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Water waves models

µ = H2/L2 (shallowness),

ε = a/H (nonlinearity)


∂h

∂t
+ ∇ ·

(
hv

)
= 0, (Mass Eq)

∂hv

∂t
+ ∇ ·

(
hv ⊗ v + gh2

2 I + pNH

)
= 0, (Momentum Eq).

model NSWE O(µ) O(εµ) SGN O(µ2)
Pressure pNH = 0

B
ou

ss
in

es
q pNH = h2ḧ/3

ε no assump no assump.

Type hyperbolic dispersive
Lannes, 2013
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Water waves models
Hyperbolic vs Dispersif

Saint-Venant (NSWE) Serre-Green-Naghdi (SGN)

3 / 21 Maria Kazakova Perfectly matched layers methods for mixed hyperbolic-dispersive equations



Water Waves Boundaries PML KdV Hyperbolic KdV abcd

Water waves models
Hyperbolic dispersive models

The most expensive step for non-hydrostatic models: elliptic problem

Recent advance on first-order hyperbolic equations with dispersive
properties

Favrie-Gavrilyuk, 2017 (SGN), Gavrilyuk et al. 2022 (BBM)
! Favrie-Gavrilyuk model is rigorously justified in Duchêne,2019

Escalante et al. (artificial compressibility)2019

Richard (compressible and quasi-incompressible)2021
Justificaton est en developpement (K. Msheik, V. Duchêne, A. Duran)
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Boundary conditions

Problems are initially posed on infinite domain x ∈ R → x ∈ Ω
Restriction of the observation area

z

x
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Boundary conditions

Hyperbolic system - Riemann-invariant form (if exist)
Dispersive system - ?
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Boundary conditions

Dispersive system - linear case: non-reflecting TBC, DTBC, PML
Nonlinear case (Coastal engineering, SGN) relaxation zones, sponge layers
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Boundary condition
First strategy: Discrete Transparent BC for dispersive models

MK, P.Noble (2020)

Dispersive systems, linear case:
Shrödinger (Ehrhardt, 2001)

KdV, BBM (Besse et al., 2016)
SGN (MK&Noble, 2020)
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Boundary condition
Second strategy: Cartesian PML

Cartesian classical Perfectly Matched Layers (PML) Bérenger (1994)

Time domain → frequency domain
PML change of variables

x ∈ R, x̃ = x
(

1 + σ(x)
iω

)
in the layer σ(x) linear functions, power functions or unbounded functions

∂x̃ →
(
1 + σ(x)

iω

)−1
∂x
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Well-posedness and stability
Following Bécache et al., 2003(σ(x) = const) we can analyse stability

The initial equation admits plane wave solution of the form

u = Uei(k.x−ωt), ω ∈ C,k ∈ R

if and only if ω and k are related via dispersion relation

F(ω,k) = 0, with solutions ωj(k) which are called modes.

For the PML equation we define perturbed dispersion relation

Fpml(ω,k, σ) = 0, with modes ω̃j(k, σ)

F(ω,k) → Fpml(ω,k, σ) with k → k/(1 + iσ

ω
)

We search for solutions with an exponential behaviour and the PML
equation is stable if and only if ℑ(ω̃j) ≤ 0 for all σ ≥ 0.

8 / 21 Maria Kazakova Perfectly matched layers methods for mixed hyperbolic-dispersive equations



Water Waves Boundaries PML KdV Hyperbolic KdV abcd

Well-posedness and stability
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Stability condition and inverse waves

We introduce notions of the phase velocity vp and the group velocity vg

(general case k ∈ R3):

vp(k) = ωj(k)
|k|

k
|k|
, vg(k) = ∇kωj(k),

∀ωj(k) solution of F(ω,k) = 0.

Necessary stability conditions Bécache(2003)
If ∀k ∈ R3, (vp(k) · ej)(vg(k) · ej) ≥ 0,

the problem with classical Cartesian PML applied in ej direction is stable.
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(general case k ∈ R3):

vp(k) = ωj(k)
|k|

k
|k|
, vg(k) = ∇kωj(k),

∀ωj(k) solution of F(ω,k) = 0.

Necessary stability conditions Bécache(2003)
If ∀k ∈ R3, (vp(k) · ej)(vg(k) · ej) ≥ 0,

the problem with classical Cartesian PML applied in ej direction is stable.

If there are backward propagating waves in the PML direction
the PML system is unstable.
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Stability condition and inverse waves

We introduce notions of the phase velocity vp and the group velocity vg

(general case k ∈ R3):

vp(k) = ωj(k)
|k|

k
|k|
, vg(k) = ∇kωj(k),

∀ωj(k) solution of F(ω,k) = 0.

