m) \, \mathrm{d}\gamma(X_1, \dots, X_m) + \varepsilon \mathrm{Ent}(\gamma \mid \otimes_{i=1}^m \mu_i) \Bigg\}.$$

using an optimizer for (MOT₀) and a block-approximation of (Carlier, Duval, et al. 2017).

Assumptions

- μ_i are compactly supported measures in $L^{\infty}(X_i)$ where X_i are \mathscr{C}^2 submanifolds of dimension d_i ;
- $c \in \mathscr{C}_{loc}^{1,1}(X)$ or more generally locally semi-concave (also, weaker upper bound $c \in \mathscr{C}^{0,1}(X)$);

Goal: get an upper bound of the form

$$MOT_{\varepsilon} - MOT_0 \leq \frac{1}{2} \Big(\sum_{1 \leq i \leq m} d_i - \max_i d_i \Big) \varepsilon \log(1/\varepsilon) + O(\varepsilon).$$

Strategy. Straightforward (almost) generalization of the upper bound in (Carlier, Pegon, and Tamanini 2022) on \mathscr{C}^2 submanifolds:

• Build a suitable competitor for the entropic (primal) problem

$$\mathsf{MOT}_{\varepsilon} = \inf_{\gamma \in \Pi(\mu_1, \dots, \mu_m)} \Bigg\{ \int_{\mathsf{X}} c(x_1, \dots, x_m) \, \mathrm{d}\gamma(x_1, \dots, x_m) + \varepsilon \mathrm{Ent}(\gamma \mid \otimes_{i=1}^m \mu_i) \Bigg\}.$$

using an optimizer for (MOT₀) and a block-approximation of (Carlier, Duval, et al. 2017).

• Show and use some integral variant of Alexandrov theorem on convex functions.

Upper bound: some details for m= 2, marginals μ^-,μ^+

For blocks $\bigsqcup_n A_n = \mathbb{R}^N$ of diameter $\leq \delta$, take as competitor

$$\gamma^{\delta} := \sum_{i,j \in \mathbb{N}} \gamma_0(A_i \times A_j) \frac{\mu^- \bigsqcup A_i}{\mu^-(A_i)} \otimes \frac{\mu^+ \bigsqcup A_j}{\mu^+(A_j)}.$$

Upper bound: some details for m= 2, marginals μ^-,μ^+

For blocks $\bigsqcup_n A_n = \mathbb{R}^N$ of diameter $\leq \delta$, take as competitor

$$\gamma^{\delta} \coloneqq \sum_{i,j\in\mathbb{N}} \gamma_0(A_i \times A_j) \frac{\mu^- \bigsqcup A_i}{\mu^-(A_i)} \otimes \frac{\mu^+ \bigsqcup A_j}{\mu^+(A_j)}.$$

• Plug this competitor into the primal problem, write $E = c - \phi \oplus \psi$ the duality gap, then:

$$\mathsf{MOT}_{\varepsilon} \leq \int_{\mathbb{R}^d \times \mathbb{R}^d} c \, \mathrm{d}\gamma^{\delta} + \varepsilon \mathrm{Ent}(\gamma^{\delta} | \mu^- \otimes \mu^+) = \mathsf{MOT}_0 + \int_{\mathbb{R}^d \times \mathbb{R}^d} E \, \mathrm{d}(\gamma^{\delta} - \gamma^0) + \varepsilon \mathrm{Ent}(\gamma^{\delta} | \mu^- \otimes \mu^+)$$

Upper bound: some details for m= 2, marginals μ^-, μ^+

For blocks $\bigsqcup_n A_n = \mathbb{R}^N$ of diameter $\leq \delta$, take as competitor

$$\gamma^{\delta} := \sum_{i,j \in \mathbb{N}} \gamma_0(A_i \times A_j) \frac{\mu^- \bigsqcup A_i}{\mu^-(A_i)} \otimes \frac{\mu^+ \bigsqcup A_j}{\mu^+(A_j)}.$$

• Plug this competitor into the primal problem, write $E = c - \phi \oplus \psi$ the duality gap, then:

$$\mathsf{MOT}_{\varepsilon} \leq \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} c \, \mathrm{d}\gamma^{\delta} + \varepsilon \mathrm{Ent}(\gamma^{\delta} | \mu^{-} \otimes \mu^{+}) = \mathsf{MOT}_{0} + \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} E \, \mathrm{d}(\gamma^{\delta} - \gamma^{0}) + \varepsilon \mathrm{Ent}(\gamma^{\delta} | \mu^{-} \otimes \mu^{+})$$

