The 2D discrete random matching problem

Nicolas CLOZEAU

Joint work with Francesco MATTESINI CANUM 2024 May 27-31, 2024

Setting:

$$\{X_i\}_{i=1}^n, \{Y_i\}_{i=1}^n \subset \mathbb{T}^2 \text{ random with } X_i, Y_i \sim \rho \, \mathrm{d}x$$

Setting:

$$\{X_i\}_{i=1}^n, \{Y_i\}_{i=1}^n \subset \mathbb{T}^2$$
 random with $X_i, Y_i \sim \rho \, \mathrm{d}x$

Matching problem: Combinatorics optimization problem

$$\min_{\sigma \in \mathcal{S}_n} \sum_{i=1}^n |X_i - Y_{\sigma(i)}|^2$$

Setting:

$$\{X_i\}_{i=1}^n, \{Y_i\}_{i=1}^n \subset \mathbb{T}^2$$
 random with $X_i, Y_i \sim \rho \, \mathrm{d}x$

Matching problem: Combinatorics optimization problem

$$\min_{\sigma \in \mathcal{S}_n} \sum_{i=1}^n |X_i - Y_{\sigma(i)}|^2$$

Problem appears in: statistical physics, computer science, economics, ...

Setting:

$$\{X_i\}_{i=1}^n, \{Y_i\}_{i=1}^n \subset \mathbb{T}^2$$
 random with $X_i, Y_i \sim \rho dx$

Matching problem: Combinatorics optimization problem

$$\min_{\sigma \in \mathcal{S}_n} \sum_{i=1}^n |X_i - Y_{\sigma(i)}|^2$$

Problem appears in: statistical physics, computer science, economics, ...

Solution for large data $n\gg 1$: Combinatoric algorithms with polynomial complexity, Kuhn, Munkres (50's)

$$C_n := \min_{\sigma \in \mathcal{S}_n} \sum_{i=1}^n |X_i - Y_{\sigma(i)}|^2$$

Optimal transport point of view: Caracciolo, Lucibello, Parisi and Sicuro (14')

$$C_n = n W_2^2 \left(\underbrace{\frac{1}{n} \sum_{k=1}^n \delta_{X_k}}_{:=\mu^n}, \underbrace{\frac{1}{n} \sum_{k=1}^n \delta_{Y_k}}_{:=\nu^n} \right)$$

$$W_2^2(\mu^n, \nu^n) = \inf_{\pi} \left\{ \left. \int_{\mathbb{T}^2 \times \mathbb{T}^2} |x - y|^2 \, \mathrm{d}\pi(x, y) \right| \pi_x = \mu^n \text{ and } \pi_y = \nu^n \right\}$$

$$C_n := \min_{\sigma \in \mathcal{S}_n} \sum_{i=1}^n |X_i - Y_{\sigma(i)}|^2$$

Optimal transport point of view: Caracciolo, Lucibello, Parisi and Sicuro (14')

$$C_n = n W_2^2 \left(\underbrace{\frac{1}{n} \sum_{k=1}^n \delta_{X_k}}_{:=\mu^n}, \underbrace{\frac{1}{n} \sum_{k=1}^n \delta_{Y_k}}_{:=\nu^n} \right)$$

$$W_2^2(\mu^n, \nu^n) = \inf_{\pi} \left\{ \left. \int_{\mathbb{T}^2 \times \mathbb{T}^2} |x - y|^2 \, \mathrm{d}\pi(x, y) \right| \pi_x = \mu^n \text{ and } \pi_y = \nu^n \right\}$$

Question: Compute the optimal coupling π^n for $n \gg 1$

$$W_2^2\left(\underbrace{\frac{1}{n}\sum_{k=1}^n \delta_{X_k}}_{:=\mu^n}, \underbrace{\frac{1}{n}\sum_{k=1}^n \delta_{Y_k}}_{:=\nu^n}\right)$$

We solve the optimal transport problem: Assume $\mu^n = \mu^n dx$ and $\nu^n = \nu^n dx$

$$\pi^n = (\operatorname{Id}, T^n) \# \mu^n$$
 (Benamou-Brenier)

and

$$T^n = \operatorname{Id} + \nabla h^n$$
 with $\nu^n = (\mu^n \circ T^n) \det(\operatorname{Id} + \nabla^2 h^n)$ (Monge-Ampère)

$$W_2^2\left(\underbrace{\frac{1}{n}\sum_{k=1}^n \delta_{X_k}}_{:=\mu^n}, \underbrace{\frac{1}{n}\sum_{k=1}^n \delta_{Y_k}}_{:=\nu^n}\right)$$

