ergy estimates

< 口 > < 同 >

< ∃ >

Convergence 00 Numerical results

A DDFV Scheme for Incompressible Two-Phase Flow Degenerate Problem in Porous Media

<u>Thomas Crozon¹</u> with El-Houssaine Quenjel² and Mazen Saad¹.

 $^1{\rm Ecole}$ Centrale de Nantes,Jean Leray Mathematics Laboratory, $^2{\rm Chair}$ of Biotechnology, LGPM, CentraleSup elec, CEBB

CANUM 2024, May 29th.

ECN. LMJL

Two-phase Darcy flow model	PP-DDFV scheme	Maximum principle O	Energy estimates 00	Convergence	Numerical results

- 1 Two-phase Darcy flow model
- 2 PP-DDFV scheme
- **3** Maximum principle
- **4** Energy estimates
- **5** Convergence
- 6 Numerical results

・ロト・西ト・西ト・西ト・日 うらの

Thomas Crozon

DDFV scheme for two-phase Darcy flow

ECN. LMJL

Two-phase Darcy flow model •000	PP-DDFV scheme	Maximum principle O	Energy estimates 00	Convergence	Numerical results

Many applications

Secondary and tertiary oil recovery ${\scriptstyle 1\atop 1}$

 Savory, Luke. (2015). Enhanced oil recovery by flooding with aqueous surfactant solution : a model study and comparison with theory.
 https://www.grida.no/resources/13721
 https://www.wired.co.uk/article/finlandbury-nuclear-waste

Sources of groundwater contaminations ²

Thomas Crozon

Two-phase Darcy flow model ○●○○	PP-DDFV scheme	Maximum principle O	Energy estimates	Convergence	Numerical results
Porous media					

Ω a 2D bounded polygonal domain. $Q_{t_f} = Ω × (0, t_f)$. Two phases {*nw*, *w*}

Microscopic/macroscopic view

- Porosity $\phi(x) = \frac{\text{fluids volume}}{\text{total volume}}$,
- Permeability tensor Λ(x) symmetric positive-definite matrix.

Unknowns s_{nw}, s_w, p_{nw}, p_w

• Saturations
$$s_{\alpha} = \frac{\alpha \text{-phase volume}}{\text{fluids volume}}$$
,

• Phases pressures p_{α} .

Saturing phases

$$s_{nw} + s_w = 1.$$

 1 https://explorer.aapg.org/story/articleid/45535/the-fabric-or-internal-structure-of-rocks-part-2

Thomas Crozon

DDFV scheme for two-phase Darcy flow

イロト イヨト イヨト イヨト 二日

4 / 22

ECN. LMJL

Diphasic Darcy flow model in porous media

PP-DDFV scheme

Mass conservation equations

Maximum principle

 ϕ porosity,

 s_{lpha} saturation,

Two-phase Darcy flow model

0000

 ho_{lpha} volumetric mass,

 \mathbf{V}_{α} phase velocity,

 q^{α} source term

$$\begin{split} \phi \partial_t(\rho_w \mathbf{s}_w) + \operatorname{div}(\rho_w \mathbf{V}_w) + \rho_w \mathbf{q}^w &= 0 \quad \text{in} \quad Q_{t_f}, \\ \phi \partial_t(\rho_{nw} \mathbf{s}_{nw}) + \operatorname{div}(\rho_{nw} \mathbf{V}_{nw}) + \rho_{nw} \mathbf{q}^{nw} &= 0 \quad \text{in} \quad Q_{t_f}. \end{split}$$

Incompressible: ρ_{α} constant/compressible: $\rho_{\alpha}(\mathbf{p}_{\alpha})$.

 $M_{\alpha}(s_{\alpha})$ phase mobility, Λ permeability tensor, ${f g}$ gravitationnal acceleration Diphasic Darcy law

$$\mathbf{V}_{\alpha} = -\mathbf{M}_{\alpha}(\mathbf{s}_{\alpha})\Lambda(\nabla \mathbf{p}_{\alpha} - \rho_{\alpha}\mathbf{\vec{g}}).$$

Capillary pressure

$$P_c(s_{nw}) = p_{nw} - p_w.$$

And initial and boundaries conditions (Dirichlet, Neumann, Outflow) .

Thomas Crozon

DDFV scheme for two-phase Darcy flow

ECN. LMJL

Mobilities

- M_{α} continuous, increasing with s_{α} ,
- continuously extended mobilities to - \mathbb{R} with the values at 0 and 1,
- the degeneracy issue:

$$M_{\alpha}(\mathbf{s}_{\alpha}=0)=0$$

$$\mathbf{V}_{\alpha} = -M_{\alpha}(\mathbf{s}_{\alpha})\Lambda(\nabla \mathbf{p}_{\alpha} - \rho_{\alpha}\mathbf{\vec{g}})$$

 ∇p_{α} can't be controlled when $s_{\alpha} = 0$!

