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Two-phase Darcy flow model
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Many applications

Sources o groundatercontamination

T e

g P

Sources of groundwater contaminations 2

Secondary and tertiary oil recovery
1

1 Savory, Luke. (2015). Enhanced oil recovery
by flooding with aqueous surfactant solution : a
model study and comparison with theory.

2 https://www.grida.no/resources/13721

3 https://www.wired.co.uk/article/finland-
bury-nuclear-waste

Nuclear
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Two-phase Darcy flow model
0000

Porous media

Q a 2D bounded polygonal domain. Q:, = Q x (0, tr).
Two phases {nw, w}

Microscopic/macroscopic view

Grains
(rock)

fluids volume
e Porosit X)=——,
y o) total volume
e Permeability tensor A(x) symmetric
positive-definite matrix.

UnknOWns Shw, Sw, an’ pW Anisotropic Isotropic

a-phase volume

e Saturations s, = fluid i
uids volume

Heterogeneous

e Phases pressures p,,.

Saturing phases

Homogeneous

L https://explorer.aapg.org/story/articleid /45535 /the-fabric-or-internal-

structure-of-rocks-part-2

Isotropic/anisotropic !
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Two-phase Darcy flow model
[e]e] e}

Diphasic Darcy flow model in porous media

Mass conservation equations

¢ porosity,
Se, Saturation, @0t (pwsw) +div(pwVy) +puwg” =0 in Q¢
Pa volumetric mass, ¢8t(pnw5nw) + div(pnwvnw) + pannw =0 in Qtf'

V. phase velocity,
g“ source term

Incompressible: p, constant/compressible: pq(pa ).

Ma (s) phase mobility, Diphasic Darcy law

A permeability tensor,
g gravitationnal accelera- ’Va = —Mqu(5a)AM(VPa — pag)- ‘
tion

Capillary pressure

‘ 'Dc(snw) = Prw — Pw- ‘

And initial and boundaries conditions (Dirichlet, Neumann, Outflow) ...
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Two-phase Darcy flow model
[e]e]e] ]

Degeneracy issue

Mobilities
- M, continuous, increasing with s,

- continuously extended mobilities to
R with the values at 0 and 1,

- the degeneracy issue:

Vo = My (5a)A(Vpa — pag)

0.8

0.6

0.4

=Muw =M,

0.2

0.4

0.6
Snw

0.8 1

Vp, can't be controlled when s, = 0!
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PP-DDFV scheme
000

DDFV framework

DDFV meshes
bwldmg 1 Boyer, Franck
Hubert, Florence. (2008)...

>
PN
& o et me

F.V. functions | ur = ((uk) ke (Uk*) = o) € RT. ‘

DDFV gradient VP ur = Y1 o VPurlp, with:

1 up — uk _, up= — Ug= _,
VPur = ——— ( ——fio.k + ———TFig= K~
sin(ap) Mg Mo

Equivalently verifying the relations

D - up — uk D -
VZur -tk = ———, V7ur tks 1+ =
Mmeg* mg

up+ — Uk
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PP-DDFV scheme
o] o]

Numerical scheme

Euler implicit finite volume scheme (integrating on K x [t", t""![

n+1 n

1
s(, X, t") — s, (x, t" Sa K — Sa,K
/ /¢ ) =500t Gde e Gt mpcdy i S

ot ot

n+1
/ > Vo diok(x, " ) dodt & ot > Vi

oc&i o=K|Le&k

Equations discretization A a cell, n a time-step:

ma n+1 n nw,n+1

¢A 5t (Snw,A - s"W,A) + 2 : VAL = 0’

o=A|LEE,
n+1 w,n+1 __

¢A (wA*SWA)JF E Vil =0,
o=A|LEE,

n+1 n+1 n+1 n+1 n+1 _

PC(SnW,A) pnw A pw A and an,A + SW,A =1

+ discrete boundary and initial conditions...
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PP-DDFV scheme
[e]e] )