We solve the optimal transport problem: Assume $\mu^n = \mu^n dx$ and $\nu^n = \nu^n dx$

$$\pi^n = (\operatorname{Id}, T^n) \# \mu^n$$
 (Benamou-Brenier)

and

$$T^n = \operatorname{Id} + \nabla h^n$$
 with $\nu^n = (\mu^n \circ T^n) \det(\operatorname{Id} + \nabla^2 h^n)$ (Monge-Ampère)

Approximation as $n \uparrow \infty$: Under ergodicity (say i.i.d.)

$$\mu^n, \nu^n \rightharpoonup \rho \implies |(\nabla h^n, \nabla^2 h^n)| \ll 1 \text{ as } n \uparrow \infty$$

$$W_2^2\left(\underbrace{\frac{1}{n}\sum_{k=1}^n \delta_{X_k}}_{:=\mu^n}, \underbrace{\frac{1}{n}\sum_{k=1}^n \delta_{Y_k}}_{:=\nu^n}\right)$$

We solve the optimal transport problem: Assume $\mu^n = \mu^n dx$ and $\nu^n = \nu^n dx$

$$\pi^n = (\operatorname{Id}, T^n) \# \mu^n$$
 (Benamou-Brenier)

and

$$T^n = \operatorname{Id} + \nabla h^n$$
 with $\nu^n = (\mu^n \circ T^n) \det(\operatorname{Id} + \nabla^2 h^n)$ (Monge-Ampère)

Approximation as $n \uparrow \infty$: Under ergodicity (say i.i.d.)

$$\mu^n, \nu^n \to \rho \implies |(\nabla h^n, \nabla^2 h^n)| \ll 1 \text{ as } n \uparrow \infty$$

We expand

$$\mu^{\textit{n}} \circ \textit{T}^{\textit{n}} \approx \mu^{\textit{n}} + \nabla \rho \cdot \nabla \textit{h}^{\textit{n}} \quad \text{and} \quad \det(\mathsf{Id} + \nabla^2 \textit{h}^{\textit{n}}) \approx 1 + \Delta \textit{h}^{\textit{n}}$$

$$W_2^2\left(\underbrace{\frac{1}{n}\sum_{k=1}^n \delta_{X_k}}_{:=\mu^n}, \underbrace{\frac{1}{n}\sum_{k=1}^n \delta_{Y_k}}_{:=\nu^n}\right)$$

We solve the optimal transport problem: Assume $\mu^n = \mu^n dx$ and $\nu^n = \nu^n dx$

$$\pi^n = (\operatorname{Id}, T^n) \# \mu^n$$
 (Benamou-Brenier)

and

$$T^n = \operatorname{Id} + \nabla h^n$$
 with $\nu^n = (\mu^n \circ T^n) \det(\operatorname{Id} + \nabla^2 h^n)$ (Monge-Ampère)

Approximation as $n \uparrow \infty$: Under ergodicity (say i.i.d.)

$$\mu^{n}, \nu^{n} \rightharpoonup \rho \quad \Longrightarrow \quad |(\nabla h^{n}, \nabla^{2} h^{n})| \ll 1 \text{ as } n \uparrow \infty$$

We expand

$$\mu^n \circ T^n \approx \mu^n + \nabla \rho \cdot \nabla h^n$$
 and $\det(\operatorname{Id} + \nabla^2 h^n) \approx 1 + \Delta h^n$

Plugging in Monge-Ampère

$$\nu^n = \mu^n + \nabla \cdot \rho \nabla h^n + \text{higher order terms}$$

$$W_2^2\left(\underbrace{\frac{1}{n}\sum_{k=1}^n \delta_{X_k}}_{:=\mu^n}, \underbrace{\frac{1}{n}\sum_{k=1}^n \delta_{Y_k}}_{:=\nu^n}\right)$$