• Bound the entropy term, for well-chosen blocks:

$$\begin{aligned} \operatorname{Ent}(\gamma^{\delta} \mid \mu^{-} \otimes \mu^{+}) &= \sum_{i,j \in \mathbb{N}} \gamma_{0}(A_{i} \times A_{j}) \log \left(\frac{\gamma_{0}(A_{i} \times A_{j})}{\mu^{-}(A_{i})\mu^{+}(A_{j})} \right) \\ &\leq \sum_{j \in \mathbb{N}} \mu^{+}(A_{j}) \log(1/\mu^{+}(A_{j})) = d^{+} \log(1/\delta) + O(1). \end{aligned}$$

Upper bound: some details for m= 2, marginals μ^-, μ^+

For blocks $\bigsqcup_n A_n = \mathbb{R}^N$ of diameter $\leq \delta$, take as competitor

$$\gamma^{\delta} := \sum_{i,j \in \mathbb{N}} \gamma_0(A_i \times A_j) \frac{\mu^- \bigsqcup A_i}{\mu^-(A_i)} \otimes \frac{\mu^+ \bigsqcup A_j}{\mu^+(A_j)}.$$

• Plug this competitor into the primal problem, write $E = c - \phi \oplus \psi$ the duality gap, then:

$$\mathsf{MOT}_{\varepsilon} \leq \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} c \, \mathrm{d}\gamma^{\delta} + \varepsilon \mathrm{Ent}(\gamma^{\delta} | \mu^{-} \otimes \mu^{+}) = \mathsf{MOT}_{0} + \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} E \, \mathrm{d}(\gamma^{\delta} - \gamma^{0}) + \varepsilon \mathrm{Ent}(\gamma^{\delta} | \mu^{-} \otimes \mu^{+})$$

• Bound the entropy term, for well-chosen blocks:

$$\begin{aligned} \operatorname{Ent}(\gamma^{\delta} \mid \mu^{-} \otimes \mu^{+}) &= \sum_{i,j \in \mathbb{N}} \gamma_{0}(A_{i} \times A_{j}) \log \left(\frac{\gamma_{0}(A_{i} \times A_{j})}{\mu^{-}(A_{i})\mu^{+}(A_{j})} \right) \\ &\leq \sum_{j \in \mathbb{N}} \mu^{+}(A_{j}) \log(1/\mu^{+}(A_{j})) = d^{+} \log(1/\delta) + O(1). \end{aligned}$$

• Show that $\int_{\mathbb{R}^d \times \mathbb{R}^d} E d(\gamma^{\delta} - \gamma^0) = O(\delta^2)$ then take $\varepsilon = \delta^2$ (integral Alexandrov-type estimate):

$$MOT_{\varepsilon} \leq MOT_0 + O(\delta^2) + d^+ \varepsilon \log(1/\delta) + O(\varepsilon) = MOT_0 + \frac{d^+}{2} \varepsilon \log(1/\varepsilon) + O(\varepsilon).$$

The lower bound

• For each $p \in P$ we denote by g_p the bilinear form on TX as

$$g_{p} = \sum_{i \in p_{-}, j \in p_{+}} D^{2}_{x_{i}, x_{j}} c + D^{2}_{x_{j}, x_{i}} c \quad \text{where} \quad D^{2}_{x_{i}, x_{j}} c = \sum_{\alpha_{i}, \alpha_{j}} \frac{\partial^{2} c}{\partial_{x_{i}^{\alpha_{i}}} \partial_{x_{j}^{\alpha_{j}}}} dx_{i}^{\alpha_{i}} \otimes dx_{j}^{\alpha_{j}}.$$

• For each $p \in P$ we denote by g_p the bilinear form on TX as

$$g_{p} = \sum_{i \in p_{-}, j \in p_{+}} D_{x_{i}, x_{j}}^{2} c + D_{x_{j}, x_{j}}^{2} c \quad \text{where} \quad D_{x_{i}, x_{j}}^{2} c = \sum_{\alpha_{i}, \alpha_{j}} \frac{\partial^{2} c}{\partial_{x_{i}^{\alpha_{i}}} \partial_{x_{j}^{\alpha_{j}}}} dx_{i}^{\alpha_{i}} \otimes dx_{j}^{\alpha_{j}}.$$

• Define $G := \{\sum_{p \in P} t_p g_p \mid (t_p)_{p \in P} \in \Delta_P\}$ to be the convex hull generated by the g_p .