Necessary stability conditions Bécache(2003)
If ∀k ∈ R3, (vp(k) · ej)(vg(k) · ej) ≥ 0,

the problem with classical Cartesian PML applied in ej direction is stable.

Necessary stability conditions in the 1D case vg(k)vp(k) ≥ 0
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Cartesian PML: Typical exemple KdV

KdV equation

ut + uux + εuxxx = 0, ∀x ∈ R, ∀t > 0.

+ auxiliary variables u1 and u2:

∂xu = (1 + iσ

ω
)u1, ∂xu1 = (1 + iσ

ω
)u2,

Back to time domain

∂tu+ σu+ U∂xu+ ε∂xu2 = 0,

∂t (u1 − ∂xu) + σu1 = 0, ∂t (u2 − ∂xu1) + σu2 = 0.
(TD)P ML

By applying the initial value theorem, one finds

u1|t=0= ∂xu|t=0, u2|t=0= ∂xxu|t=0.
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Cartesian PML: Typical exemple KdV

In Frequency domain (after Fourier transform)
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Cartesian PML: Typical exemple KdV

Artificial truncation by PML: x ∈ Ω, ∀t > 0
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ω
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The linear KdV equation

ut + U ux + εuxxx = 0, ∀x ∈ R, ∀t > 0.

Proposition
If U = 0, equations (TD)P ML are always unstable.

If εU < 0, equations (TD)P ML are stable if and only if k2 ≥ 16 |U |
|ε|

.

If εU > 0, equations (TD)P ML are stable if and only if k2 ≤ U

3ε .

Proof. The dispersion relation of (TD)P ML: Following Bécache2003

dispersion relation for KdV with k → k/(1 + iσ
ω )

(ω + iσ)3 = kU(ω + iσ)2 − εk3ω2.

If k = 0, ω = −iσ and the condition ℑ(ω) ≤ 0 is satisfied.
If k ̸= 0 ω2(ω − ω0(k)) = 0, ω0(k) = kU − ε k3.
Two roots are bifurcating from 0 and one root bifurcates from ω = ω0(k).
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The linear KdV equation

From straigforward computations, a necessary condition is

(U − εk2)(U − 3εk2) > 0

Here vg(k) = U − 3εk2 and vp(k) = U − εk2.

vg(k)vp(k) ≥ 0.
So we recover the classical condition in the PML framework.

We have proved that ℑ(ω) ≤ 0 for σ > 0 small enough, under conditions
on k claimed in the proposition.

We show then that for any σ > 0, there are no real solutions, which
means that ℑ(ω) ̸= 0.

We conclude that these conditions are sufficient to guarantee stability,
using continuity of the roots of a complex polynomial with respect to its
coefficients. This end the proof.
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The linear KdV equation
Discretization

We consider a centered space FD with a Crank Nicolson in time scheme:

xj = jδx, j ∈ Z, tn = nδt, n ∈ N

2
vn

j − un
j

δt
+ σvn

j + U
vn

j+1 − vn
j−1

2δx + ε
vn

2,j+1 − vn
2,j−1

2δx = 0,

2
δt

((
vn

1,j −
vn

j+1 − vn
j−1

2δx

)
−

(
un

1,j −
un

j+1 − un
j−1

2δx

))
+ σvn

1,j = 0,

2
δt

((
vn

2,j −
vn

1,j+1 − vn
1,j−1

2δx

)
−

(
un

2,j −
un

1,j+1 − un
1,j−1

2δx

))
+ σvn

2,j = 0,

with vn
k,j = un+1

k,j
+un

k,j

2 for k = 0, 1, 2 and un
0,j = un

j .
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The linear KdV equation
Numerical simulation

Case: εU > 0
Initial condition u0(x) = exp

(
−40 (x+ 3)2)

,u1 = u′
0 and u2 = u′′

0 .
The domain is [−8, 8] × [0, 200], δx = 0.05, δt = δx.

σ(x) = 2
(

max(0, x− 5
3 )4 + max(−x− 5

3 , 0)4
)

ε = Uδx2/4 (stable case) ε = Uδx2/2 (unstable case)

Represention of the function v(t, x) = log(1 + 1000|u(t, x)|).
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The linear KdV equation

Case: εU < 0
Initial condition u0(x) = exp(−(x− 3)2) sin(2x).

ε = 16|U |δx2 ε = 32|U |δx2.

Represention of the function v(t, x) = log(1 + 1000|u(t, x)|)
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The linear KdV equation

Case: εU < 0
Initial condition u0(x) = exp(−(x− 3)2) sin(2x).