We solve the optimal transport problem: Assume $\mu^n = \mu^n dx$ and $\nu^n = \nu^n dx$

$$\pi^n = (\operatorname{Id}, T^n) \# \mu^n$$
 (Benamou-Brenier)

and

$$\mathcal{T}^n = \operatorname{Id} + \nabla h^n$$
 with $\nu^n = (\mu^n \circ \mathcal{T}^n) \det(\operatorname{Id} + \nabla^2 h^n)$ (Monge-Ampère)

Approximation as $n \uparrow \infty$: Under ergodicity (say i.i.d.)

$$\mu^n, \nu^n \rightharpoonup \rho \implies |(\nabla h^n, \nabla^2 h^n)| \ll 1 \text{ as } n \uparrow \infty$$

We expand

$$\mu^n \circ T^n \approx \mu^n + \nabla \rho \cdot \nabla h^n$$
 and $\det(\operatorname{Id} + \nabla^2 h^n) \approx 1 + \Delta h^n$

Plugging in Monge-Ampère

$$\boxed{\nu^n = \mu^n + \nabla \cdot \rho \nabla h^n} + \underline{\text{higher order terms}}$$

$$C_n = n \int_{\mathbb{T}^2 \times \mathbb{T}^2} |x - y|^2 d\pi^n(x, y)$$

To sum up:

$$\pi^n = (\operatorname{Id}, T^n) \# \mu^n \quad \text{with } T^n \approx \operatorname{Id} + \nabla h^n \text{ and } -\nabla \cdot \rho \nabla h^n = \mu^n - \nu^n$$

$$C_n = n \int_{\mathbb{T}^2 \times \mathbb{T}^2} |x - y|^2 d\pi^n(x, y)$$

To sum up:

$$\pi^n = (\operatorname{Id}, T^n) \# \mu^n$$
 with $T^n \approx \operatorname{Id} + \nabla h^n$ and $-\nabla \cdot \rho \nabla h^n = \mu^n - \nu^n$

Successfully applied: Ambrosio, Stra, Trevisan, Goldman ('19, '22) to study the cost for ho=1

$$\mathbb{E}[C_n] \approx n \mathbb{E}\left[\int_{\mathbb{T}^2} |\nabla h^n|^2\right] \approx \frac{1}{2\pi} \log(n)$$

Generalise previous two sided estimates by Ajtai, Komlós and Tusnády ('84)

$$C_n = n \int_{\mathbb{T}^2 \times \mathbb{T}^2} |x - y|^2 d\pi^n(x, y)$$

To sum up:

$$\pi^n = (\operatorname{Id}, T^n) \# \mu^n$$
 with $T^n \approx \operatorname{Id} + \nabla h^n$ and $-\nabla \cdot \rho \nabla h^n = \mu^n - \nu^n$

Successfully applied: Ambrosio, Stra, Trevisan, Goldman ('19, '22) to study the cost for ho=1

$$\mathbb{E}[C_n] \approx n \mathbb{E}\left[\int_{\mathbb{T}^2} |\nabla h^n|^2\right] \approx \frac{1}{2\pi} \log(n)$$

Generalise previous two sided estimates by Ajtai, Komlós and Tusnády ('84)

Question: Can we justify the approximation of π^n , i.e.

$$\lim_{n\uparrow\infty}W_2^2\left(\pi^n,(\mathrm{Id},\mathrm{Id}+\nabla h^n)\#\mu^n\right)=0\quad ?$$

A rigorous approach to the PDE ansatz

Consider $\{P_t\}_{t>0}$ the heat semi-group and

$$-
abla\cdot
ho
abla h^{n,t}=\mu^{n,t}-
u^{n,t}\quad ext{with } \int_{\mathbb{T}^2}h^{n,t}=0$$

$$\mu^{n,t}:=\mathrm{P}_t\mu^n\quad ext{and}\quad
u^{n,t}:=\mathrm{P}_t\nu^n$$

A rigorous approach to the PDE ansatz

Consider $\{P_t\}_{t>0}$ the heat semi-group and

$$-
abla\cdot
ho
abla h^{n,t}=\mu^{n,t}-
u^{n,t}\quad ext{with } \int_{\mathbb{T}^2}h^{n,t}=0$$
 $\mu^{n,t}:=\mathrm{P}_t\mu^n\quad ext{and}\quad
u^{n,t}:=\mathrm{P}_t
u^n$

Theorem (C., Mattesini, PTRF ('24))

