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Entropic Multi-Marginal Optimal Transport



Definition of the problem

Consider

• m ≥ 2 probability measures µi compactly supported on C 2 submanifolds Xi ⊆ RN of dim di ;
• a cost function c : X → R+ (e.g. continuous or lsc) where X := ×m

i Xi ;

Entropic Multi-Marginal Optimal Transport problem
It reads as:

MOTε := inf
γ∈Π(µ1,...,µm)

{ ˆ
X
c(x1, . . . , xm) dγ(x1, . . . , xm) + εEnt(γ | ⊗m

i=1 µi)

}
,

where Π(µ1, . . . , µm) is the set of couplings γ ∈ P(X) having µi as marginals, Ent(γ | P) is the
Boltzmann-Shannon entropy (=

´
ρ log ρ dP if γ = ρP), and ε > 0 is a small noise parameter.

• m = 2. Classical Entropic Optimal Transport.
• ε = 0 and m = 2. Classical Optimal Transport problem. Convex problem, but may have several
solutions γ, with or without finite entropy!

• ε > 0. Strictly convex cost =⇒ unique solution γε with finite entropy.
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What are we interested in?

Asymptotics for ε → 0 of

• the cost MOTε

• the optimal entropic plan γε and optimal Schrödinger potentials (φε, ψε)

First remark: depends heavily on c = c(x) and the marginals µi’s.
What is known? Mostly for the m = 2 case.

• Convergence rate in the discrete case (Cominetti, San Martin ; 1994) and semi-discrete case
(Altschuler, Niles-Weed, Stromme ; 2021) (Delalande ; 2021);

• Convergence rate in the continuous case under strong regularity assumptions (Pal, 2019),
second-order expansion for dynamical quadratic OT (Conforti-Tamanini, 2019)

• Convergence rate for 2−marginal and a general class of C 2 non-degenerate costs (Carlier,
Pegon, and Tamanini 2022), more precise estimates by (Malamut, Sylvestre ; 2023)

• Upper bound for the multi-marginal (Eckstein and Nutz 2022) with a condition on the optimal
transport plans in terms of quantization dimension ;
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Direction of our work

Goal

• Asymptotics as ε → 0 (lower and upper bounds) for multi-marginal optimal transport cost;
• Possibly degenerate ground costs c (for 2-marginal, D2xyc not necessarily invertible);
• No assumption on the optimal transport plans for MOT0;

In particular we obtain:

Theorem (Nenna - P.)
Let µi be compactly supported measures over Xi with L∞ densities. Assume that c ∈ C 2(X) and
satisfies a signature condition on second mixed derivatives. Then

MOTε = MOT0 +
1
2

(
m∑
i=1

di − max
i
di

)
ε log(1/ε) + O(ε).

Application for Wasserstein barycenters (more later).
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The upper bound



The upper bound

Assumptions

• µi are compactly supported measures in L∞(Xi) where Xi are C 2 submanifolds of dimension di ;

• c ∈ C 1,1
loc(X) or more generally locally semi-concave (also, weaker upper bound c ∈ C 0,1(X));

Goal: get an upper bound of the form

MOTε −MOT0 ≤ 1
2

( ∑
1≤i≤m

di − max
i
di
)
ε log(1/ε) + O(ε).

Strategy. Straightforward (almost) generalization of the upper bound in (Carlier, Pegon, and
Tamanini 2022) on C 2 submanifolds:
• Build a suitable competitor for the entropic (primal) problem

MOTε = inf
γ∈Π(µ1,...,µm)

{ ˆ
X
c(x1, . . . , xm) dγ(x1, . . . , xm) + εEnt(γ | ⊗m

i=1 µi)

}
.

using an optimizer for (MOT0) and a block-approximation of (Carlier, Duval, et al. 2017).

• Show and use some integral variant of Alexandrov theorem on convex functions.
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Upper bound: some details for m = 2, marginals µ−, µ+

For blocks
⊔

n An = RN of diameter ≤ δ, take as competitor

γδ :=
∑
i,j∈N

γ0(Ai × Aj)
µ− Ai
µ−(Ai)

⊗
µ+ Aj
µ+(Aj)

.

• Plug this competitor into the primal problem, write E = c − φ⊕ ψ the duality gap, then:

MOTε ≤
ˆ
Rd×Rd

c dγδ + εEnt(γδ|µ− ⊗ µ+) = MOT0 +
ˆ
Rd×Rd

E d(γδ − γ0) + εEnt(γδ|µ− ⊗ µ+)

• Bound the entropy term, for well-chosen blocks:

Ent(γδ |µ− ⊗ µ+) =
∑
i,j∈N

γ0(Ai × Aj) log
(

γ0(Ai × Aj)
µ−(Ai)µ+(Aj)

)
≤
∑
j∈N

µ+(Aj) log(1/µ+(Aj)) = d+ log(1/δ) + O(1).