Thomas Crozon

Two-phase Darcy flow model	PP-DDFV scheme ●00	Maximum principle O	Energy estimates 00	Convergence	Numerical results

DDFV framework

DFV gradient
$$abla^{\mathfrak{D}}u_{\mathcal{T}} = \sum_{\mathcal{D}\in\mathfrak{D}}
abla^{\mathcal{D}}u_{\mathcal{T}}\mathbf{1}_{\mathcal{D}}$$
, with:

$$\nabla^{\mathcal{D}} u_{\mathcal{T}} = \frac{1}{\sin(\alpha_{\mathcal{D}})} \left(\frac{u_L - u_K}{m_{\sigma^*}} \vec{n}_{\sigma,K} + \frac{u_{L^*} - u_{K^*}}{m_{\sigma}} \vec{n}_{\sigma^*,K^*} \right).$$

Equivalently verifying the relations

$$\nabla^{\mathcal{D}} u_{\mathcal{T}} \cdot \vec{t}_{K,L} = \frac{u_L - u_K}{m_{\sigma^*}}, \quad \nabla^{\mathcal{D}} u_{\mathcal{T}} \cdot \vec{t}_{K^*,L^*} = \frac{u_{L^*} - u_{K^*}}{m_{\sigma}}$$

イロト イロト イヨト イヨト

Thomas Crozon

D

DDFV scheme for two-phase Darcy flow

ECN. LMJL

3

DDFV meshes building ¹ Boyer, Franck Hubert, Florence. (2008)...

[[]Andreianov et al,2007, Domelevo and Omnes, 2005, Coudiere et al, 2008, Krell, 2010.]

Two-phase Darcy flow model	PP-DDFV scheme 0●0	Maximum principle O	Energy estimates 00	Convergence	Numerical results
Numerical schem					

Numerical scheme

Euler implicit finite volume scheme (integrating on $K \times [t^n, t^{n+1}[$

$$(1) \approx \int_{t^n}^{t^{n+1}} \int_{\mathcal{K}} \phi(x) \frac{\mathbf{s}_{\alpha}(x, t^{n+1}) - \mathbf{s}_{\alpha}(x, t^n)}{\delta t} \, \mathrm{d}x \, \mathrm{d}t \approx \delta t \, \mathbf{m}_{\mathcal{K}} \phi_{\mathcal{K}} \frac{\mathbf{s}_{\alpha, \mathcal{K}}^{n+1} - \mathbf{s}_{\alpha, \mathcal{K}}^{n}}{\delta t}.$$

$$(2) \approx \int_{t^n}^{t^{n+1}} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \vec{V}_{\alpha} \cdot \vec{n}_{\sigma,\mathcal{K}}(x,t^{n+1}) \,\mathrm{d}\sigma \,\mathrm{d}t \approx \delta t \sum_{\sigma = \mathcal{K} \mid L \in \mathcal{E}_{\mathcal{K}}} V_{\mathcal{K}L}^{\alpha,n+1}.$$

Equations discretization A a cell, n a time-step:

$$\begin{split} \phi_A \frac{m_A}{\delta t} (\mathbf{s}_{\mathsf{n}\mathsf{w},A}^{\mathsf{n}+1} - \mathbf{s}_{\mathsf{n}\mathsf{w},A}^{\mathsf{n}}) + \sum_{\sigma=A|L\in\mathcal{E}_A} V_{AL}^{\mathsf{n}\mathsf{w},\mathsf{n}+1} = 0, \\ \phi_A \frac{m_A}{\delta t} (\mathbf{s}_{\mathsf{w},A}^{\mathsf{n}+1} - \mathbf{s}_{\mathsf{w},A}^{\mathsf{n}}) + \sum_{\sigma=A|L\in\mathcal{E}_A} V_{AL}^{\mathsf{w},\mathsf{n}+1} = 0, \\ P_c(\mathbf{s}_{\mathsf{n}\mathsf{w},A}^{\mathsf{n}+1}) = \mathbf{p}_{\mathsf{n}\mathsf{w},A}^{\mathsf{n}+1} - \mathbf{p}_{\mathsf{w},A}^{\mathsf{n}+1} \text{ and } \mathbf{s}_{\mathsf{n}\mathsf{w},A}^{\mathsf{n}+1} + \mathbf{s}_{\mathsf{w},A}^{\mathsf{n}+1} = 1. \end{split}$$

+ discrete boundary and initial conditions...