Assume that $\rho \in H^{\varepsilon}$ with $\varepsilon > 0$, $0 < \lambda \le \rho \le \Lambda$ and for c > 0, $\eta \in (0, \infty]$

$$\sup_{|F| \leq 1} \bigg| \int_{\mathbb{T}^2 \times \mathbb{T}^2} F \, \mathrm{d} \big(\mathbb{P}_{(X_i, X_j)} - \mathbb{P}_{X_i} \otimes \mathbb{P}_{X_j} \big) \bigg| \lesssim \exp \big(-c |i-j|^{\eta} \big)$$

likewise for $\{Y_i\}_i$. For $t = \frac{\log^{\gamma}(n)}{n}$ and $\gamma \gg 1$, it holds

$$\mathbb{E}\left[W_2^2\left(\pi^n,\left(\mathrm{Id},\mathrm{Id}+\nabla h^{n,t}\right)\#\mu^{n,t}\right)\right]\lesssim \frac{\log(n)}{n}\sqrt{\frac{\log\log(n)}{\log(n)}}$$

Generalise previous estimates by Ambrosio, Glaudo and Trevisan ('19) for $\eta=\infty$ and $\rho=1$

$$-\nabla \cdot \rho \nabla h^{n,t} = \mu^{n,t} - \nu^{n,t}, \quad T^n \# \mu^n = \nu^n \quad \text{and} \quad \hat{T}^{n,t} := \operatorname{Id} + \nabla h^{n,t}$$

Stability of transport maps: Compare

$$\pi^n = (\operatorname{Id}, T^n) \# \mu^n$$
 and $\hat{\pi}^{n,t} := (\operatorname{Id}, \hat{T}^{n,t}) \# \mu^{n,t}$

$$-\nabla \cdot \rho \nabla h^{n,t} = \mu^{n,t} - \nu^{n,t}, \quad T^n \# \mu^n = \nu^n \quad \text{and} \quad \hat{T}^{n,t} := \operatorname{Id} + \nabla h^{n,t}$$

Stability of transport maps: Compare

$$\pi^n = (\mathrm{Id}, T^n) \# \mu^n$$
 and $\hat{\pi}^{n,t} := (\mathrm{Id}, \hat{T}^{n,t}) \# \mu^{n,t}$

lf

$$\mu^n - \mu^{n,t} \underset{n \uparrow \infty}{\rightharpoonup} 0$$
 and $\nu^n - \hat{T}^{n,t} \# \mu^{n,t} \underset{n \uparrow \infty}{\rightharpoonup} 0$

then

$$\pi^n - \hat{\pi}^{n,t} \underset{n\uparrow\infty}{\rightharpoonup} 0$$

$$-\nabla \cdot \rho \nabla h^{n,t} = \mu^{n,t} - \nu^{n,t}, \quad T^n \# \mu^n = \nu^n \quad \text{and} \quad \hat{T}^{n,t} := \mathrm{Id} + \nabla h^{n,t}$$

Stability of transport maps: Compare

$$\pi^n = (\mathrm{Id}, T^n) \# \mu^n$$
 and $\hat{\pi}^{n,t} := (\mathrm{Id}, \hat{T}^{n,t}) \# \mu^{n,t}$

lf

$$\mu^n - \mu^{n,t} \underset{n \uparrow \infty}{\rightharpoonup} 0$$
 and $\nu^n - \hat{T}^{n,t} \# \mu^{n,t} \underset{n \uparrow \infty}{\rightharpoonup} 0$

then

$$\pi^n - \hat{\pi}^{n,t} \stackrel{\rightharpoonup}{\underset{n \uparrow \infty}{\longrightarrow}} 0$$

Quantitative version: Ambrosio, Glaudo and Trevisan ('19): There exists c>0 such that provided

$$|(\nabla h^{n,t}, \nabla^2 h^{n,t})| \le c$$

it holds

$$W_2^2(\pi^n, \hat{\pi}^{n,t}) \lesssim W_2^2(\mu^{n,t}, \mu^n) + W_2^2(\nu^{n,t}, \nu^n) + W_2^2(\nu^{n,t}, \hat{T}^{n,t} \# \mu^{n,t})$$

$$-\nabla \cdot \rho \nabla h^{n,t} = \mu^{n,t} - \nu^{n,t}, \quad T^n \# \mu^n = \nu^n \quad \text{and} \quad \hat{T}^{n,t} := \operatorname{Id} + \nabla h^{n,t}$$