• Show that
´
Rd×Rd E d(γδ − γ0) = O(δ2) then take ε = δ2 (integral Alexandrov-type estimate):

MOTε ≤ MOT0 + O(δ2) + d+ε log(1/δ) + O(ε) = MOT0 +
d+

2 ε log(1/ε) + O(ε).
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The lower bound



A signature condition on the second mixed derivatives

• Consider a c ∈ C 2(X) and let P be the set of partitions of {1, . . . ,m} into two non empty disjoint
subsets: p := {p−, p+} ∈ P;

• For each p ∈ P we denote by gp the bilinear form on TX as

gp =
∑

i∈p−,j∈p+

D2xi,xjc + D2xj,xic where D2xi,xjc =
∑
αi,αj

∂2c
∂xαi

i
∂
x

αj
j

dxαi
i ⊗ dxαj

j .

• Define G := {
∑

p∈P tpgp | (tp)p∈P ∈ ∆P} to be the convex hull generated by the gp.

Theorem (Upper bound on the dimension of the support of the optimal plan (Pass 2011))
Let γ0 a solution to MOT0 and suppose that at some point x ∈ X, the signature of some g ∈ G is
(d+(g),d−(g),d0(g)). Then, there exists a neighbourhood Nx of x such that Nx

⋂
spt(γ0) is

contained in a Lipschitz submanifold with dimension no greater than
∑

i di − d+(g).
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Let γ0 a solution to MOT0 and suppose that at some point x ∈ X, the signature of some g ∈ G is
(d+(g),d−(g),d0(g)). Then, there exists a neighbourhood Nx of x such that Nx

⋂
spt(γ0) is

contained in a Lipschitz submanifold with dimension no greater than
∑

i di − d+(g).
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Lower bound

• µi be compactly supported measures over Xi with L∞ densities;
• c ∈ C 2(X);
• for every x ∈ X, ∃gx ∈ G, d+(gx) ≥ d?;
Goal: get a lower bound of the form

MOTε −MOT0 ≥ d?

2 ε log(1/ε) − Lε.

Strategy

• Use the dual regularized problem (in log form):

• Take Kantorovich potentials (solution to un-regularized dual) as competitors and show that the
duality gap E .

= c − ⊕m
i=1φi grows enough near Σ = {E = 0}.
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Lower bound: some details

Let {1, . . . ,m} = p− t p+, we identify x ∈ X with (x−, x+) and write φ±(y) =
∑

i∈p±
φi(yi).

• If (φi) are c-conjugate, for x, x′ ∈ X, we have:

E(x′) = c(x′
−, x′

+) − φ−(x′
−) − φ+(x′

+)

≥ c(x′
−, x′

+) − (c(x′
−, x+) − φ+(x+)) − (c(x−, x′

+) − φ−(x−))

= c(x′
−, x′

+) − c(x′
−, x+) − c(x−, x′

+) + c(x−, x+) − E(x).

• By Taylor’s integral formula

E(x′) + E(x) ≥
ˆ 1

0

ˆ 1

0
D2p−p+c(xs,t)(x

′
− − x−, x′

+ − x+) =
1
2gp(x̄)(x

′ − x) + Ox̄(‖x′ − x‖2)

and taking a convex combination g =
∑

tpgp, for diagonalizing coordinates (u+,u−,u0)

E(x′) + E(x) ≥ |u+(x′) − u+(x)|2 − |u−(x′) − u−(x)|2 + O(|x′ − x|2)

=⇒ quadratic detachment of the duality gap E in d+(g) ≥ d? dimensions.
• Taking (φi)1≤i≤m as competitor in the dual of the entropic MOT:

MOTε ≥ MOT0 − ε log

(ˆ
Π1≤i≤mXi

e− E
ε d ⊗1≤i≤m µi

)
≥ MOT0 +

d?

2 ε log(1/ε) − O(ε).
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Consequences and some examples

• m = 2 and non-degenerate cost function, then we retrieve the bounds in (Carlier, Pegon, and
Tamanini 2022);

• m = 2 and degenerate cost function such that D2x,yc has rank r then the lower bound is such that
d? = r;
• m = 2, d2 < d1 (aka the unequal dimensional case) and D2x,yc has full rank d2 then

MOTε = MOT0 +
d2
2 ε log(1/ε) + O(ε)

• Consider di = d for all i and the cost c = h(
∑m

i=1 xi) with D
2h < 0 then d∗ = (m− 1)d and

MOTε = MOT0 +
(m− 1)d

2 ε log(1/ε) + O(ε).

This is the case of Gangbo-Święch cost, that is
∑

i<j |xi − xj|2 which corresponds to the
multi-marginal formulation of the Wasserstein barycenter problem.
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Thank You.
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