Thomas Crozon

DDFV scheme for two-phase Darcy flow

ECN. LMJL

(日) (四) (문) (문) (문)

Two-phase Darcy flow model	PP-DDFV scheme 00●	Maximum principle O	Energy estimates 00	Convergence	Numerical results
Velocity approxir	nation				

Velocity through the interface
$$\sigma = K|L$$
 (resp. $\sigma^* = K^*|L^*$):

$$V_{KL}^{\alpha,n+1} := \tau_{KL} M_{\alpha,KL}^{up,n+1} (p_{\alpha,L}^{n+1} - p_{\alpha,K}^{n+1}) + \eta_D \sqrt{M_{\alpha,KL}^{min,n+1}} \sqrt{M_{\alpha,K^*L^*}^{up,n+1}} (p_{\alpha,L^*}^{n+1} - p_{\alpha,K^*}^{n+1}),$$

$$V_{K^*L^*}^{\alpha,n+1} := \tau_{K^*L^*} M_{\alpha,K^*L^*}^{up,n+1} (p_{\alpha,L^*}^{n+1} - p_{\alpha,K^*}^{n+1}) + \eta_D \sqrt{M_{\alpha,K^*L^*}^{min,n+1}} \sqrt{M_{\alpha,KL}^{up,n+1}} (p_{\alpha,L}^{n+1} - p_{\alpha,K}^{n+1}).$$
With $M_{\alpha,AB}^{up,n+1} := \left\{ \begin{array}{c} M(s_{\alpha,B}^{n+1}) & \text{if } p_{\alpha,B}^{n+1} - p_{\alpha,A}^{n+1} \ge 0, \\ M_{\alpha}(s_{\alpha,A}^{n+1}) & \text{otherwise} \end{array} \right\},$

$$M_{\alpha,AB}^{min,n+1} := \min \left(M_{\alpha}(s_{\alpha,A}^{n+1}), M_{\alpha}(s_{\alpha,B}^{n+1}) \right),$$
where $\tau_{KL} = \frac{m_{\sigma}}{m_{\sigma^*}} \frac{\langle \Lambda_D \vec{n}_{KL}, \vec{n}_{KL} \rangle}{\sin(\alpha_D)} > 0, \quad \tau_{K^*L^*} = \frac{m_{\sigma^*}}{m_{\sigma}} \frac{\langle \Lambda_D \vec{n}_{K^*L^*}, \vec{n}_{K^*L^*} \rangle}{\sin(\alpha_D)} > 0,$

$$\eta_D = \frac{\langle \Lambda_D \vec{n}_{KL}, \vec{n}_{K^*L^*} \rangle}{\sin(\alpha_D)}.$$
ended was the expected of the two th

Thomas Crozon

Two-phase Darcy flow model	PP-DDFV scheme	Maximum principle ●	Energy estimates	Convergence	Numerical results
Maximum princip	ble				

Let $(p_{nw,\mathcal{T},\delta t}, p_{w,\mathcal{T},\delta t})$ a discrete solution. Then, for $\alpha \in \{nw, w\}$, the discrete saturation of the α -phase obeys its physical bounds i.e.

$$0 \leq \boldsymbol{s}_{\alpha,\boldsymbol{K}}^{\boldsymbol{n}+1} \leq 1, \quad \forall \boldsymbol{K} \in \boldsymbol{\mathcal{T}}, \forall \boldsymbol{n} \in \boldsymbol{0}, \boldsymbol{N}-1.$$

Proof: $\alpha = nw$, $K = \operatorname{argmin}_{A \in \mathcal{T}} s_{nw,A}^{n+1}$, $(s_{nw,K}^{n+1})^- = -\min(s_{nw,K}^{n+1}, 0) \ge 0$.

$$\begin{split} \phi_{K} \frac{m_{K}}{\delta t} \left(s_{nw,K}^{n+1} - s_{nw,K}^{n} \right) \left(s_{nw,K}^{n+1} \right)^{-} &- \left(s_{nw,K}^{n+1} \right)^{-} \sum_{\sigma \in \mathcal{E}_{K}} M_{nw,KL}^{\mu p,n+1} \tau_{KL} (\rho_{nw,L}^{n+1} - \rho_{nw,K}^{n+1}) \\ &+ \sqrt{M_{nw,KL}^{min,n+1}} \sqrt{M_{nw,K^{*}L^{*}}^{\mu p,n+1}} \eta_{\mathcal{D}} (\rho_{nw,L^{*}}^{n+1} - \rho_{nw,K^{*}}^{n+1}) = 0. \end{split}$$

•
$$\phi_K \left(s_{nw,K}^{n+1} - s_{nw,K}^n \right) \left(s_{nw,K}^{n+1} \right)^- = -\phi_K \left(\left| \left(s_{nw,K}^{n+1} \right)^- \right|^2 + s_{nw,K}^n \left(s_{nw,K}^{n+1} \right)^- \right) \le 0.$$

