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Setting:
{X} 1, {Yi}1_, C T? random with X;, ¥; ~ pdx

Matching problem: Combinatorics optimization problem

n
: 2
min E IXi = Yol
i=1

Problem appears in: statistical physics, computer science, economics, ...

Solution for large data n > 1: Combinatoric algorithms with polynomial complexity,
Kuhn, Munkres (50's)
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Optimal transport point of view: Caracciolo, Lucibello, Parisi and Sicuro (14")
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W2 (u",v") = ir;f { /11‘2 - Ix — y[2dn(x,y)
x

mx = p and 7y, :y"}

Question: Compute the optimal coupling ©" for n > 1
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We solve the optimal transport problem: Assume " = u" dx and v" = v"dx
7" = (Id, T")#un" (Benamou-Brenier)
and

T"=1d+Vh" with "= (u"o T")det(ld+ VZh") (Monge-Ampére)

Approximation as n 1 co: Under ergodicity (say i.i.d.)
phov" —=p = (VA" V2h")| < lasntoo
We expand
proT" = u"+Vp-Vh" and det(ld + V2h") =~ 1+ Ah"
Plugging in Monge-Ampére
V" =u" + V- pVhA" + higher order terms
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We solve the optimal transport problem: Assume " = p" dx and v" = v"dx
7w = (ld, T")#u" (Benamou-Brenier)
and

T"=1d+Vh" with "= (u"o T")det(ld + V>h") (Monge-Ampere)

Approximation as n 1 co: Under ergodicity (say i.i.d.)
phovt —=p = |(VA",V?h")| < 1lasntoo
We expand
p"o T = pu"+Vp-Vh" and det(ld + V2h") =~ 1+ Ah"

Plugging in Monge-Ampeére

v =pu"+ V.- pVh"

+W
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Successfully applied: Ambrosio, Stra, Trevisan, Goldman ('19, '22) to study the cost
forp=1
1
log(n)
T

E[C,] ~ nu«:[/ |Vh”\2} ~ L
T2 2

Generalise previous two sided estimates by Ajtai, Komlés and Tusnady ('84)
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Ch = n/ |x — y|?dn"(x, y)
T2 x T2
To sum up:
7" = (Id, T")#up" with T" = Id+ Vh" and — V- pVh" =p" — "
Successfully applied: Ambrosio, Stra, Trevisan, Goldman ('19, '22) to study the cost
forp=1

1

E[Cy] = nE {/11‘2 |Vh”\2} N o log(n)

Generalise previous two sided estimates by Ajtai, Komlés and Tusnady ('84)

Question: Can we justify the approximation of ©", i.e.

lim W3 (7", (Id,1d + VA")#u") =0 7
ntoo



A rigorous approach to the PDE ansatz

Consider {P¢}¢>0 the heat semi-group and
—V . pVA™E = )t — Mt with / At =0
T2

umt =P and 7P =P



A rigorous approach to the PDE ansatz
Consider {P¢}¢>0 the heat semi-group and
=V - pVAE = p™t — ™t with /Tz A"t =0
umt =P and 7P =P

Theorem (C., Mattesini, PTRF ('24))
Assume that p € H® withe > 0,0 < X < p <A and forc >0, n € (0, 0]

sup < exp(—cli — ji")

[FI<L

/11‘2 2 Fd(IP(Xian) —Px; ® Px;)
x

likewise for {Y;};. For t = Iog“{% and v > 1, it holds

E[Wg (=", (1d, Id+Vh"v’-‘)#u"**)] 5 Iogrfn) 7|°ilg°(gn()")

Generalise previous estimates by Ambrosio, Glaudo and Trevisan ('19) for n = oo and
p=1
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—V pVhE =t — ™t TPy =" and T™'=1d + VA"
Stability of transport maps: Compare

" = (Id, T")#p" and &M% = (Id, T #u™t

,un _Mn,t ~ 0 and " — -i—n,t#un,t N0

nToo nToo

then

" — a0
nToo

Quantitative version: Ambrosio, Glaudo and Trevisan ('19): There exists ¢ > 0 such
that provided
(V™ V207 <

it holds

WE(r", 4) S WE(u™, i) + WRWE, o) + WE(mE, Tt
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—V  pVAE =Mt — ™t T =" and  T7i=1d + VA™!

Regularity estimates: For the choice t = bgﬁ% forv>1

P(||(Vh"’f,v2h”’f)||m <

1 1
< )Zl—o(—) forany £ >1
log(n) nt

Contractivity error W2(u™t, p"):
2¢ nt .n < IOg IOg(n)
E[WZ(u"t, "] < — ttlee—plla

Improvement of the classical estimate < t
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—V  pVAE =Mt — ™t T =" and  T7i=1d + VA™!
Moser coupling error W2(v"t, Trt4puMt): By Benamou-Brenier' theorem

pth,t

7t — . )t 1 H
vt = p(1, )#u""  with ¢ flow induced by s — st (1= s)nt

W22(l/"’t, ?—n,t##n,t) — W;(d)(l, .)##n,t7 ?—n,t##n,t)

< / [6(1,) — (1d + VA2
']1‘2

S/ lpe — pl?| VA"
T2
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