ε = 16|U |δx2 ε = 32|U |δx2.

Message I
We recover in this analysis the classical stability condition
Since the phase and group velocities do not always have the same sign
the PML for KdV is not always stable.
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A hyperbolic KdV system

We now consider a relaxation of the original Korteweg-de Vries equation.

ut + uux + εψx = 0, pt − px − ψ

τ
= 0, ψt + ux − p

τ
= 0,

ε – the dispersion parameter, τ > 0 – the relaxation parameter.

Also: Euler-Lagrange equations for a given Lagrangian <hal>

Formally, τ → 0, the function u turns out to be an approximate solution
of the KdV equation. Indeed, p, ψ expand as

p = ux + τutxx +O(τ2), ψ = uxx + τ (utxxx − utx) +O(τ2).

By inserting this expansion we have

(u− τuxx + τuxxxx)t + uux + εuxxx = O(τ2).

which is the Benjamin-Bona-Mahoney (BBM) regularization of the KdV.
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A hyperbolic KdV system
Initial wave: u0(x) = exp(−40(x+ 2)2)

v(t, x) = log(1 + 1000|u(t, x)|) in the (x, t)
in the case εU > 0, U = 1, ε = 5δx2

(unstable for the original KdV)

Message II
PML are not always stable for hyperbolic approximation.
We can construct a stable version, but it will not be “exactly” PML
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Application to abcd-model

We consider the hyperbolic-dispersive systems which models water wave
propagation BBM-Boussinesq type model (also known as abcd-model):

abcd

(1 − b∂2
x)∂tη + ∂xu+ a∂3

xu = 0,

(1 − d∂2
x)∂tu+ ∂xη + c∂3

xη = 0,
∀(t, x) ∈ [0, T ] × [xℓ, xr].

Bona, Chen and Saut (2002)

By-product: KdV dynamic is included in this model (properly chosed
initial data creates approximate one-way propagating waves)
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Application to abcd-model

We consider the hyperbolic-dispersive systems which models water wave
propagation BBM-Boussinesq type model (also known as abcd-model):

abcd

(1 − b∂2
x)∂tη + ∂xu+ a∂3

xu = 0,

(1 − d∂2
x)∂tu+ ∂xη + c∂3

xη = 0,
∀(t, x) ∈ [0, T ] × [xℓ, xr].

Bona, Chen and Saut (2002)

∂t(η − bη2) + σ(η − bη2) + ∂x(u+ au2) = 0,

∂t(u− du2) + σ(u− du2) + ∂x(η + cη2) = 0,

∂t(η1 − ∂xη) + ση1 = 0, ∂t(η2 − ∂xη1) + ση2 = 0,

∂t(u1 − ∂xu) + σu1 = 0, ∂t(u2 − ∂xu1) + σu2 = 0.
The initial conditions are given by

ηi|t=0= ∂xηi−1|t=0, ui|t=0= ∂xui−1|t=0, i = 1, 2.
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Necessary condition
Denote vg and vp respectively the group velocity and phase velocity. A
necessary condition of stability is written again vg(k)vp(k) ≥ 0 for all
k ∈ R.

Proposition
The PML equations associated to the classical Boussinesq equation
(a = b = c = 0, d > 0) and the shallow water equations with surface
tension (a = b = d = 0, c < 0) are stable.

Proposition
The PML system is stable under the assumption a = d = 0 and
b > 0, c < 0. The PML system is also stable in the case b = c = 0 and
d > 0, a < 0.
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Bidirectionnel wave propagation

η(t = 0, x) = exp(−x2), u(t = 0, x) = 0.

In order to chose a right propagating wave we need to set:

u(t = 0, x) = (1 − d∂2
x)−1/2η(t = 0, x).

The FFT and inverse FFT allow to calculate the fractional derivative.
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In order to chose a right propagating wave we need to set:
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The FFT and inverse FFT allow to calculate the fractional derivative.

Message III
The PML is always stable when dispersive properties of the model are
better suited for this technique, i.e. the condition vg(k)vp(k) ≥ 0 is
always satisfied.
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Conclusions

Results on PML stability for linearised water wave problem:
– PML is not suitable for KdV, partially for the hyperbolic version:
hyperbolization does not help.
– PML works for large class of BBM-Boussinesq equations
– DTBC are better when vg(k)vp(k) < 0 (which is a common situation
in dispersive problems).

I. Dispersive properties of the model are important for stability of PML

II. If the dispersive properties of the model do not fits to the necessary
stability condition

Chose another model
Construct a non-classical PML
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