

Schéma numérique décalé pour la simulation d'écoulements à bas nombre de Mach

CANUM 2024

May 29th, 2024

Esteban Coiffier (esteban.coiffier@cea.fr), Vincent Perrier, Jonathan Jung, Michael Ndjinga CEA DEN/ISAS/DM2S/STMF/LMEC SACLAY

Low Mach number flows : the continuous case

Low Mach number flows : the discrete case

Construction of a Low Mach number scheme

Results

Conclusions

Low-Mach number limit problem

For the sake of simplicity we start with Euler barotropic equations, defined in $\Omega \subset \mathbb{R}^d \times [0, T]$:

$$\begin{cases} \partial_{\tilde{t}}\tilde{\rho} + \nabla_{\tilde{x}} \cdot (\tilde{\rho}\tilde{\mathbf{u}}) = 0\\ \partial_{\tilde{t}}(\tilde{\rho}\tilde{\mathbf{u}}) + \nabla_{\tilde{x}} \cdot (\tilde{\rho}\tilde{\mathbf{u}} \otimes \tilde{\mathbf{u}}) + \frac{\nabla_{\tilde{x}}\tilde{\rho}}{\gamma \mathbf{M}^{2}} = 0 \end{cases}$$
(1)

with

- ρ is the density
- equation of state $p = f(\rho)$, p is the pressure
- u is the the velocity
- Let x_0 characteristic length, t_0 its characteristic time, ρ_0 characteristic density. $u_0 = x_0/t_0$ characteristic speed $c_0^2 = p'(\rho_0)$ characteristic sound velocity. The Mach number $\mathbf{M} := \frac{u_0}{c_0}$. (with $\gamma = \tilde{p}'(1)$):

\implies Singular limit

Low-Mach number staggered schemes - EC

Low Mach number flows : the continuous case

Low Mach number flows : the discrete case

Construction of a Low Mach number scheme

Results

Conclusions

4

The continuous case I

Let

- $\tau = \tilde{t} / \mathbf{M}$ acoustic time scale.
- Asymptotic expansion in Mach number **M**: $\varphi(x, t, \tau, \mathbf{M}) = \varphi(x, t, \tau)^{(0)} + \mathbf{M}\varphi(x, t, \tau)^{(1)} + \mathbf{M}^2\varphi(x, t, \tau)^{(2)} + \mathcal{O}(\mathbf{M}^3).$

We obtain ([JP22], [Mül98]):

$$\left\{ egin{array}{l} \partial_ au ilde
ho^{(1)} +
abla \cdot (ilde
ho^{(0)} ilde{\mathbf{u}}^{(0)}) = -rac{d}{d ilde{t}} ilde{
ho}^{(0)} \ \partial_ au (ilde{
ho}^{(0)} ilde{\mathbf{u}}^{(0)}) + ilde{c}^2 (ilde{
ho}^{(0)})
abla ilde{
ho}^{(1)} = 0 \end{array}
ight.$$

(2)

The continuous case II

In other words, if we let
$$\tilde{\mathbf{u}}^{(0)} = \tilde{\mathbf{u}}^{(0)}_{\Psi} + \tilde{\mathbf{u}}^{(0)}_{\varphi}$$

• $\nabla \times \tilde{\mathbf{u}}^{(0)}_{\varphi} = 0$
• $\nabla \cdot \tilde{\mathbf{u}}^{(0)}_{\Psi} = 0.$
 $\begin{pmatrix} \tilde{\rho} \\ \tilde{\mathbf{u}} \end{pmatrix} = \underbrace{\begin{pmatrix} \tilde{\rho}^{(0)} \\ \tilde{\mathbf{u}}^{(0)}_{\Psi} \end{pmatrix}(\tilde{x}, \tilde{t})}_{\text{incompressible part}} + \underbrace{\begin{pmatrix} \mathbf{M}\tilde{\rho}^{(1)} \\ \tilde{\mathbf{u}}^{(0)}_{\varphi} \end{pmatrix}(\tilde{x}, \tilde{t}, \frac{\tilde{t}}{\mathbf{M}})}_{\text{acoustic part}} + \begin{pmatrix} \mathcal{O}(\mathbf{M}^2) \\ \mathcal{O}(\mathbf{M}) \end{pmatrix}$