Regularity estimates: For the choice $t=\frac{\log^{\gamma}(n)}{n}$ for $\gamma\gg 1$

$$\mathbb{P}\bigg(\|(\nabla h^{n,t},\nabla^2 h^{n,t})\|_{\mathsf{L}^\infty} \leq \frac{1}{\log(n)}\bigg) \geq 1 - o\bigg(\frac{1}{n^\ell}\bigg) \quad \text{for any } \ell \geq 1$$

$$-\nabla \cdot \rho \nabla h^{n,t} = \mu^{n,t} - \nu^{n,t}, \quad T^n \# \mu^n = \nu^n \quad \text{and} \quad \hat{T}^{n,t} := \mathrm{Id} + \nabla h^{n,t}$$

Regularity estimates: For the choice $t=\frac{\log^{\gamma}(n)}{n}$ for $\gamma\gg 1$

$$\mathbb{P}\bigg(\|(\nabla h^{n,t},\nabla^2 h^{n,t})\|_{\mathsf{L}^\infty} \leq \frac{1}{\log(n)}\bigg) \geq 1 - o\bigg(\frac{1}{n^\ell}\bigg) \quad \text{for any } \ell \geq 1$$

Contractivity error $W_2^2(\mu^{n,t},\mu^n)$:

$$\mathbb{E}\big[W_2^2(\mu^{n,t},\mu^n)\big] \lesssim \frac{\log\log(n)}{n} + t\|\rho_t - \rho\|_{\mathsf{L}^1}$$

Improvement of the classical estimate $\lesssim t$

$$-\nabla \cdot \rho \nabla h^{n,t} = \mu^{n,t} - \nu^{n,t}, \quad T^n \# \mu^n = \nu^n \quad \text{and} \quad \hat{T}^{n,t} := \mathrm{Id} + \nabla h^{n,t}$$

Moser coupling error $W_2^2(\nu^{n,t},\hat{T}^{n,t}\#\mu^{n,t})$: By Benamou-Brenier' theorem

$$\nu^{n,t} = \phi(1,\cdot) \# \mu^{n,t} \quad \text{with } \phi \text{ flow induced by } s \mapsto \frac{\rho \nabla h^{n,t}}{s \mu^{n,t} + (1-s)\nu^{n,t}}$$

$$\begin{split} -\nabla \cdot \rho \nabla h^{n,t} &= \mu^{n,t} - \nu^{n,t}, \quad T^n \# \mu^n = \nu^n \quad \text{and} \quad \hat{T}^{n,t} := \operatorname{Id} + \nabla h^{n,t} \\ \text{Moser coupling error} \ W_2^2(\nu^{n,t}, \hat{T}^{n,t} \# \mu^{n,t}) \colon \text{By Benamou-Brenier' theorem} \\ \nu^{n,t} &= \phi(1,\cdot) \# \mu^{n,t} \quad \text{with} \ \phi \ \text{flow induced by} \ s \mapsto \frac{\rho \nabla h^{n,t}}{s \mu^{n,t} + (1-s) \nu^{n,t}} \\ W_2^2(\nu^{n,t}, \hat{T}^{n,t} \# \mu^{n,t}) &= W_2^2(\phi(1,\cdot) \# \mu^{n,t}, \hat{T}^{n,t} \# \mu^{n,t}) \\ &\leq \int_{\mathbb{T}^2} |\phi(1,\cdot) - (\operatorname{Id} + \nabla h^{n,t})|^2 \\ &\lesssim \int_{\mathbb{T}^2} |\rho_t - \rho|^2 |\nabla h^{n,t}|^2 \end{split}$$

References

The paper: C., Mattesini. Annealed quantitative estimates for the quadratic 2D-discrete random matching problem, Probability theory and related fields ('24)

Related works:

- Caracciolo, Lucibello, Parisi, Sicuro. Scaling hypothesis for the Euclidean bipartite matching problem, Physical Review E ('14)
- Ambrosio, Stra, Trevisan. A PDE approach to a 2-dimensional matching problem, Probability theory and related fields ('19)
- Ambrosio, Glaudo, Trevisan. On the optimal map in the 2-dimensional random matching problem, Discrete & Continuous Dynamical Systems: Series A ('19)

Thank you for your attention!