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Abstract
We study singular perturbations of some class of linear elliptic problems when the diffusion coefficient is very

small in some directions . We prove global estimates on the rate of convergence of the solution toward its limit, and
we show uniform estimates for Q1 finite element scheme.

Introduction
Let Ω = ω1× ω2 be a bounded Lipschitz domain of RN , where ω1 and ω2 are two Lipschitz domains
of Rq and RN−q respectively, with N > q ≥ 1. A general linear elliptic problem is given by :{

uε ∈ H1
0(Ω)∫

ΩAε∇uε · ∇ϕdx =
∫

Ω fϕdx, ∀ϕ ∈ H1
0(Ω).

(1)

The diffusion matrix Aε, ε ∈ (0, 1] is given by

Aε =

(
ε2A11 εA12
εA21 A22

)
,

where A11, A22 are q × q and (N − q) × (N − q) matrices respectively. The limit problem of (1) is
given by: For a.e. X1 ∈ ω1,{

u(X1, ·) ∈ H1
0(ω2)∫

ω2
A22(X1, ·)∇X2

u(X1, ·) · ∇X2
ϕdX2 =

∫
ω2
f (X1, ·)ϕdX2, ∀ϕ ∈ H1

0(ω2).
(2)

We are interested in the asymptotic behaviour of uε in the limit ε→ 0. When f ∈ L2(Ω), the problem
(1) has been studied in [7]. For f ∈ Lp(Ω) with 1 < p < 2, see [5]. For more regularity of the asymp-
totic behaviour, see [3] and [5] . For some nonlinear problems, see [4] and [5]. For the asymptotic
behaviour of the semigroup generated, see [2]. We suppose that:
• There exists λ > 0 such that for a.e. x ∈ Ω:

∀ξ ∈ RN : A1(x)ξ · ξ ≥ λ |ξ|2 . (3)

•A1 is bounded:
∀(i, j) ∈ {1, 2, ...., N}2 : aij ∈ L∞(Ω). (4)

• f is square integrable
f ∈ L2(Ω). (5)

• f is regular in the X1 direction.
∇X1

f ∈ L2(Ω)q. (6)

• The block A12 is regular in the following sense

∂xiaij ∈ L
∞(Ω), ∂xjaij ∈ L

∞(Ω) for i = 1, ..., q and j = q + 1, ..., N. (7)

In [7] and under the hypothesis (3), (4), ( 5), (6), (7), and ∇X1
A22 ∈ L∞(Ω)q(N−q)

2
, the authors

proved that for every ω′1 ⊂⊂ ω1 open: :∥∥∇X2
(uε − u)

∥∥
L2(ω′1×ω2) = O(ε) and

∥∥∇X1
(uε − u)

∥∥
L2(ω′1×ω2) = O(1).

Our contribution consists in extending these estimates to the whole domain Ω, which will al-
low us to study the problem numerically. To obtain such results we will suppose some additional
assumptions:
•

The block A22 depends only on X2. (8)

• We suppose that A1 satisfies the regularity assumption

aij ∈ W 1,∞(Ω̄) for any (i, j) ∈ {1, 2, ...., N}2, (9)

and the boundary condition
For every i 6= j : aij = 0 on ∂Ω. (10)

1 Theoretical results
We introduce the Hilbert spaces:

H1
0(Ω;ω2) =

{
v ∈ L2(Ω) such that∇X2

v ∈ L2(Ω)N−q and for a.e. X1 ∈ ω1, v(X1, ·) ∈ H1
0(ω2)

}
,

H1
0(Ω;ω1) =

{
v ∈ L2(Ω) such that∇X1

v ∈ L2(Ω)q and for a.e. X2 ∈ ω2, v(·, X2) ∈ H1
0(ω1)

}
,

normed by
∥∥∇X2

(·)
∥∥
L2(Ω)N−q and

∥∥∇X1
(·)
∥∥
L2(Ω)q respectively.

Theorem 1. [2], [1] Suppose that the assumptions (3), (4), (7), and (8) hold then:
1) For f ∈ H1

0(Ω, ω1), there exists Cλ,Ω,A1
> 0 such that:∥∥∇X2

(uε − u)
∥∥
L2(Ω)N−q ≤ Cλ,Ω,A1

(
∥∥∇X1

f
∥∥
L2(Ω)q + ‖f‖L2(Ω))× ε, (11)

where uε is the unique solution of (1) in H1
0(Ω) and u is the unique solution to (2) in H1

0(Ω;ω2),

moreover we have u ∈ H1
0(Ω).

2) For f ∈ Lr(Ω) for some∞ > r > 2 such that (6) is satisfied, there exists Cλ,f,A1,Ω > 0 such that∥∥∇X2
(uε − u)

∥∥
L2(Ω)N−q ≤ Cλ,f,A1,Ω

× ε
1
2−

1
r . (12)

In particular, when r =∞ we have∥∥∇X2
(uε − u)

∥∥
L2(Ω)N−q ≤ Cλ,f,A1,Ω

× ε
1
2.