Strong convergence to incompressible limit if

$$ilde{\mathbf{u}}_0 = ilde{\mathbf{u}}_0^{(0)} + \mathcal{O}(M),
abla \cdot ilde{\mathbf{u}}_0^{(0)} = \mathbf{0} \quad ext{ and } \quad ilde{
ho}_0 = ilde{
ho}^{(0)} + \mathcal{O}(M^2), ilde{
ho}^{(0)} \in \mathbb{R}$$

Those conditions = "well-prepared" (in periodic boundary conditions,see [KM81], [Sch94] or [GM04] for explanation on linear model)

Low Mach number flows : the continuous case

Low Mach number flows : the discrete case

Construction of a Low Mach number scheme

Results

Conclusions

7

The discrete case I : collocated schemes

 ρ , **u** at the center of the cell Dependency on the mesh (see [DOR10] [Rie08] [Del10], [GN17])

- Godunov scheme : solving the Riemann problem at each interface introduce parasite acoustic waves even for well-prepared data [GM04]
- Roe scheme in quad : the stationary space is too small ([Del10][DOR10][Rie08])

Colocalized schemes : Corrections ?

Pressure centered scheme (Roe-Dellach) : consistent with wave system **but** admits checkerboard modes [Del09]

$$\begin{cases} \partial_{\tau}\tilde{\rho}_{i}^{(1)} + \frac{1}{|\tilde{\kappa}_{i}|}\sum_{j\in\nu(i)}|\tilde{\Gamma}_{i,j}|\left(\left\{\{\tilde{\rho}\tilde{\mathbf{u}}\}\right\}^{(0)}\cdot\mathbf{n}_{ij} - \frac{\tilde{a}_{ij}^{(0)}}{2}\left[[\tilde{\rho}^{(1)}]\right]\right) = -\frac{d}{d\tilde{t}}\tilde{\rho}^{(0)}\\ \partial_{\tau}(\tilde{\rho}\tilde{\mathbf{u}}^{(0)})_{i} + \frac{1}{|\tilde{\kappa}_{i}|}\sum_{j\in\nu(i)}|\tilde{\Gamma}_{i,j}|\left\{\{\frac{\tilde{p}^{(1)}}{\gamma}\}\right\}\mathbf{n}_{ij} = 0\end{cases}$$

Colocalised schemes : the not-so-mysterious triangle case

In triangles, better behaviour with respect to Low-Mach flows.

For all *i*, *j* **[u** · **n]**_{*i*,*j*} = 0. For each face (choosing an arbitrary orientation) we can correspond a unique value ⇐⇒ ∃! U_f ∈ ℝ^F, and (see [Nic92])

$$U_f = rot_h \Psi$$
 with $\Psi \in \mathbb{P}^1(\Omega)$

 $\textit{rot}_h \in \mathbb{R}^{V \times F}$ is a "discrete rotationnal"

Triangles : in each cell we can reconstruct a **unique** constant velocity vector from the face values (see [Gui09], [Nic92]) → this analysis does not stand in quads

The discrete case II : staggered schemes

 ρ at the center of the cell , ${\bf u}$ at the center of the face.

MAC first introduced for incompressible flows by [Har65]. Compared to its first apparition, recent explosion in the research of an "all-Mach" scheme (for example [HLN13b] [HKL14] [BHL22] [BLW08], [HLS21])

Staggered and de Rham complexes I

Staggered scheme seems to preserve continuous structures at the discrete level such as :

de Rham complexes, sequences of the type

$$0 \longrightarrow H^{1}(\Omega) \xrightarrow{\nabla} H(\mathit{rot}; \Omega) \xrightarrow{\mathit{rot}} H(\mathit{div}; \Omega) \xrightarrow{\mathit{div}} L^{2}(\Omega) \rightarrow 0$$

but discrete

Staggered and De Rham complexes II

Important byproducts of de Rham complexes :