Velocity approximation

Velocity through the interface o = K|L (resp. o* = K*|L*):

a,n+1 | up,n+1, n+1 n+1 min,n+1 up,n+1 n+1 n+1
Vil =TM ki (ol — Pak) + WD\/MQ.KL \/Ma‘,K*L* (P, = Pak=)»

a,n+1 up,n+1 n+1 _ _nt+l min,n+1 up,n+1 n+1 _ _n+1
VK*L* = VgL Ma,K*L* (pa,L* pL\,K*) + nD\/Ma,K*L* \/Ma,KL ('Da,L pu,K>'

M(SnJrl) if pn+1 n+1 >0

up,nt+1 o,B «,8 ~ Pa,a Z
With M(’(,I’AB = . 7 i
Ma(smA ) otherwise o {om o
min,n+1 | __ . n+1 n+1 )
sz,AB *= min (M“ sw,A )7 Mo, (s(,v,B )) ’ P
m Aph n Mg* (ApRKsp+, Ak p*
where 7 = Mo ADPRL KL o Mar ABTKe L rent)
mgx  sin(ap) meo sin(ap)
(ApiikL, fik*1*)
T]D = —

sin(ap)
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Maximum principle
[ ]

Maximum principle

Lemma Bound-preservation

Let (pow, 7,5t Pw,T,s5t) @ discrete solution. Then, for o € {nw, w}, the discrete
saturation of the a-phase obeys its physical bounds i.e.

0<s"i <1, VKeT,¥neO,N—1.
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Maximum principle
[ ]

Maximum principle

Lemma Bound-preservation

Let (pow, 7,5t Pw,T,s5t) @ discrete solution. Then, for o € {nw, w}, the discrete
saturation of the a-phase obeys its physical bounds i.e.

0<s"i <1, VKeT,¥neO,N—1.

n+1 ( n+1

nw,A’ nw, K)7 - mm(s

Proof: a = nw, K = argminpecTs o, K’ 0) > 0.

mg 1 1\— 1\— 1 1 1
i (S ke = sh) (i) T = (shEi0 T 3 M (oL = R

nw, K ) Spw, K Shw, K nw, KL nw, L~ Prw, Kk
cEEK

min,n+1 up,n+1 n+1 n+1
F A Mu kL A Mo i1 1D (P 1 = Pryy o) = 0-
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Maximum principle
[ ]

Maximum principle

Lemma Bound-preservation

Let (pow, 7,5t Pw,T,s5t) @ discrete solution. Then, for o € {nw, w}, the discrete
saturation of the a-phase obeys its physical bounds i.e.

0<s"i <1, VKeT,¥neO,N—1.

. 1 1,\—
Proof: a = nw, K = argmmAETs:VtA, (s ::;K) = - mm(s[7W k+0) > 0.

mg 1 1\— 1\— 1 1 1
i (S ke = sh) (i) T = (shEi0 T 3 M (oL = R

St nw, K nw, K nw, K nw,K nw,KL nw,L — nw K
cEEK
min,n+1 up,n+1 n+1 n+1
F A Mu kL A Mo i1 1D (P 1 = Pryy o) = 0-
n+1 n n+1\— _ n+1\— 2 n n+1\—
o o (smdke = shui) 10T = —on (16110 1P + sk (hJ) ™) < 0.
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Maximum principle
[ ]

Maximum principle

Lemma Bound-preservation

Let (pow, 7,5t Pw,T,s5t) @ discrete solution. Then, for o € {nw, w}, the discrete
saturation of the a-phase obeys its physical bounds i.e.

0<s"i <1, VKeT,¥neO,N—1.

n+1 (n+1

nw,A’ nwK

Proof: a = nw, K = argminpecTs )T = — mm(s[7W k+0) > 0.

mg 1 1\— 1\— 1 1 1
i (S ke = sh) (i) T = (shEi0 T 3 M (oL = R

5t K nw, K ) Spw, Kk Shw, K nw, KL nw, L~ Prw, Kk
cEEK
M M W LD (] e = P ) = 0.
o o (i = shui) 0T = —oi (10T 0712 + shu k(50T J0 ™) < 0.
Degeneracy implies an(sgvtl)(s"+1)7 =0 ‘
O e Al T ey Ry R

e Thanks to the upwinding (an K> Mgf,',;(-tlTKL@:;lL — :S/LIK) > 0.