Degeneracy implies $M_{nw}(s_{nw}^{n+1})(s_{nw}^{n+1})^{-} = 0$

$$\begin{array}{l} \bullet \quad (s_{nw,K}^{n+1})^{-}\sqrt{M_{nw,KL}^{\min,n+1}}\sqrt{M_{nw,K+1}^{up,n+1}}\eta_{\mathcal{D}}(\rho_{nw,L}^{n+1}-\rho_{nw,K+}^{n+1})=0, \\ \\ \bullet \quad \text{Thanks to the upwinding} \quad (s_{nw,K}^{n+1})^{-}M_{nw,K1}^{up,n+1}\tau_{KL}(\rho_{nw,L}^{n+1}-\rho_{nw,K}^{n+1})\geq 0. \\ \end{array}$$

Thomas Crozon

Two-phase Darcy flow model	PP-DDFV scheme	Maximum principle ●	Energy estimates 00	Convergence	Numerical results
Maximum princip	ble				

Let $(p_{nw,\mathcal{T},\delta t}, p_{w,\mathcal{T},\delta t})$ a discrete solution. Then, for $\alpha \in \{nw, w\}$, the discrete saturation of the α -phase obeys its physical bounds i.e.

$$0 \leq \boldsymbol{s}_{\alpha,\boldsymbol{K}}^{\boldsymbol{n}+1} \leq 1, \quad \forall \boldsymbol{K} \in \mathcal{T}, \forall \boldsymbol{n} \in 0, \boldsymbol{N}-1.$$

 $\textit{Proof: } \alpha = \textit{nw}, \quad \textit{K} = \textit{argmin}_{\textit{A} \in \mathcal{T}} \textit{s}_{\textit{nw},\textit{A}}^{\textit{n}+1}, \quad (\textit{s}_{\textit{nw},\textit{K}}^{\textit{n}+1})^{-} = -\min(\textit{s}_{\textit{nw},\textit{K}}^{\textit{n}+1}, 0) \geq 0.$

$$\begin{split} \phi_{\mathcal{K}} \frac{m_{\mathcal{K}}}{\delta t} \left(s_{n\mathbf{w},\mathcal{K}}^{n+1} - s_{n\mathbf{w},\mathcal{K}}^{n} \right) \left(s_{n\mathbf{w},\mathcal{K}}^{n+1} \right)^{-} &- \left(s_{n\mathbf{w},\mathcal{K}}^{n+1} \right)^{-} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} M_{n\mathbf{w},\mathcal{K}L}^{up,n+1} \tau_{\mathcal{K}L} \left(p_{n\mathbf{w},L}^{n+1} - p_{n\mathbf{w},\mathcal{K}}^{n+1} \right) \\ &+ \sqrt{M_{n\mathbf{w},\mathcal{K}L}^{min,n+1}} \sqrt{M_{n\mathbf{w},\mathcal{K}+L^{*}}^{up,n+1}} \eta_{\mathcal{D}} \left(p_{n\mathbf{w},L^{*}}^{n+1} - p_{n\mathbf{w},\mathcal{K}^{*}}^{n+1} \right) = 0. \end{split}$$

•
$$\phi_K \left(s_{nw,K}^{n+1} - s_{nw,K}^n \right) \left(s_{nw,K}^{n+1} \right)^- = -\phi_K \left(|(s_{nw,K}^{n+1})^-|^2 + s_{nw,K}^n (s_{nw,K}^{n+1})^- \right) \le 0.$$

Degeneracy implies $M_{nw}(s_{nw}^{n+1})(s_{nw}^{n+1})^{-} = 0$

Thomas Crozon

Two-phase Darcy flow model	PP-DDFV scheme	Maximum principle ●	Energy estimates 00	Convergence	Numerical results
Maximum princip	ole				

Let $(p_{nw,\mathcal{T},\delta t}, p_{w,\mathcal{T},\delta t})$ a discrete solution. Then, for $\alpha \in \{nw, w\}$, the discrete saturation of the α -phase obeys its physical bounds i.e.

$$0 \leq \boldsymbol{s}_{\alpha,\boldsymbol{K}}^{\boldsymbol{n}+1} \leq 1, \quad \forall \boldsymbol{K} \in \mathcal{T}, \forall \boldsymbol{n} \in 0, \boldsymbol{N}-1.$$