• For each $p \in P$ we denote by g_p the bilinear form on TX as

$$g_{\rho} = \sum_{i \in \rho_{-}, j \in \rho_{+}} D_{x_{i}, x_{j}}^{2} c + D_{x_{j}, x_{i}}^{2} c \quad \text{where} \quad D_{x_{i}, x_{j}}^{2} c = \sum_{\alpha_{i}, \alpha_{j}} \frac{\partial^{2} c}{\partial_{x_{i}}^{\alpha_{i}} \partial_{x_{j}}^{\alpha_{j}}} dx_{i}^{\alpha_{i}} \otimes dx_{j}^{\alpha_{j}}.$$

• Define $G := \{\sum_{p \in P} t_p g_p \mid (t_p)_{p \in P} \in \Delta_P\}$ to be the convex hull generated by the g_p .

Theorem (Upper bound on the dimension of the support of the optimal plan (Pass 2011)) Let γ_0 a solution to MOT₀ and suppose that at some point $\mathbf{x} \in \mathbf{X}$, the signature of some $g \in G$ is $(d^+(g), d^-(g), d^0(g))$. Then, there exists a neighbourhood $N_{\mathbf{x}}$ of \mathbf{x} such that $N_{\mathbf{x}} \bigcap \operatorname{spt}(\gamma_0)$ is contained in a Lipschitz submanifold with dimension no greater than $\sum_i d_i - d^+(g)$.

- μ_i be compactly supported measures over X_i with L^{∞} densities;
- $c \in \mathscr{C}^2(\mathsf{X});$
- for every $\mathbf{x} \in \mathbf{X}$, $\exists g_{x} \in G$, $d^{+}(g_{x}) \geq d^{\star}$;

Goal: get a lower bound of the form

$$\mathsf{MOT}_{arepsilon} - \mathsf{MOT}_0 \geq rac{d^{\star}}{2} \varepsilon \log(1/arepsilon) - L arepsilon.$$

- μ_i be compactly supported measures over X_i with L^{∞} densities;
- $c \in \mathscr{C}^2(X);$
- for every $\mathbf{x} \in \mathbf{X}$, $\exists g_x \in G$, $d^+(g_x) \ge d^*$;

Goal: get a lower bound of the form

$$MOT_{\varepsilon} - MOT_0 \ge \frac{d^*}{2} \varepsilon \log(1/\varepsilon) - L\varepsilon.$$

Strategy

- Use the dual regularized problem (in log form):
- Take Kantorovich potentials (solution to un-regularized dual) as competitors and show that the duality gap $E \doteq c \bigoplus_{i=1}^{m} \phi_i$ grows enough near $\Sigma = \{E = 0\}$.

Let $\{1, \ldots, m\} = p_- \sqcup p_+$, we identify $\mathbf{x} \in \mathbf{X}$ with (x_-, x_+) and write $\phi_{\pm}(y) = \sum_{i \in p_+} \phi_i(y_i)$.

Let $\{1, \ldots, m\} = p_- \sqcup p_+$, we identify $\mathbf{x} \in \mathbf{X}$ with (x_-, x_+) and write $\phi_{\pm}(y) = \sum_{i \in p_+} \phi_i(y_i)$.

• If (ϕ_i) are c-conjugate, for $\mathbf{x}, \mathbf{x'} \in X$, we have:

$$E(\mathbf{x}') = c(x'_{-}, x'_{+}) - \phi_{-}(\mathbf{x}'_{-}) - \phi_{+}(\mathbf{x}'_{+})$$

$$\geq c(x'_{-}, x'_{+}) - (c(x'_{-}, x_{+}) - \phi_{+}(\mathbf{x}_{+})) - (c(x_{-}, x'_{+}) - \phi_{-}(\mathbf{x}_{-}))$$

$$= c(x'_{-}, x'_{+}) - c(x'_{-}, x_{+}) - c(x_{-}, x'_{+}) + c(x_{-}, x_{+}) - E(\mathbf{x}).$$

Let $\{1, \ldots, m\} = p_- \sqcup p_+$, we identify $\mathbf{x} \in \mathbf{X}$ with (x_-, x_+) and write $\phi_{\pm}(y) = \sum_{i \in p_+} \phi_i(y_i)$.