Hodge decomposition

 $\mathbf{u}_h = \mathbf{u}_{\Psi} + \mathbf{u}_{\varphi}$

- Discrete grad, div duality, for some scalar product $(\nabla_h \rho, \mathbf{u}) = (\rho, -\nabla_h \cdot \mathbf{u})$
- if Ω is of trivial topology : exactness of complex. This propriety is equivalent to the surjectivity of ∇-(inf-sup stability)

Last 2 propreties seem important to prove convergence to incompressible schemes [HLS21]

A A A

Low Mach number flows : the continuous case

Low Mach number flows : the discrete case

Construction of a Low Mach number scheme

Results

Conclusions

Starting the other way around : from the wave system to Euler

Our "algorithm" to obtain low Mach scheme is the following :

1) Formally the low Mach number behaviour of a numerical scheme is encapsulated in the following wave system :

$$\begin{cases} \partial_{\tau} p + \frac{1}{\rho} div \mathbf{u} = \mathbf{0} \\ \partial_{\tau} \mathbf{u} + \kappa \nabla p = \mathbf{0} \\ p_{|\partial\Omega} = p_b \\ \mathbf{u} \cdot \mathbf{n}_{|\partial\Omega} = \mathbf{u}_b \cdot \mathbf{n} \end{cases}$$

2) To ensure those good properties ⇒ base discretization on Nédélec-Raviart-Thomas de Rham complex (for trivial topologies again)([EG04] or [Arn18] for abstract point of view): in 2D

$$\{0\} \xrightarrow{id} c \mathbb{Q}^{1}(\Omega) \xrightarrow{\nabla}^{\perp} \mathbb{R}\mathbb{T}^{1}(\Omega) \xrightarrow{\nabla}^{\cdot} d\mathbb{Q}^{0}(\Omega) \xrightarrow{0} 0$$

From FE to FV : the numerical scheme

Using a mass-lumping we obtain the following numerical scheme :

$$\begin{cases} |\mathcal{K}|\partial_{\tau}p_{\mathcal{K}} + \frac{1}{\rho}\sum_{\sigma \subset \partial \mathcal{K}} |\sigma|\varepsilon_{\mathcal{K}}(\sigma)\mathbf{u}_{\sigma} = \theta \frac{c}{2}\sum_{\sigma \subset \partial \mathcal{K}} |\sigma|\llbracket p \rrbracket_{\sigma} \\ |D_{\sigma}|\partial_{\tau}\mathbf{u}_{\sigma} + \kappa|\sigma|\llbracket p \rrbracket_{\sigma} = \theta \frac{c}{2} |\sigma|\llbracket \widetilde{\textit{divu}} \rrbracket_{\sigma} \\ \mathbf{u}_{\sigma} = \mathbf{u}_{b} \cdot \mathbf{n}_{\sigma} \ \forall \sigma \in \mathcal{F}^{\text{ext}} \\ p_{\mathcal{K}} = (p_{b})_{\mathcal{K}} \ \forall \mathcal{K} \in \mathcal{M}^{\text{ext}} \end{cases}$$

where |K| primal volume, $|D_{\sigma}|$ dual volume associated to a face σ , $|\sigma|$ length of the face, $\llbracket p \rrbracket_{\sigma} := p_{K} - p_{L}$ and $(\widetilde{divu})_{K} := \frac{1}{|\partial K|} \sum_{\sigma \subset \partial K} |\sigma| \varepsilon_{K}(\sigma) \mathbf{u}_{\sigma}$. $\theta = 0$ Euler implicit $\theta = 1$ in Euler explicit

<

Low Mach number flows : the continuous case

Low Mach number flows : the discrete case

Construction of a Low Mach number scheme

Results

Conclusions

17

Energy dissipation

Theorem

Dissipation of the following natural energy
$$\sum_{K \in \mathcal{M}} |K| \rho \kappa \frac{p_K^2}{2} + \sum_{\sigma \in \mathcal{F}^{int}} |D_{\sigma}| \frac{u_{\sigma}^2}{2}$$
.