Idea of the proof

1) The key of the proof is based on the use of tensor products. First, we prove (11) when
f ∈ H1

0(ω1)⊗H1
0(ω2), and we conclude by the density of H1

0(ω1)⊗H1
0(ω2) in H1

0(Ω, ω1).

2) We decompose f as f = f1,δ + f2,δ such that f1,δ ∈ H1
0(Ω, ω1), and f2,δ ∈ L2(Ω)), with

‖∇X1
f1,δ‖L2(Ω) ≤ c1δ

−1
2−

1
r and ‖f2,δ‖L2(Ω) ≤ c2δ

1
2−

1
r and we use (11) and the linearity of the prob-

lem, then we take δ = ε.

2 Numerical Results
We assume that N ∈ {2, 3} and that the computational domain is Ω = (0, 1)N . We define a rectan-

gular mesh (Rh), 0 < h ≤ 1 of Ω We denote Q1(R) the space of real polynomials in N variables of
partial degree less or equal to 1 over R ⊂ RN

Wh =
{
v ∈ C0(Ω̄), v|R ∈ Q1(R) for any R ∈ Rh

}
,

and
Vh = {v ∈ Wh, and v = 0 on ∂Ω} .

The numerical schemes to approximate (1) and (2) are{ ∫
ΩAε∇uε,h · ∇vdx =

∫
Ω Ih(f )vdx, ∀v ∈ Vh,

uε,h ∈ Vh.
, (13)

and { ∫
ΩA22∇X2

uh · ∇X2
vdx =

∫
Ω Ih(f )vdx, ∀v ∈ Vh,

uh ∈ Vh,
,

where Ih : H2(Ω) −→ Wh is the classical interpolation operator.
The classical Céa’s lemma gives an estimate of the form∥∥∇X2

(uε,h − uε)
∥∥
L2(Ω)N−q

= Cλ,f,Ω,A1

h

ε4
. (14)

To ensure a good numerical approximation of the exact solution uε when ε is very small, then one
must take h much smaller than ε, which is impractical from the numerical point of view. To fix this
problem, we must prove some uniform estimates which hold for some kind of numerical scheme
called ”asymptotically preserved”.
Theorem 2. [1] Let Ω = (0, 1)N , with N ∈ {2, 3}. Assume that A1 satisfies (3), (8), (9), and (10).
1) Let f ∈ H2(Ω), then there exists a positive constant Cλ,f,Ω,A1

independent of h and ε such that

‖∇X2
(uε,h − uε)‖L2(Ω)N−q ≤ Cλ,f,Ω,A1

h
1
5, (15)

where uε,h and uε are the solutions of (13) and (1) respectively.
2) If we assume, in addition, that f ∈ H1

0(Ω) then we have

‖∇X2
(uε,h − uε)‖L2(Ω)N−q ≤ Cλ,f,Ω,A1

h
1
3. (16)

Idea of the proof
1) We apply a simple method given in [6]. We combine estimates of the form

‖uε,h − uε‖Ω ≤ C
h

εα
, and ‖uε,h − uε‖Ω ≤ C(εβ + hγ), (17)

to obtain the ε−uniform estimate

‖uε,h − uε‖Ω ≤ Ch
min( β

α+β ,γ)
.

2) For the first estimate in (17), we use a Céa’s type lemma and the following regularity estimate [3]

‖∇2
X2
uε‖L2(Ω)(N−q)2 + ε2‖∇2

X1
uε‖L2(Ω)q2

+ ε‖∇2
X1X2

uε‖L2(Ω)q(N−q) ≤ Cλ,Ω,f,A1
. (18)

to obtain ∥∥∇X2
(uε,h − uε)

∥∥
L2(Ω)N−q

= Cλ,Ω,f,A1

h

ε2
. (19)

3) We use the tensor product technique, and an appropriate decomposition of f to obtain the second
estimate in (17), with (β, γ) ∈ {(1, 1), (1

2,
1
4)} depending on the degree of regularity of f .

ε = 1 ε = 0.75 ε = 0.5 ε = 0.1 ε = 0.01 ε = 10−6

h = 0.1 0.007211 0.009230 0.011537 0.014279 0.014420 0.014422
h = 0.02 0.001443 0.001847 0.002309 0.002858 0.002886 0.002886
h = 0.01 0.000721 0.000923 0.001154 0.001429 0.001443 0.001443
h = 0.001 7.21× 10−5 9.23× 10−5 0.000115 0.000142 0.000144 0.000144

Table 1: Numerical error results.

3 Forthcoming Research
• Extending (11) and (12) to general asymptotic expansion of order m ≥ 1.

• Numerical study of the parabolic problem [2].

• Convergence for the linear problem with L1 data.
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