Thomas Crozon

DDFV scheme for two-phase Darcy flow



Energy estimates
[ Je]

Global pressure, capillary term

Introduce in .
Total mobility 0 < mg < M(spw) = Maw (snw) + My (1 — spw).

f’nW(Snw) = Asnw Mpé(u) du

Global pressure:

P = Pnw — f’nw(snw) = pw + bw(snw): M(U)
here th i Prws, B pu(s ):/snw Mo (2) o1 )
where the corrective pressures pnw, pw wA=nw o M(U) c

Capillary term:

pe(u) du.

[ vV My (1 — u)yMpnw (u)
) = /0 M(a)

It verifies the continuous relation

Mo (50) [V P |* + Mo (50) |V P[> = M(50) [V pI? + M($n) [ VE () |

But, we don't keep it in the discrete world...

For every A, B in T, there holds:

mo ((PB - pA)2 + (53 - EA)2) < M,‘:VPV’AB (an,B - PnW,A)2 + M‘I,JV‘?AB (PW,B - pvv,A)2
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Energy estimates
oe

Energy estimates

Proposition (Energy estimates)

Let (PQ,T,ét)ae{nWYW} be solution of the BP-DDFV. Then, there exists a constant C
independent of the discretization parameters namely h and 0t, but depending on the
regularity upper bound, such that

N—1
2 2
S (32 mo v+ 3 mom ) <
n=0 DeD DeD
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Energy estimates
oe

Energy estimates

Proposition (Energy estimates)

Let (Pa,T,ét)ae{nWYW} be solution of the BP-DDFV. Then, there exists a constant C
independent of the discretization parameters namely h and 0t, but depending on the
regularity upper bound, such that

)

N—1

2 2
i (5 melles '+ 3 moloees
n=0 DeD

DeD

Proof: e  Variationnal formulation.
e Accumulation term: classic.

e The v/ MY is to force the coercivity
a,n+1, n+1 n+1 a,n+1, n+1 n+1
VKL (an (yK)+V*L* (p(yL*_p(yK*)
+1 1 12 +1 1 142
>y (TKLM;p;gL (P"+ "+ )2+ T MR (PTL* - PTK*) ) .

e Then we use the previous Iemma.
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Convergence
e0

Penalisation term and convergence (1/2)

For v >0, € €]0,2], a cell K

ot
o (s —saw) —— > vt +v PKPT% =0

m
K oc=K|Legx
where
u,
PKpa,T = ho€ E mKnkK=* MaF:KK* (PQ,K - pa,K*) °
K*em*

e Keep maximum principle.
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Convergence
oe

Penalisation term and convergence (2/2)

Refined energy estimates:

2 2
[72erse], |v2er.e],

2
+ szm,st — P 5¢ 12(Q, )) <C,
f

with C > 0 depending on mesh regularity, and problem data,
independent of the mesh size, and dt.

ER (HE 3 :
h% M, ot M* 5t LQ(Qtf)

e convergence of the approximate solution to a weak solution of the model
(Compacity results).
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Numerical results

00000000

The test

_ ) w weakly compressible
Compressible case. 2 = (0,1m)<. ¢ = 0, 206. 00 (Po) = Puret (14 Cre (Ps — Puv.rer))
Pw,ref = 1000 kg m_S, Cref = 10_6Pa_11
Puref = 1.013 x 10° Pa.

