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Low-Mach number limit problem

For the sake of simplicity we start with Euler barotropic equations, defined in
QCRIx 0, T

045+ Vi - (58) = 0

) Vb
0550 + V5 - (5 @ ) + IG’Z:O ™
5

with

B ) is the density
equation of state p = f(p), p is the pressure
u is the the velocity

Let xo characteristic length, t, its characteristic time, po characteristic density. uo = xo/f
characteristic speed ¢ = p’(po) characteristic sound velocity . The Mach number M := % (with

v =p1)):
= Singular limit
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Outline

Low Mach number flows : the continuous case
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The continuous case |

Let
® 7 = /M acoustic time scale.

B Asymptotic expansion in Mach number M:
o(x, 1,7, M) = o(x,1,7)O + My(x, t, 7)) + MPp(x, 1, 7)® + O(M®).

We obtain ([JP22], [M(il98]):

0.5 + v (70a©) = — 2 50
dt
O-(PO6) + B(F )V = 0
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The continuous case Il

In other words, if we let Gi(®) =

u Vxﬁff)zo

mv.id) =o.
5(0) . M5 .1 O(M3
) = < gg(})) )(X7 t) +< ﬁf(JO) > (X7 f,l\l;l)-i-( O((I\l’\ln)) >

~
incompressible part

Strong convergence to incompressible limit if

€35
N

u

[ =t 3xe}]

acoustic part

o= +OM), V-5 =0 and jo =9 +O(M?), 50 e R

Those conditions = "well-prepared" (in periodic boundary conditions,see [KM81],
[Sch94] or [GMO04] for explanation on linear model)
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Low Mach number flows : the discrete case
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The discrete case | : collocated schemes

p, u at the center of the cell
Dependency on the mesh (see [DOR10] [Rie08] [Del10], [GN17])

B Godunov scheme : solving the Riemann problem at each interface introduce parasite acoustic
waves even for well-prepared data [GMO04]

B Roe scheme in quad : the stationary space is too small ([Del10][DOR10][Rie08])
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Colocalized schemes : Corrections ?

Pressure centered scheme (Roe-Dellach) : consistent with wave system but admits
checkerboard modes [Del09]

20 .
R TUREEE S ({{pu}} -0 ) = -0

~ B
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\
Colocalised schemes : the not-so-mysterious triangle case \

In triangles, better behaviour with respect to Low-Mach flows.
® Foralli,j[u-n];; = 0. For each face (choosing an arbitrary orientation) we can correspond a
unique value <= 31U € RF, and (see [Nic92))
U =rotW with WeP'(Q)
rot, € RV*F is a "discrete rotationnal

B Triangles : in each cell we can reconstruct a unique constant velocity vector from the face values
(see [Gui09], [Nic92])— this analysis does not stand in quads
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The discrete case Il : staggered schemes

p at the center of the cell , u at the center of the face.

uy

£’ o Uy 2 dof for 2 components = "unisolvence"

MAC first introduced for incompressible flows by [Har65] .
Compared to its first apparition, recent explosion in the research of an "all-Mach"
scheme (for example [HLN13b] [HKL14] [BHL22] [BLWO08], [HLS21])
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Staggered and de Rham complexes |

Staggered scheme seems to preserve continuous structures at the discrete level such
as:
de Rham complexes, sequences of the type

0 — H'(Q) L H(rot; Q) 22 H(div; Q) L% 12(Q) — 0
but discrete
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Staggered and De Rham complexes Il

Important byproducts of de Rham complexes :
B Hodge decomposition

Up = Uy + Uy

® Discrete grad, div duality, for some scalar product (Vap,u) = (p, =V - u)

B f Q is of trivial topology : exactness of complex. This propriety is equivalent to the surjectivity of V-

(inf-sup stability)

Last 2 propreties seem important to prove convergence to incompressible schemes
[HLS21]
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Construction of a Low Mach number scheme
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Starting the other way around : from the wave system to Euler \
Our "algorithm" to obtain low Mach scheme is the following :

1) Formally the low Mach number behaviour of a numerical scheme is encapsulated in the following
wave system :

0-p+ 1;divu =0
o-u+kVp=0

Ploa = Po
U-Npg =Up-N

2) To ensure those good properties = base discretization on Nédélec-Raviart-Thomas de Rham
complex (for trivial topologies again)([EG04] or [Arn18] for abstract point of view): in 2D
: 1
{0} & c@'(Q) 5 RT'(Q) 2> dQ%(Q) > 0
T
] \ SN [ SR
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From FE to FV : the numerical scheme
Using a mass-lumping we obtain the following numerical scheme :

1 c
KIOpk + — > lolek(o)us =05 > lollp]s

ocCOK ocCOK
C —
|Dy|0-us + klo|[ple = 9§|a|[[d/vu]]g
U, =Up-n, Vo e FX
{ px = (Pp)k VK € M

where |K| primal volume, |D,;| dual volume associated to a face o, |o| length of the

— 1
face , [p] := Pk — P and (divu)x = KT > lolex(o)u,.
oCOK

6 = 0 Euler implicit # = 1 in Euler explicit
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Results

E Low-Mach number staggered schemes - EC

29/05/24



A\
Energy dissipation \

Theorem

P& 75
Dissipation of the following natural energy >, r, |K \pm?’( + D o it |DU|?".
B |n Euler implicit time integration, unconditionally

B |n Euler explicit under the following CFL condition

cdTmaz(|0K|) 1
min(|K|,|Ds|) ~ 2+ Vmaz

where Vimaz = 4 in quads, vma. = 3 in triangles
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Existence of long time limit |

Theorem
Let Q c R® an open domain regular enough ug, u, € RT'(Q) such that

/ up - ndl' = 0.Then we have the following Hodge-Decomposition
oQ

uo = (o), + (Uo)w
where diV((Uo)\u) =0, (Uo)\u . n|89 =Up- n|39

This comes "naturally" from the use of complexes
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Existence of long time limit Il

Using those dissipation properties we can prove the following

Theorem
Let
B p> =py

By = (u)y € RT'(Q) such that div(u;®) = 0 and u™ - njpg = Up - Njpg

Then every solution built with the previous schemes converges in long time to this limit

Proof is based on the fact that (p°°,u*) is a stationnary solution of the discrete wave
system.

div(u®) =0 = Au™ =0
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Numerical results |

C++ code Solverlab, results from simulation on cylinder with n, = 5 and ny = 16.
pPo=1.5,ppb =2, ug = (0,0)!, up = (1,0)"

Figure 1: p*™
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Numerical results Il
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Conclusions and perspectives

Conclusions:
B Energy dissipation for Euler implicit and explicit time integrations
B Theoretical analysis of the convergence in long time limit
B Analysis is valid in quad and triangles
||

We infer from our analysis that using staggered schemes do not imply automatically the precision at
Low Mach (Euler explicit time integration : non-classical grad div stabilization needed in order to
both obtain energy dissipation and preservation of stationnary states)

Perspectives:
— Extension of the scheme on Euler barotropic and full Euler
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Y.
Conclusions and perspectives

Conclusions:
B Energy dissipation for Euler implicit and explicit time integrations
B Theoretical analysis of the convergence in long time limit
B Analysis is valid in quad and triangles
||

We infer from our analysis that using staggered schemes do not imply automatically the precision at
Low Mach (Euler explicit time integration : non-classical grad div stabilization needed in order to
both obtain energy dissipation and preservation of stationnary states)

Perspectives:

— Extension of the scheme on Euler barotropic and full Euler

[ Questions? ]
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