

$\phi\mbox{-}{\mbox{FEM-FNO}}$ a new approach to train a Neural Operator as a fast PDE solver for variable geometries.

28/05/2024

CANUM 2024, Le Bois-Plage-en-Ré, lle de Ré

M. Duprez¹, V. Lleras², A. Lozinski³, V. Vigon⁴ and K. Vuillemot^{1,2}

¹ Inria, Strasbourg, France, ² IMAG, Montpellier, France, ³LMB, Besançon, France, ⁴ IRMA, Strasbourg, France.

2 The ϕ -FEM technique

3 ϕ -FEM and Neural networks

0

4 Conclusion

1 Motivation

2 The ϕ -FEM technique

3 ϕ -FEM and Neural networks

0

4 Conclusion

MOTIVATION

Objectives

Develop **real-time**, **patient specific digital twins** for computer-aided surgical interventions.

- ▶ Simulation of the deformations of organs : PDEs → FEMs,
- Complex geometries —> Unfitted FEMs,
- Real-time constructions —> machine learning techniques.

New method : $\phi\text{-}\mathsf{FEM},$ unfitted method, precise, easy to implement.

VERY SHORT STORY OF FEMS

(a) Standard FEM (Clough 60s).

(b) XFEM (Moes and al., 2006) → Non-classical shape functions, CutFEM (Burman, Hansbo, 2010-2014) → cut cells and partial integrals.

(c) Shifted Boundary method (Main, Scovazzi, 2017) → Taylor development near the boundary.

(d) ϕ -FEM (Duprez and Lozinski, 2020) \rightarrow Level-set function

Problems on complex shapes \longrightarrow unfitted FEMs

Motivation

2 The ϕ -FEM technique

3 ϕ -FEM and Neural networks

4 Conclusion

Level-set function

$$\Omega = \{\phi < 0\} \text{ and } \Gamma = \{\phi = 0\}.$$

The spaces

- $\mathcal{T}_h: \phi$ -FEM mesh,
- \mathcal{T}_h^{Γ} : cells of \mathcal{T}_h cut by the boundary (purple triangles),
- $\blacktriangleright \mathcal{F}_h^{\Gamma}: \text{ internal facets of } \mathcal{T}_h^{\Gamma}.$

 $\text{Example with } \phi(x,y) = -1 + x^2 + y^2.$

Example (Poisson-Dirichlet equation)

$$-\Delta u = f \quad \text{in } \Omega, \quad u = g \quad \text{on } \Gamma \,.$$

Standard FEM

Find
$$u$$
 s.t.
$$\begin{cases} -\Delta u = f, \text{ in } \Omega, \\ u = g, \text{ on } \Gamma. \end{cases}$$

Find
$$w$$
 s.t.
$$\begin{cases} -\Delta u = f, \text{ in } \Omega_h, \\ u = \phi w + g, \text{ in } \Omega_h. \end{cases}$$

5

Example (Poisson-Dirichlet equation)

$$-\Delta u = f \quad \text{in } \Omega, \quad u = g \quad \text{on } \Gamma.$$

ϕ -FEM scheme

Find w_h such that for all v_h ,

$$\begin{split} \int_{\Omega_h} \nabla(\phi_h w_h + g_h) \cdot \nabla(\phi_h v_h) \\ &- \int_{\partial \Omega_h} \frac{\partial}{\partial n} (\phi_h w_h + g_h) \phi_h v_h \\ &+ \text{ stabs } = \int_{\Omega_h} f_h \phi_h v_h - \text{ stabs } \end{split}$$

$\phi\text{-}\mathsf{FEM}$: Stabilization terms

Who are «stabs»?

- First order : Ghost penalty (S_1) ,
- Second order : least square imposition of the strong formulation on $\mathcal{T}_h^{\Gamma}(\mathcal{S}_2)$.

$$\begin{split} \int_{\Omega_h} \nabla(\phi_h w_h + g_h) \cdot \nabla(\phi_h v_h) &- \int_{\partial\Omega_h} \frac{\partial}{\partial n} (\phi_h w_h + g_h) \phi_h v_h \\ &+ \underbrace{\sigma h \sum_{E \ \in \ \mathcal{F}_{\Gamma}} \int_E \left[\frac{\partial}{\partial n} (\phi_h w_h + g_h) \right] \left[\frac{\partial}{\partial n} (\phi_h v_h) \right]}_{(\mathcal{S}_1) : \text{Ghost penalty, jump over the facets}} \\ &+ \underbrace{\sigma h^2 \sum_{T \ \in \ \mathcal{T}_h^{\Gamma}} \int_T \Delta(\phi_h w_h + g_h) \Delta(\phi_h w_h)}_{(\mathcal{S}_2) : \text{least square imposition of the governing equation}} \\ &- \sigma h^2 \sum_{T \ \in \ \mathcal{T}_h^{\Gamma}} \int_T f \Delta(\phi_h w_h) \ . \end{split}$$