- In Euler implicit time integration, unconditionally
- In Euler explicit under the following CFL condition

$$\frac{c\delta\tau \max(|\partial K|)}{\min(|K|,|D_{\sigma}|)} \leq \frac{1}{2+\nu_{max}}$$

where $\nu_{max} =$ 4 in quads, $\nu_{max} =$ 3 in triangles

Existence of long time limit I

Theorem

Let $\Omega \subset \mathbb{R}^3$ an open domain regular enough $\mathbf{u}_0, \mathbf{u}_b \in \mathbb{RT}^1(\Omega)$ such that $\int_{\partial\Omega} \mathbf{u}_b \cdot \mathbf{n} d\Gamma = 0$. Then we have the following Hodge-Decomposition

$$oldsymbol{u}_0=(oldsymbol{u}_0)_arphi+(oldsymbol{u}_0)_\Psi$$

where
$$div((u_0)_{\Psi}) = 0$$
, $(u_0)_{\Psi} \cdot \boldsymbol{n}_{|\partial\Omega} = \boldsymbol{u}_b \cdot \boldsymbol{n}_{|\partial\Omega}$

This comes "naturally" from the use of complexes

Existence of long time limit II

Using those dissipation properties we can prove the following

Theorem

Let

- $\bullet p^{\infty} = p_b$
- $\boldsymbol{u}^{\infty} = (\boldsymbol{u}_0)_{\Psi} \in \mathbb{RT}^1(\Omega)$ such that $div(\boldsymbol{u}^{\infty}_h) = 0$ and $\boldsymbol{u}^{\infty} \cdot \boldsymbol{n}_{|\partial\Omega} = \boldsymbol{u}_b \cdot \boldsymbol{n}_{|\partial\Omega}$

Then every solution built with the previous schemes converges in long time to this limit

Proof is based on the fact that $(p^{\infty}, \mathbf{u}^{\infty})$ is a stationnary solution of the discrete wave system.

$$div(\mathbf{u}^{\infty}) = \mathbf{0} \Rightarrow ec{\Delta}\mathbf{u}^{\infty} = \mathbf{0}$$

Numerical results I

C++ code Solverlab, results from simulation on cylinder with $n_r = 5$ and $n_{\theta} = 16$. $p_0 = 1.5$, $p_b = 2$, $\mathbf{u}_0 = (0,0)^t$, $u_b = (1,0)^t$

Figure 1: p^{∞}

Numerical results II

Figure 2: $div(\mathbf{u}^{\infty})$

Low Mach number flows : the continuous case

Low Mach number flows : the discrete case

Construction of a Low Mach number scheme

Results

Conclusions

Low-Mach number staggered schemes - EC

Conclusions and perspectives

Conclusions:

- Energy dissipation for Euler implicit and explicit time integrations
- Theoretical analysis of the convergence in long time limit
- Analysis is valid in quad and triangles
- We infer from our analysis that using staggered schemes do not imply automatically the precision at Low Mach (Euler explicit time integration : non-classical grad div stabilization needed in order to both obtain energy dissipation and preservation of stationnary states)

Perspectives:

 \rightarrow Extension of the scheme on Euler barotropic and full Euler

Conclusions and perspectives

Conclusions:

- Energy dissipation for Euler implicit and explicit time integrations
- Theoretical analysis of the convergence in long time limit
- Analysis is valid in quad and triangles
- We infer from our analysis that using staggered schemes do not imply automatically the precision at Low Mach (Euler explicit time integration : non-classical grad div stabilization needed in order to both obtain energy dissipation and preservation of stationnary states)

Perspectives:

 \rightarrow Extension of the scheme on Euler barotropic and full Euler

Questions?

Douglas N Arnold.

Finite element exterior calculus. SIAM, 2018.