 $\textit{Proof: } \alpha = \textit{nw}, \quad \textit{K} = \textit{argmin}_{\textit{A} \in \mathcal{T}} \textit{s}_{\textit{nw},\textit{A}}^{\textit{n}+1}, \quad (\textit{s}_{\textit{nw},\textit{K}}^{\textit{n}+1})^{-} = -\min(\textit{s}_{\textit{nw},\textit{K}}^{\textit{n}+1}, 0) \geq 0.$

$$\begin{split} \phi_{\mathcal{K}} \frac{m_{\mathcal{K}}}{\delta t} \left(s_{n\mathbf{w},\mathcal{K}}^{n+1} - s_{n\mathbf{w},\mathcal{K}}^{n} \right) \left(s_{n\mathbf{w},\mathcal{K}}^{n+1} \right)^{-} &- \left(s_{n\mathbf{w},\mathcal{K}}^{n+1} \right)^{-} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} M_{n\mathbf{w},\mathcal{K}L}^{up,n+1} \tau_{\mathcal{K}L} \left(p_{n\mathbf{w},L}^{n+1} - p_{n\mathbf{w},\mathcal{K}}^{n+1} \right) \\ &+ \sqrt{M_{n\mathbf{w},\mathcal{K}L}^{min,n+1}} \sqrt{M_{n\mathbf{w},\mathcal{K}L}^{up,n+1}} \eta_{\mathcal{D}} \left(p_{n\mathbf{w},L}^{n+1} - p_{n\mathbf{w},\mathcal{K}}^{n+1} \right) = 0. \end{split}$$

$$\bullet \quad \phi_{K}\left(\mathbf{s}_{\mathbf{nw},K}^{n+1}-\mathbf{s}_{\mathbf{nw},K}^{n}\right)\left(\mathbf{s}_{\mathbf{nw},K}^{n+1}\right)^{-}=-\phi_{K}\left(|(\mathbf{s}_{\mathbf{nw},K}^{n+1})^{-}|^{2}+\mathbf{s}_{\mathbf{nw},K}^{n}(\mathbf{s}_{\mathbf{nw},K}^{n+1})^{-}\right)\leq0.$$

Degeneracy implies $M_{nw}(s_{nw}^{n+1})(s_{nw}^{n+1})^{-} = 0$

•
$$(s_{nw,K}^{n+1})^{-}\sqrt{M_{nw,KL}^{min,n+1}}\sqrt{M_{nw,K^{*}L^{*}}^{up,n+1}\eta_{\mathcal{D}}(\rho_{nw,L^{*}}^{n+1}-\rho_{nw,K^{*}}^{n+1})}=0,$$

• Thanks to the upwinding $(s_{mv,K}^{n+1})^- M_{mv,KL}^{up,n+1} \tau_{KL}(p_{nw,L}^{n+1} - p_{nw,K}^{n+1}) \ge 0.$

Thomas Crozon

Two-phase Darcy flow model	PP-DDFV scheme	Maximum principle ●	Energy estimates 00	Convergence	Numerical results
Maximum princip	ole				

Let $(p_{nw,\mathcal{T},\delta t}, p_{w,\mathcal{T},\delta t})$ a discrete solution. Then, for $\alpha \in \{nw, w\}$, the discrete saturation of the α -phase obeys its physical bounds i.e.

$$0 \leq \boldsymbol{s}_{\alpha,\boldsymbol{K}}^{\boldsymbol{n}+1} \leq 1, \quad \forall \boldsymbol{K} \in \mathcal{T}, \forall \boldsymbol{n} \in 0, \boldsymbol{N}-1.$$

 $\textit{Proof: } \alpha = \textit{nw}, \quad \textit{K} = \textit{argmin}_{\textit{A} \in \mathcal{T}} \textit{s}_{\textit{nw},\textit{K}}^{n+1}, \quad (\textit{s}_{\textit{nw},\textit{K}}^{n+1})^{-} = -\min(\textit{s}_{\textit{nw},\textit{K}}^{n+1}, 0) \geq 0.$

$$\begin{split} \phi_{\mathcal{K}} \frac{m_{\mathcal{K}}}{\delta t} \left(s_{n\mathbf{w},\mathcal{K}}^{n+1} - s_{n\mathbf{w},\mathcal{K}}^{n} \right) \left(s_{n\mathbf{w},\mathcal{K}}^{n+1} \right)^{-} &- \left(s_{n\mathbf{w},\mathcal{K}}^{n+1} \right)^{-} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} M_{n\mathbf{w},\mathcal{K}L}^{up,n+1} \tau_{\mathcal{K}L} \left(p_{n\mathbf{w},L}^{n+1} - p_{n\mathbf{w},\mathcal{K}}^{n+1} \right) \\ &+ \sqrt{M_{n\mathbf{w},\mathcal{K}L}^{min,n+1}} \sqrt{M_{n\mathbf{w},\mathcal{K}L}^{up,n+1}} \eta_{\mathcal{D}} \left(p_{n\mathbf{w},L}^{n+1} - p_{n\mathbf{w},\mathcal{K}}^{n+1} \right) = 0. \end{split}$$