 \mathcal{S}_2 's friend

Interests of the method

- Optimal convergence in L^2 and H^1 norms,
- ► Easy to implement : standard shape functions, no cut cells → standard quadrature rules,
- Acceptable conditioning of the finite element matrix,
- No need to generate a conforming mesh.

Other schemes

- Dirichlet or Neumann boundary conditions,
- Linear elasticity problems,
- Stokes problem,
- Heat equation.

Motivation

2 The ϕ -FEM technique

3 ϕ -FEM and Neural networks

4 Conclusion

In the context of real-time simulations, we need **quasi-instantaneous results.**

- ϕ -FEM : precise but slow \longrightarrow Not real-time
- ▶ Neural Networks → Real time
- ϕ -FEM + Neural Networks \longrightarrow Precise and real-time method?

In the context of real-time simulations, we need **quasi-instantaneous results.**

- ϕ -FEM : precise but slow \longrightarrow Not real-time
- ▶ Neural Networks → Real time
- ϕ -FEM + Neural Networks \longrightarrow Precise and real-time method?

The idea : construct an operator \mathcal{G}_{θ}

How to combine ϕ -FEM and neural networks to obtain fast and precise results?

 \longrightarrow the Fourier Neural Operator.

Why choose the FNO?

- Neural operator : learns a mapping, not a solution,
- Uses FFT \longrightarrow requires Cartesian grid, as ϕ -FEM does,
- According to the authors, more accurate than other ML-methods :

	NN	PCANN	DeepOnet	GNO	LNO	FNO
Darcy Flow	0.17	0.02	0.04	0.03	0.05	0.01
1D Burgers	0.47	0.04	0.06	0.06	0.02	0.001

 L^2 errors of different methods $\mbox{[Kovachki et al, 2023]}.$

 Almost no need to change the underlying architecture when changing the governing PDE.

Parametric application :

$\mathcal{G}_{\theta}: \mathbb{R}^{n_{x} \times n_{y} \times 3} \xrightarrow{N} \mathbb{R}^{n_{x} \times n_{y} \times 3} \xrightarrow{P_{\theta}} \mathbb{R}^{n_{x} \times n_{y} \times n_{d}} \xrightarrow{\mathcal{H}_{\theta}^{1}} \mathbb{R}^{n_{x} \times n_{y} \times n_{d}} \xrightarrow{\mathcal{H}_{\theta}^{2}} \cdots \xrightarrow{\mathcal{H}_{\theta}^{4}} \mathbb{R}^{n_{x} \times n_{y} \times n_{d}} \xrightarrow{Q_{\theta}} \mathbb{R}^{n_{x} \times n_{y} \times 1} \xrightarrow{N^{-1}} \mathbb{R}^{n_{x} \times n_{y} \times 1}.$

- ▶ In and out dimensions : $X = (f_h, \phi_h, g_h) \rightarrow w_h$, with f_h, ϕ_h, g_h and w_h images of shape (n_x, n_y) .
- \triangleright N and N^{-1} : standardization and unstandardization (channel by channel),
- P_{θ} and Q_{θ} : «embedding and projection»,

$$P_{\theta}(X)_{ijk} = \sum_{k'=1}^{3} W_{kk'}^{P_{\theta}} X_{ijk'} + B_k^{P_{\theta}} \in \mathbb{R}^{n_d},$$

 \longrightarrow from original dimension 3 to «hidden dimension», $n_d >> 3$.

$$Q_{\theta}(X)_{ij} = \left[\sum_{k=1}^{n_Q} W_{1k}^{Q_{\theta,2}} \sigma\left(\sum_{k'=1}^{n_d} W_{kk'}^{Q_{\theta,1}} X_{ijk'} + B_k^{Q_{\theta,1}}\right)\right] + B^{Q_{\theta,2}} \in \mathbb{R}$$

 \longrightarrow from «hidden dimension» n_d to final dimension 1.