• If (ϕ_i) are c-conjugate, for $\mathbf{x}, \mathbf{x'} \in X$, we have:

$$E(\mathbf{x}') = c(x'_{-}, x'_{+}) - \phi_{-}(\mathbf{x}'_{-}) - \phi_{+}(\mathbf{x}'_{+})$$

$$\geq c(x'_{-}, x'_{+}) - (c(\mathbf{x}'_{-}, \mathbf{x}_{+}) - \phi_{+}(\mathbf{x}_{+})) - (c(\mathbf{x}_{-}, \mathbf{x}'_{+}) - \phi_{-}(\mathbf{x}_{-}))$$

$$= c(x'_{-}, x'_{+}) - c(x'_{-}, \mathbf{x}_{+}) - c(\mathbf{x}_{-}, \mathbf{x}'_{+}) + c(\mathbf{x}_{-}, \mathbf{x}_{+}) - E(\mathbf{x}).$$

• By Taylor's integral formula

$$E(\mathbf{x}') + E(\mathbf{x}) \ge \int_0^1 \int_0^1 D_{\rho_-\rho_+}^2 c(\mathbf{x}_{s,t}) (x'_- - x_-, x'_+ - x_+) = \frac{1}{2} g_\rho(\bar{\mathbf{x}}) (\mathbf{x}' - \mathbf{x}) + O_{\bar{\mathbf{x}}} (\|\mathbf{x}' - \mathbf{x}\|^2)$$

Let $\{1, \ldots, m\} = p_- \sqcup p_+$, we identify $\mathbf{x} \in \mathbf{X}$ with (x_-, x_+) and write $\phi_{\pm}(y) = \sum_{i \in p_+} \phi_i(y_i)$.

• If (ϕ_i) are c-conjugate, for $\mathbf{x}, \mathbf{x'} \in X$, we have:

$$E(\mathbf{x}') = c(x'_{-}, x'_{+}) - \phi_{-}(\mathbf{x}'_{-}) - \phi_{+}(\mathbf{x}'_{+})$$

$$\geq c(x'_{-}, x'_{+}) - (c(\mathbf{x}'_{-}, \mathbf{x}_{+}) - \phi_{+}(\mathbf{x}_{+})) - (c(\mathbf{x}_{-}, \mathbf{x}'_{+}) - \phi_{-}(\mathbf{x}_{-}))$$

$$= c(x'_{-}, x'_{+}) - c(x'_{-}, \mathbf{x}_{+}) - c(\mathbf{x}_{-}, \mathbf{x}'_{+}) + c(\mathbf{x}_{-}, \mathbf{x}_{+}) - E(\mathbf{x}).$$

• By Taylor's integral formula

$$E(\mathbf{x}') + E(\mathbf{x}) \ge \int_0^1 \int_0^1 D_{p_-p_+}^2 c(\mathbf{x}_{s,t}) (\mathbf{x}'_- - \mathbf{x}_-, \mathbf{x}'_+ - \mathbf{x}_+) = \frac{1}{2} g_p(\bar{\mathbf{x}}) (\mathbf{x}' - \mathbf{x}) + O_{\bar{\mathbf{x}}} (\|\mathbf{x}' - \mathbf{x}\|^2)$$

and taking a convex combination $g = \sum t_p g_p$, for diagonalizing coordinates (u^+, u^-, u^0)

$$E(\mathbf{x}') + E(\mathbf{x}) \ge |u^+(\mathbf{x}') - u^+(\mathbf{x})|^2 - |u^-(\mathbf{x}') - u^-(\mathbf{x})|^2 + O(|\mathbf{x}' - \mathbf{x}|^2)$$

 \implies quadratic detachment of the duality gap *E* in $d^+(g) \ge d^*$ dimensions.

Let $\{1, \ldots, m\} = p_- \sqcup p_+$, we identify $\mathbf{x} \in \mathbf{X}$ with (x_-, x_+) and write $\phi_{\pm}(y) = \sum_{i \in p_+} \phi_i(y_i)$.