•
$$\phi_K\left(\mathbf{s}_{\mathbf{nw},K}^{n+1} - \mathbf{s}_{\mathbf{nw},K}^n\right)\left(\mathbf{s}_{\mathbf{nw},K}^{n+1}\right)^- = -\phi_K\left(|(\mathbf{s}_{\mathbf{nw},K}^{n+1})^-|^2 + \mathbf{s}_{\mathbf{nw},K}^n(\mathbf{s}_{\mathbf{nw},K}^{n+1})^-\right) \le 0.$$

Degeneracy implies $M_{nw}(s_{nw}^{n+1})(s_{nw}^{n+1})^{-} = 0$

•
$$(s_{nw,K}^{n+1})^{-}\sqrt{M_{nw,KL}^{min,n+1}}\sqrt{M_{nw,K+k}^{up,n+1}}\eta_{\mathcal{D}}(\rho_{nw,L^{*}}^{n+}-\rho_{nw,K^{*}}^{n+1})=0,$$

• Thanks to the upwinding $(s_{nw,K}^{n+1})^{-}M_{nw,KL}^{up,n+1}\tau_{KL}(\rho_{nw,L}^{n+1}-\rho_{nw,K}^{n+1})\geq 0.$

Thomas Crozon

Global pressure, capillary term

Global pressure:

$$p = p_{nw} - \hat{p}_{nw}(s_{nw}) = p_w + \hat{p}_w(s_{nw}),$$

where the corrective pressures \hat{p}_{nw} , \hat{p}_{w} Capillary term: $\left\{ \begin{array}{l} \hat{p}_{nw}(s_{nw}) = \int_0^{s_{nw}} \frac{M_w(1-u)}{M(u)} p_c'(u) \,\mathrm{d}u \\ \hat{p}_w(s_{nw}) = \int_0^{s_{nw}} \frac{M_{nw}(u)}{M(u)} p_c'(u) \,\mathrm{d}u \end{array} \right. .$

$$\xi(\boldsymbol{s_{\textit{nw}}}) = \int_0^{\boldsymbol{s_{\textit{nw}}}} \frac{\sqrt{M_w(1-u)M_{\textit{nw}}(u)}}{M(u)} p_c'(u) \,\mathrm{d}u.$$

It verifies the continuous relation

$$M_{\textit{nw}}(\textit{s}_{\textit{nw}})|\nabla\textit{p}_{\textit{nw}}|^2 + M_{\textit{w}}(\textit{s}_{\textit{w}})|\nabla\textit{p}_{\textit{w}}|^2 = M(\textit{s}_{\textit{nw}})|\nabla\textit{p}|^2 + M(\textit{s}_{\textit{nw}})|\nabla\xi(\textit{s}_{\textit{nw}})|^2.$$

But, we don't keep it in the discrete world...

Lemma

For every A, B in T, there holds:

$$m_0\left((p_B-p_A)^2+(\xi_B-\xi_A)^2\right)\leq M^{up}_{\mathsf{nw},AB}\left(p_{\mathsf{nw},B}-p_{\mathsf{nw},A}\right)^2+M^{up}_{\mathsf{w},AB}\left(p_{\mathsf{w},B}-p_{\mathsf{w},A}\right)^2.$$

Thomas Crozon

Two-phase Darcy flow model	PP-DDFV scheme	Maximum principle O	Energy estimates ○●	Convergence	Numerical results
Energy estimates	;				

Proposition (Energy estimates)

Let $(p_{\alpha,\mathcal{T},\delta t})_{\alpha \in \{nw,w\}}$ be solution of the BP-DDFV. Then, there exists a constant C independent of the discretization parameters namely h and δt , but depending on the regularity upper bound, such that

$$\sum_{n=0}^{N-1} \delta t \left(\sum_{\mathcal{D} \in \mathfrak{D}} m_{\mathcal{D}} \left\| \nabla^{\mathcal{D}} \boldsymbol{p}_{\mathcal{T}}^{n+1} \right\|^2 + \sum_{\mathcal{D} \in \mathfrak{D}} m_{\mathcal{D}} \left\| \nabla^{\mathcal{D}} \boldsymbol{\xi}_{\mathcal{T}}^{n+1} \right\|^2 \right) \leq C.$$

Proof: • Variationnal formulation.

- Accumulation term: classic.
- The $\sqrt{M_{\alpha}^{up}}$ is to force the coercivity

$$V_{KL}^{\alpha,n+1}(p_{\alpha,L}^{n+1}-p_{\alpha,K}^{n+1})+V_{K^{*}L^{*}}^{\alpha,n+1}(p_{\alpha,L^{*}}^{n+1}-p_{\alpha,K^{*}}^{n+1}) \\ \geq \gamma \left(\tau_{KL}M_{\alpha,KL}^{up,n+1}(p_{\alpha,L}^{n+1}-p_{\alpha,K}^{n+1})^{2}+\tau_{K^{*}L^{*}}M_{\alpha,K^{*}L^{*}}^{up,n+1}(p_{\alpha,L^{*}}^{n+1}-p_{\alpha,K^{*}}^{n+1})^{2}\right).$$

• Then we use the previous lemma.