Parametric application :

$$\mathcal{G}_{\theta}: \mathbb{R}^{n_{x} \times n_{y} \times 3} \xrightarrow{N} \mathbb{R}^{n_{x} \times n_{y} \times 3} \xrightarrow{P_{\theta}} \mathbb{R}^{n_{x} \times n_{y} \times n_{d}} \xrightarrow{\mathcal{H}_{\theta}^{1}} \mathbb{R}^{n_{x} \times n_{y} \times n_{d}} \xrightarrow{\mathcal{H}_{\theta}^{2}} \cdots \xrightarrow{\mathcal{H}_{\theta}^{4}} \mathbb{R}^{n_{x} \times n_{y} \times n_{d}} \xrightarrow{Q_{\theta}} \mathbb{R}^{n_{x} \times n_{y} \times 1} \xrightarrow{N^{-1}} \mathbb{R}^{n_{x} \times n_{y} \times 1}.$$

 $\mathcal{C}^{\ell}_{\theta}(X)$

Each layer
$$\mathcal{H}^{\ell}_{\theta}$$
 is defined by :
 $\mathcal{H}^{\ell}_{\theta} = \sigma \left(\right)$

$$\mathcal{F}^{-1}\Big(W^{\mathcal{C}^{\ell}_{\theta}}\mathcal{F}(X)\Big)$$

with $\mathcal F$ the real-FFT and $\mathcal F^{-1}$ its inverse.

The coefficients of $W^{\mathcal{C}_{\theta}^{\ell}}$ are complex trainable parameters.

 $\mathcal{B}_{\theta}^{\ell}(X)_{ijk}$ $= \sum_{k'=1}^{n_d} W_{kk'}^{\mathcal{B}_{\theta}^{\ell}} X_{ijk'} + B_k^{\mathcal{B}_{\theta}^{\ell}}$

 $\mathcal{B}^{\ell}_{\theta}(X)\Big)$

The coefficients of $W^{\mathcal{B}_{\theta}^{\ell}}$ and $B^{\mathcal{B}_{\theta}^{\ell}}$ are real trainable parameters.

Question :

How many trainable parameters for ϕ -FEM-FNO?

- ▶ $\mathcal{F}(X)$: RFFT \rightarrow low frequencies stored in NW and SW corners,
- High frequencies negligible \Longrightarrow W = 0 outside NW and SW corners,
- Size of the corners = «number of modes» = m_x, m_y ,
- Finally, for each corner : $n_d \times n_d \times m_x \times m_y$ parameters $\longrightarrow \times 2$.

Does not depend on the resolution of the images!

$\phi\text{-}\mathsf{FEM}\text{-}\mathsf{FNO}:\mathsf{random}\ \mathsf{ellipses}$

First test case

$$-\Delta u = f$$
, in Ω , $u = g$, on Γ ,

 $\implies f \in [0, 25],$

- $\blacktriangleright \ \Omega$ is a random rotated ellipse defined using the signed distance $\phi,$
- f is a random gaussian force centered in Ω with constant amplitude

•
$$g_{(\alpha,\beta)}(x,y) = \alpha \left((x-0.5)^2 - (y-0.5)^2 \right) \cos(\beta y \pi)$$

 $\implies q \in [-0.17, 0.15],$

$$\blacktriangleright \implies u \in [-0.17, 0.87].$$

Dataset : 1500 training data, 300 validation data.

First test case

$$-\Delta u=f\,,\,\mathrm{in}\,\Omega,\,u=g\,,\,\mathrm{on}\,\Gamma\,,$$

where Ω is a random rotated ellipse.

Convergence of the loss function : $\approx \| \cdot \|_{2,\Omega_h}$

$\phi\text{-}\mathsf{FEM}\text{-}\mathsf{FNO}\,\,\mathsf{VS}\,\mathsf{other}\,\mathsf{techniques}$

Outputs of the first three methods.

Errors of the methods.

Second test case

$$-\Delta u = f$$
, in Ω , $u = g$, on Γ ,

where Ω is defined using Fourier series,

$$\phi(x,y) = 0.4 - \sum_{k=1}^{3} \sum_{l=1}^{3} \alpha_{kl} \sin(k\pi x) \sin(l\pi y),$$

Dataset : 2200 training data, 467 validation data.

Examples of level-set functions and corresponding domains.