- Aubin Brunel, Raphaèle Herbin, and Jean-Claude Latché.
 A staggered scheme for the compressible euler equations on general 3d meshes. arXiv preprint arXiv:2209.06474, 2022.
- Amy L Bauer, Raphaël Loubere, and Burton Wendroff. On stability of staggered schemes. *SIAM Journal on Numerical Analysis*, 46(2):996–1011, 2008.
- STÉPHANE Dellacherie.

Checkerboard modes and wave equation.

In Proceedings of ALGORITMY, volume 2009, pages 71-80, 2009.

Stéphane Dellacherie.

Analysis of godunov type schemes applied to the compressible euler system at low mach number.

Journal of Computational Physics, 229(4):978–1016, 2010.

Stéphane Dellacherie, Pascal Omnes, and Felix Rieper.

The influence of cell geometry on the godunov scheme applied to the linear wave equation.

Journal of Computational Physics, 229(14):5315–5338, 2010.

- Alexandre Ern and Jean-Luc Guermond. Theory and practice of finite elements, volume 159. Springer, 2004.
- Dionysis Grapsas, Raphaèle Herbin, Walid Kheriji, and Jean-Claude Latché. An unconditionally stable staggered pressure correction scheme for the compressible navier-stokes equations.

The SMAI journal of computational mathematics, 2:51–97, 2016.

Hervé Guillard and Angelo Murrone.

On the behavior of upwind schemes in the low mach number limit: Ii. godunov type schemes.

Computers & fluids, 33(4):655-675, 2004.

On the behaviour of upwind schemes in the low mach number limit: A review. *Handbook of Numerical Analysis*, 18:203–231, 2017.

Hervé Guillard.

On the behavior of upwind schemes in the low mach number limit. iv: P0 approximation on triangular and tetrahedral cells.

Computers & fluids, 38(10):1969–1972, 2009.

Hervé Guillard and Cécile Viozat.

On the behaviour of upwind schemes in the low mach number limit. *Computers & fluids*, 28(1):63–86, 1999.

Francis H Harlow.

Mac numerical calculation of time-dependent viscous incompressible flow of fluid with free surface.

Phys. Fluid, 8:12, 1965.

Raphaele Herbin, Walid Kheriji, and J-C Latché. On some implicit and semi-implicit staggered schemes for the shallow water and euler equations. ESAIM: Mathematical Modelling and Numerical Analysis, 48(6):1807–1857, 2014.

Raphaele Herbin, Jean-Claude Latché, and Trung Tan Nguyen.

Consistent explicit staggered schemes for compressible flows part i: the barotropic euler equations.

2013.

- Raphaele Herbin, Jean-Claude Latché, and Trung Tan Nguyen. Consistent explicit staggered schemes for compressible flows part ii: the euler equation. 2013.
- Raphaèle Herbin, J-C Latché, and Khaled Saleh.

Low mach number limit of some staggered schemes for compressible barotropic flows.

Mathematics of Computation, 90(329):1039–1087, 2021.

Jonathan Jung and Vincent Perrier.

Steady low mach number flows: identification of the spurious mode and filtering method.

Journal of Computational Physics, 468:111462, 2022.

Sergiu Klainerman and Andrew Majda.

Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids.

Communications on pure and applied Mathematics, 34(4):481–524, 1981.

Bernhard Müller.

Low-mach-number asymptotics of the navier-stokes equations.

Floating, Flowing, Flying: Pieter J. Zandbergen's Life as Innovator, Inspirator and Instigator in Numerical Fluid Dynamics, pages 97–109, 1998.

Roy A Nicolaides.

Direct discretization of planar div-curl problems.

SIAM Journal on Numerical Analysis, 29(1):32–56, 1992.

Felix Rieper.

Influence of cell geometry on the behaviour of the first-order roe scheme in the low mach number regime.

Finite Volumes for Complex Applications V, pages 625–632, 2008.

Steven Schochet.

Fast singular limits of hyperbolic pdes.

Journal of differential equations, 114(2):476–512, 1994.

V Selmin and Luca Formaggia.

Unified construction of finite element and finite volume discretizations for compressible flows.

International Journal for Numerical Methods in Engineering, 39(1):1–32, 1996.