• If (ϕ_i) are c-conjugate, for $\mathbf{x}, \mathbf{x'} \in X$, we have:

$$E(\mathbf{x}') = c(x'_{-}, x'_{+}) - \phi_{-}(\mathbf{x}'_{-}) - \phi_{+}(\mathbf{x}'_{+})$$

$$\geq c(x'_{-}, x'_{+}) - (c(\mathbf{x}'_{-}, \mathbf{x}_{+}) - \phi_{+}(\mathbf{x}_{+})) - (c(\mathbf{x}_{-}, \mathbf{x}'_{+}) - \phi_{-}(\mathbf{x}_{-}))$$

$$= c(x'_{-}, x'_{+}) - c(x'_{-}, \mathbf{x}_{+}) - c(\mathbf{x}_{-}, \mathbf{x}'_{+}) + c(\mathbf{x}_{-}, \mathbf{x}_{+}) - E(\mathbf{x}).$$

• By Taylor's integral formula

$$E(\mathbf{x}') + E(\mathbf{x}) \ge \int_0^1 \int_0^1 D_{p_-p_+}^2 c(\mathbf{x}_{s,t}) (x'_- - x_-, x'_+ - x_+) = \frac{1}{2} g_p(\bar{\mathbf{x}}) (\mathbf{x}' - \mathbf{x}) + O_{\bar{\mathbf{x}}} (\|\mathbf{x}' - \mathbf{x}\|^2)$$

and taking a convex combination $g = \sum t_p g_p$, for diagonalizing coordinates (u^+, u^-, u^0)

$$E(\mathbf{x}') + E(\mathbf{x}) \ge |u^+(\mathbf{x}') - u^+(\mathbf{x})|^2 - |u^-(\mathbf{x}') - u^-(\mathbf{x})|^2 + O(|\mathbf{x}' - \mathbf{x}|^2)$$

 \implies quadratic detachment of the duality gap *E* in $d^+(g) \ge d^*$ dimensions.

• Taking $(\phi_i)_{1 \le i \le m}$ as competitor in the dual of the entropic MOT:

$$\mathsf{MOT}_{\varepsilon} \ge \mathsf{MOT}_0 - \varepsilon \log \left(\int_{\Pi_{1 \le i \le m} X_i} e^{-\frac{E}{\varepsilon}} \mathrm{d} \otimes_{1 \le i \le m} \mu_i \right) \ge \mathsf{MOT}_0 + \frac{d^*}{2} \varepsilon \log(1/\varepsilon) - O(\varepsilon).$$

• *m* = 2 and **non-degenerate** cost function, then we retrieve the bounds in (Carlier, Pegon, and Tamanini 2022);

Consequences and some examples

- *m* = 2 and **non-degenerate** cost function, then we retrieve the bounds in (Carlier, Pegon, and Tamanini 2022);
- m = 2 and **degenerate** cost function such that $D_{x,y}^2 c$ has rank r then the lower bound is such that $d^* = r$;

Consequences and some examples

- *m* = 2 and **non-degenerate** cost function, then we retrieve the bounds in (Carlier, Pegon, and Tamanini 2022);
- m = 2 and **degenerate** cost function such that $D_{x,y}^2 c$ has rank r then the lower bound is such that $d^* = r$;
- m = 2, $d_2 < d_1$ (aka the **unequal dimensional case**) and $D_{x,y}^2 c$ has full rank d_2 then

$$MOT_{\varepsilon} = MOT_0 + \frac{d_2}{2}\varepsilon \log(1/\varepsilon) + O(\varepsilon)$$

Consequences and some examples

- *m* = 2 and **non-degenerate** cost function, then we retrieve the bounds in (Carlier, Pegon, and Tamanini 2022);
- m = 2 and **degenerate** cost function such that $D_{x,y}^2 c$ has rank r then the lower bound is such that $d^* = r$;
- m = 2, $d_2 < d_1$ (aka the **unequal dimensional case**) and $D_{x,y}^2 c$ has full rank d_2 then

$$MOT_{\varepsilon} = MOT_0 + \frac{d_2}{2}\varepsilon \log(1/\varepsilon) + O(\varepsilon)$$

• Consider $d_i = d$ for all i and the cost $c = h(\sum_{i=1}^m x_i)$ with $D^2h < 0$ then $d^* = (m-1)d$ and

$$MOT_{\varepsilon} = MOT_0 + \frac{(m-1)d}{2}\varepsilon \log(1/\varepsilon) + O(\varepsilon).$$

This is the case of Gangbo-Święch cost, that is $\sum_{i < j} |x_i - x_j|^2$ which corresponds to the multi-marginal formulation of the Wasserstein barycenter problem.

Thank You.