$\phi\text{-}\mathsf{FEM}\ \mathsf{and}\ \mathsf{FNO}$: complex shapes

Motivation

2 The ϕ -FEM technique

3 ϕ -FEM and Neural networks

4 Conclusion

Results

- Real-time : \approx 100 times faster than FEM solvers,
- \blacktriangleright \approx 5 times faster and more precise than the previous work Geo-FNO.

Perspectives :

- More realistic test cases,
- Mixed Dirichlet-Neumann boundary conditions, Time-Dependant PDE's, Linear and non-linear elasticity, ...
- ▶ 3D problems,
- Validation on organ geometries.

Thanks for your attention!

• The standardization and unstandardization operators are applied channel by channel and are given by :

$$C^{N} = N(C) = \left(\frac{C - \operatorname{mean}(C^{\operatorname{train}})}{\operatorname{std}(C^{\operatorname{train}})}\right), \qquad (N)$$

$$N^{-1}(Y) = Y \times \operatorname{std}(Y^{\operatorname{train}}) + \operatorname{mean}(Y^{\operatorname{train}}) \,. \tag{N^{-1}}$$

What choice for the loss \mathcal{L} ?

$H^2\operatorname{norm}:\mathcal{L}^2\approx \|\cdot\|_{0,\mathcal{S}_0}^2+|\cdot|_{1,\mathcal{S}_1}^2+|\cdot|_{2,\mathcal{S}_2}^2$

- First and second derivatives : finite differences.
- Need to reduce the computational domain :

THE LOSS FUNCTION

$$\mathcal{L}\left(U_{\text{true}}; U_{\theta}\right) = \frac{1}{N_{\text{data}}} \sum_{n=0}^{N_{\text{data}}} \sqrt{\frac{\sum_{i=0}^{2} \mathcal{E}_{i}(u_{\text{true}}^{n}; u_{\theta}^{n})}{\sum_{i=0}^{2} \mathcal{N}_{i}(u_{\text{true}}^{n})}} \,,$$

where

$$\begin{split} \mathcal{E}_{0}(u_{\text{true}}^{n};u_{\theta}^{n}) &= \sum_{S_{0}} \left\| u_{\text{true}}^{n}(i,j) - u_{\theta}^{n}(i,j) \right\|^{2}, \\ \mathcal{E}_{1}(u_{\text{true}}^{n};u_{\theta}^{n}) &= \sum_{S_{1}} \left(\left\| \nabla_{x}^{h}u_{\text{true}}^{n}(i,j) - \nabla_{x}^{h}u_{\theta}^{n}(i,j) \right\|^{2} + \left\| \nabla_{y}^{h}u_{\text{true}}^{n}(i,j) - \nabla_{y}^{h}u_{\theta}^{n}(i,j) \right\|^{2} \right), \\ \mathcal{E}_{2}(u_{\text{true}}^{n};u_{\theta}^{n}) &= \sum_{S_{2}} \left(\left\| \nabla_{x}^{h}\nabla_{x}^{h}u_{\text{true}}^{n}(i,j) - \nabla_{x}^{h}\nabla_{x}^{h}u_{\theta}^{n}(i,j) \right\|^{2} \\ + \left\| \nabla_{x}^{h}\nabla_{y}^{h}u_{\text{true}}^{n}(i,j) - \nabla_{x}^{h}\nabla_{y}^{h}u_{\theta}^{n}(i,j) \right\|^{2} + \left\| \nabla_{y}^{h}\nabla_{y}^{h}u_{\text{true}}^{n}(i,j) - \nabla_{y}^{h}\nabla_{y}^{h}u_{\theta}^{n}(i,j) \right\|^{2} \right), \end{split}$$

and

$$\begin{split} \mathcal{N}_0(u_{\text{true}}^n) &= \sum_{\mathcal{S}_0} \|u_{\text{true}}^n(i,j)\|^2 \,,\\ \mathcal{N}_1(u_{\text{true}}^n) &= \sum_{\mathcal{S}_1} \left(\|\nabla_x^h u_{\text{true}}^n(i,j)\|^2 + \|\nabla_y^h u_{\text{true}}^n(i,j)\|^2 \right) \,,\\ \mathcal{N}_2(u_{\text{true}}^n) &= \sum_{\mathcal{S}_2} \left(\|\nabla_x^h \nabla_x^h u_{\text{true}}^n(i,j)\|^2 + \|\nabla_x^h \nabla_y^h u_{\text{true}}^n(i,j)\|^2 + \|\nabla_y^h \nabla_y^h u_{\text{true}}^n(i,j)\|^2 \right). \end{split}$$