3

イロト イヨト イヨト イヨト

Two-phase Darcy flow model	PP-DDFV scheme	Maximum principle O	Energy estimates ○●	Convergence	Numerical results
Energy estimates					

Proposition (Energy estimates)

Let $(p_{\alpha,\mathcal{T},\delta t})_{\alpha \in \{nw,w\}}$ be solution of the BP-DDFV. Then, there exists a constant C independent of the discretization parameters namely h and δt , but depending on the regularity upper bound, such that

$$\sum_{n=0}^{N-1} \delta t \left(\sum_{\mathcal{D} \in \mathfrak{D}} m_{\mathcal{D}} \left\| \nabla^{\mathcal{D}} \boldsymbol{p}_{\mathcal{T}}^{n+1} \right\|^2 + \sum_{\mathcal{D} \in \mathfrak{D}} m_{\mathcal{D}} \left\| \nabla^{\mathcal{D}} \boldsymbol{\xi}_{\mathcal{T}}^{n+1} \right\|^2 \right) \leq C.$$

- Proof: Variationnal formulation.
- Accumulation term: classic.
- The $\sqrt{M_{\alpha}^{up}}$ is to force the coercivity

$$V_{KL}^{\alpha,n+1}(p_{\alpha,L}^{n+1}-p_{\alpha,K}^{n+1})+V_{K^{*}L^{*}}^{\alpha,n+1}(p_{\alpha,L^{*}}^{n+1}-p_{\alpha,K^{*}}^{n+1}) \\ \geq \gamma \left(\tau_{KL}M_{\alpha,KL}^{up,n+1}(p_{\alpha,L}^{n+1}-p_{\alpha,K}^{n+1})^{2}+\tau_{K^{*}L^{*}}M_{\alpha,K^{*}L^{*}}^{up,n+1}(p_{\alpha,L^{*}}^{n+1}-p_{\alpha,K^{*}}^{n+1})^{2}\right).$$

Then we use the previous lemma.

Э

イロト イポト イヨト イヨト

For
$$\gamma > 0$$
, $\epsilon \in]0, 2[$, a cell K

$$\phi_{K} \left(s_{\alpha,K}^{n+1} - s_{\alpha,K}^{n} \right) - \frac{\delta t}{m_{K}} \sum_{\sigma = K \mid L \in \mathcal{E}_{K}} V_{KL}^{\alpha,n+1} + \gamma \frac{\delta t}{m_{K}} \mathcal{P}_{K} p_{\alpha,T}^{n+1} = 0$$
where
$$\mathcal{P}_{K} p_{\alpha,T} = \frac{1}{h_{\mathfrak{D}}^{\epsilon}} \sum_{K^{*} \in \overline{\mathfrak{M}^{*}}} m_{K \cap K^{*}} M_{\alpha,KK^{*}}^{up} \left(p_{\alpha,K} - p_{\alpha,K^{*}} \right).$$

• Keep maximum principle.

DDFV scheme for two-phase Darcy flow

イロト イ団ト イヨト イヨト

Two-phase Darcy flow model PP-DDFV scheme Maximum principle Oo Provergence Oo Provergence Oo Provergence (2/2)

Refined energy estimates:

$$\begin{aligned} \left\| \nabla^{\mathfrak{D}} \boldsymbol{p}_{\mathcal{T},\delta t} \right\|_{2}^{2} + \left\| \nabla^{\mathfrak{D}} \boldsymbol{\xi}_{\mathcal{T},\delta t} \right\|_{2}^{2} \\
+ \frac{\gamma}{h_{\mathfrak{D}}^{\epsilon}} \left(\left\| \boldsymbol{\xi}_{\mathfrak{M},\delta t} - \boldsymbol{\xi}_{\overline{\mathfrak{M}^{*}},\delta t} \right\|_{L^{2}(Q_{t_{f}})}^{2} + \left\| \boldsymbol{p}_{\mathfrak{M},\delta t} - \boldsymbol{p}_{\overline{\mathfrak{M}^{*}},\delta t} \right\|_{L^{2}(Q_{t_{f}})}^{2} \right) \leq C, \end{aligned}$$
with $C > 0$ depending on mesh regularity, and problem data, independent of the mesh size, and δt .

 convergence of the approximate solution to a weak solution of the model (Compacity results).

イロト イ団ト イヨト イヨト

Two-phase Darcy flow model	PP-DDFV scheme	Maximum principle O	Energy estimates 00	Convergence	Numerical results ●0000000

The test

Compressible case.
$$\Omega = (0, 1m)^2$$
. $\phi = 0, 206$.