Boundary conditions:

e Left-down corner, high pressure water b .
injected, Dirichlet conditions: g perfect gas pg(p;) = pgv’effg,e, with
sg = 0,py = 4,6732 x 10° Pa. Pg.ref = 400 kg m™3,

i Pg.ef = 1.013 x 10° Pa.

e Right-up corner overflow, outflow
conditions. The fluids can come out at
atmospheric pressure
pg = Patm = 1,013 x 10° Pa.

e Impervious boundaries everywhere else,
Neumann conditions. Null gas and water
normal flows.

Pc(sg) = PmaxSg with Pmax = 10° Pa.

Ma (sa) = 82 /pta with pg =9 x 107 Pa's,
Hw = 103 Pas.

Unknown p,, and s;. We use a Newton method Quadrangle mesh with boundary conditions,
with preconditioning (BiCGStab). 289 nodes, 256 primalcells.

ttt
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Numerical results
0O@000000

Test 1: Uniform anistropic

A= 0.15’)><10_10><R@0 X [(1) (5)] ><I-'\’9_01 [mz] with Ry the rotation of angle g = /6. t; = 30,5t = 0.005s.

108800 108800

Lo Los
—os % —os ®

o ol

00as00 00ai0

47005 47005 470105

s s s
a0 a0 a0
— - -
— - -
— 200000 ‘ — 200000 ° — 200000 °
[ a0 taa0
oo o0 o0
o0 w00 o0

00000

000100 000100

Gas saturation [-] (up) and water pressure  Gas saturation [-] (up) and water pressure  Gas saturation [-] (up) and water pressure
[Pa] (down) at t = 6 s [Pa] (down) at t = 12 s [Pa] (down) at t = 30's
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Numerical results
[e]e] lelele]le]e]

Test 1: profiles

Gas saturation profiles aty = 0.86 Water pressure profiles at y = 0.86
10 300000
250000 4
08
200000 4
06 _
- B
=4 < 150000
@ H
04
100000
02 50000 -
0.0 09
00 02 04 0.6 08 10
X [m]
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Numerical results
[e]e]e] lelele]e]

Test 2: Non-uniform anisotropic

] [m?], V(x,y) € Q. tr=120s,5t=0.005s.

0.15 x 1010 24,2
Alx,y) = [O.IX +y 0.9xy

X2 +y2 0.9xy x2 4+ 0.1y2

108000

Gas saturation [-] (up) and water pressure  Gas saturation [-] (up) and water pressure  Gas saturation [-] (up) and water pressure
[Pa] (down) at t = 10 s [Pa] (down) at t = 60 s [Pa] (down) at £ = 120°s
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Numerical results
[e]e]e]e] Telele]

Test 2: profiles

Gas saturation profiles aty = 0.86 Water pressure profiles at y = 0.86
L0 300000 —.=
—
-
250000 4 -
08
-
200000 1 ¢
o g 150000
- 1
@ H
04 100000 -
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Test 3: Strong heterogeneity, m-DDFV method.

Numerical results
[e]e]e]ele] lele]

A1 (x,y) =0.15 x 10710 [0'81 (1)] [m?],
tr=150s, 8t =0.001s. A\ 0y 01510710 x Rey x [0.81 (1)] « R=1

Gas saturation [-] (up) and water pressure  Gas saturation [-] (up) and water pressure

Gas saturation [-] (up) and water pressure

[Pa] (down) at t = 30 s [Pa] (down) at t = 60 s [Pa] (down) at + = 150-s
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Numerical results
00000080

Test 3: profiles

Gas saturation profiles aty = 0.5 Water pressure profiles at y = 0.5
10
200000 4
175000
08
150000
_ o8 = 125000 4
z g
=
@ £ 100000
04
75000 -
02 50000 -
25000
0.0
00 02 04 0.6 08 10 0.0 02 0.4 06 08 10
X [m X[m]
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Numerical results
O000000e

DDFV numerical scheme
e maximum principle on the saturations,
e energy estimates,

e convergence to a weak solution up to a subsequence.
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Numerical results
O000000e

DDFV numerical scheme
e maximum principle on the saturations,
e energy estimates,

e convergence to a weak solution up to a subsequence.

Thank you for your attention !!!
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