Boundary conditions:

- Left-down corner, high pressure water injected, Dirichlet conditions: s_g = 0, p_w = 4,6732 × 10⁵ Pa.
- Right-up corner overflow, outflow conditions. The fluids can come out at atmospheric pressure $p_g = P_{atm} = 1,013 \times 10^5 Pa.$
- Impervious boundaries everywhere else, Neumann conditions. Null gas and water normal flows.

$$\begin{split} P_{c}(\textbf{s}_{g}) &= P_{\max}\textbf{s}_{g} \text{ with } P_{\max} = 10^{5} \text{ Pa.} \\ M_{\alpha}(\textbf{s}_{\alpha}) &= \textbf{s}_{\alpha}^{2}/\mu_{\alpha} \text{ with } \mu_{g} = 9 \times 10^{-5} \text{ Pa s,} \\ \mu_{w} &= 10^{-3} \text{ Pa s.} \end{split}$$

Unknown p_w and s_g . We use a Newton method with preconditioning (BiCGStab).

Quadrangle mesh with boundary conditions, 289 nodes, 256 primal cells = + = + = + = + $\sim \sim \sim \sim \sim$

Thomas Crozon

$$\Lambda = 0.15 \times 10^{-10} \times R_{\theta_0} \times \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix} \times R_{\theta_0}^{-1} \begin{bmatrix} m^2 \end{bmatrix} \text{ with } R_{\theta_0} \text{ the rotation of angle } \theta_0 = \pi/6. \quad t_f = 30 \text{ s}, \\ \delta t = 0.005 \text{ s}.$$

Thomas Crozon

Two-phase Darcy flow model	PP-DDFV scheme	Maximum principle O	Energy estimates 00	Convergence	Numerical results
Test 1 [.] profiles					

・ロト・白 ト・ヨト・ヨト ・ヨー うへの

Thomas Crozon

Test 2: Non-uniform anisotropic

$$\Lambda(\mathbf{x}, \mathbf{y}) = \frac{0.15 \times 10^{-10}}{\mathbf{x}^2 + \mathbf{y}^2} \begin{bmatrix} 0.1\mathbf{x}^2 + \mathbf{y}^2 & 0.9\mathbf{xy} \\ 0.9\mathbf{xy} & \mathbf{x}^2 + 0.1\mathbf{y}^2 \end{bmatrix} \ [\mathbf{m}^2], \quad \forall (\mathbf{x}, \mathbf{y}) \in \Omega. \quad t_f = 120 \ \mathbf{s}, \\ \delta t = 0.005 \ \mathbf{s}.$$

DDFV scheme for two-phase Darcy flow

18 / 22

Two-phase Darcy flow model	PP-DDFV scheme 000	Maximum principle O	Energy estimates 00	Convergence	Numerical results
Test 2 [.] profiles					

・ロト・西ト・ヨト・ヨー うへの

Thomas Crozon

 $\begin{bmatrix} \text{Boyer and Hubert, 2008,} \\ \text{Chainais-Hillairet et al, 2013.} \\ \text{t}_f = 150 \ s, \quad \delta t = 0.001 \ s. \\ \end{cases}$

Λ

$$\Lambda_1(x, y) = 0.15 \times 10^{-10} \begin{bmatrix} 0.01 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} m^2 \end{bmatrix},$$

$$_2(x, y) = 0.15 \times 10^{-10} \times R_{\pi x} \times \begin{bmatrix} 0.01 & 0\\ 0 & 1 \end{bmatrix} \times R_{\pi x}^{-1} \begin{bmatrix} m^2 \end{bmatrix}.$$

Gas saturation [-] (up) and water pressure [Pa] (down) at $t=30\ s$

Gas saturation [-] (up) and water pressure [Pa] (down) at $t = 60 \ s$

Gas saturation [-] (up) and water pressure [Pa] (down) at t = 150 s = 0.0

Thomas Crozon

Two-phase Darcy flow model	PP-DDFV scheme	Maximum principle O	Energy estimates 00	Convergence	Numerical results
Test 3: profiles					

Thomas Crozon

DDFV scheme for two-phase Darcy flow

2

< ロ > < 回 > < 回 > < 回 > < 回 >

Two-phase Darcy flow model	PP-DDFV scheme	Maximum principle O	Energy estimates	Convergence	Numerical results 0000000●

DDFV numerical scheme

- maximum principle on the saturations,
- energy estimates,
- convergence to a weak solution up to a subsequence.

Thank you for your attention !!!

< (T) >

< ∃ >

Two-phase Darcy flow model	PP-DDFV scheme	Maximum principle O	Energy estimates	Convergence	Numerical results 0000000●

DDFV numerical scheme

- maximum principle on the saturations,
- energy estimates,
- convergence to a weak solution up to a subsequence.

Thank you for your attention !!!

3.1