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Low-Mach number limit problem
For the sake of simplicity we start with Euler barotropic equations, defined in
Ω ⊂ Rd × [0,T ]:  ∂t̃ ρ̃+∇x̃ · (ρ̃ũ) = 0

∂t̃(ρ̃ũ) +∇x̃ · (ρ̃ũ ⊗ ũ) +
∇x̃ p̃
γM2 = 0

(1)

with
■ ρ is the density

■ equation of state p = f (ρ), p is the pressure

■ u is the the velocity

■ Let x0 characteristic length, t0 its characteristic time, ρ0 characteristic density. u0 = x0/t0
characteristic speed c2

0 = p′(ρ0) characteristic sound velocity . The Mach number M :=
u0

c0
. (with

γ = p̃′(1)):

=⇒ Singular limit
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The continuous case I

Let
■ τ = t̃/M acoustic time scale.

■ Asymptotic expansion in Mach number M:
φ(x , t, τ,M) = φ(x , t, τ)(0) + Mφ(x , t, τ)(1) + M2φ(x , t, τ)(2) +O(M3).

We obtain ([JP22], [Mül98]): ∂τ ρ̃
(1) +∇ · (ρ̃(0)ũ(0)) = − d

dt̃
ρ̃(0)

∂τ (ρ̃
(0)ũ(0)) + c̃2(ρ̃(0))∇ρ̃(1) = 0

(2)
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The continuous case II

In other words, if we let ũ(0) = ũ(0)
Ψ + ũ(0)

φ

■ ∇× ũ(0)
φ = 0

■ ∇ · ũ(0)
Ψ = 0.(

ρ̃
ũ

)
=

(
ρ̃(0)

ũ(0)
Ψ

)
(x̃ , t̃)︸ ︷︷ ︸

incompressible part

+

(
Mρ̃(1)

ũ(0)
φ

)
(x̃ , t̃ ,

t̃
M
)︸ ︷︷ ︸

acoustic part

+

(
O(M2)
O(M)

)

Strong convergence to incompressible limit if

ũ0 = ũ(0)
0 +O(M),∇ · ũ(0)

0 = 0 and ρ̃0 = ρ̃(0) +O(M2), ρ̃(0) ∈ R

Those conditions = "well-prepared" (in periodic boundary conditions,see [KM81],
[Sch94] or [GM04] for explanation on linear model)
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The discrete case I : collocated schemes

ρ, u at the center of the cell
Dependency on the mesh (see [DOR10] [Rie08] [Del10], [GN17])

■ Godunov scheme : solving the Riemann problem at each interface introduce parasite acoustic
waves even for well-prepared data [GM04]

■ Roe scheme in quad : the stationary space is too small ([Del10][DOR10][Rie08])
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Colocalized schemes : Corrections ?

Pressure centered scheme (Roe-Dellach) : consistent with wave system but admits
checkerboard modes [Del09]

∂τ ρ̃i
(1) + 1

|K̃i |
∑

j∈ν(i) |Γ̃i,j |
({

{ρ̃u}
}(0) · nij −

ã(0)ij
2

[
[ρ̃(1)]

])
= − d

dt̃
ρ̃(0)

∂τ (ρ̃u(0))i +
1
|K̃i |
∑

j∈ν(i) |Γ̃i,j |
{
{ p̃(1)

γ }
}

nij = 0
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Colocalised schemes : the not-so-mysterious triangle case

In triangles, better behaviour with respect to Low-Mach flows.
■ For all i, j [[u · n ]]i,j = 0. For each face (choosing an arbitrary orientation) we can correspond a

unique value ⇐⇒ ∃!Uf ∈ RF , and (see [Nic92])

Uf = rothΨ with Ψ ∈ P1(Ω)

roth ∈ RV×F is a "discrete rotationnal"

■ Triangles : in each cell we can reconstruct a unique constant velocity vector from the face values
(see [Gui09], [Nic92])−→ this analysis does not stand in quads
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The discrete case II : staggered schemes

ρ at the center of the cell , u at the center of the face.

ux

uy

ρ
2 dof for 2 components ≡ "unisolvence"

MAC first introduced for incompressible flows by [Har65] .
Compared to its first apparition, recent explosion in the research of an "all-Mach"
scheme (for example [HLN13b] [HKL14] [BHL22] [BLW08], [HLS21])
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Staggered and de Rham complexes I

Staggered scheme seems to preserve continuous structures at the discrete level such
as :
de Rham complexes, sequences of the type

0 −→ H1(Ω)
∇−→ H(rot ; Ω) rot−→ H(div ; Ω) div−−→ L2(Ω) → 0

but discrete
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Staggered and De Rham complexes II

Important byproducts of de Rham complexes :
■ Hodge decomposition

uh = uΨ + uφ

■ Discrete grad, div duality, for some scalar product (∇hp,u) = (p,−∇h · u)

■ if Ω is of trivial topology : exactness of complex. This propriety is equivalent to the surjectivity of ∇·
(inf-sup stability)

Last 2 propreties seem important to prove convergence to incompressible schemes
[HLS21]
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Starting the other way around : from the wave system to Euler
Our "algorithm" to obtain low Mach scheme is the following :

1) Formally the low Mach number behaviour of a numerical scheme is encapsulated in the following
wave system : 

∂τp +
1
ρ

divu = 0

∂τu + κ∇p = 0
p|∂Ω = pb

u · n|∂Ω = ub · n

2) To ensure those good properties =⇒ base discretization on Nédélec-Raviart-Thomas de Rham
complex (for trivial topologies again)([EG04] or [Arn18] for abstract point of view): in 2D

{0} id−→ cQ1(Ω)
∇−→

⊥
RT1(Ω)

∇·−−→ dQ0(Ω)
0−→ 0
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From FE to FV : the numerical scheme

Using a mass-lumping we obtain the following numerical scheme :

|K |∂τpK +
1
ρ

∑
σ⊂∂K

|σ|εK (σ)uσ = θ
c
2

∑
σ⊂∂K

|σ|[[ p ]]σ

|Dσ|∂τuσ + κ|σ|[[ p ]]σ = θ
c
2
|σ|[[ d̃ivu ]]σ

uσ = ub · nσ ∀σ ∈ Fext

pK = (pb)K ∀K ∈ Mext

where |K | primal volume, |Dσ| dual volume associated to a face σ, |σ| length of the

face , [[ p ]]σ := pK − pL and (d̃ivu)K :=
1

|∂K |
∑
σ⊂∂K

|σ|εK (σ)uσ.

θ = 0 Euler implicit θ = 1 in Euler explicit
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Energy dissipation

Theorem

Dissipation of the following natural energy
∑

K⊂M |K |ρκp2
K

2
+
∑

σ⊂F int |Dσ|
u2
σ

2
.

■ In Euler implicit time integration, unconditionally

■ In Euler explicit under the following CFL condition

cδτmax(|∂K |)
min(|K |, |Dσ|)

≤ 1
2 + νmax

where νmax = 4 in quads, νmax = 3 in triangles
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Existence of long time limit I

Theorem
Let Ω ⊂ R3 an open domain regular enough u0,ub ∈ RT1(Ω) such that∫
∂Ω

ub · ndΓ = 0.Then we have the following Hodge-Decomposition

u0 = (u0)φ + (u0)Ψ

where div((u0)Ψ) = 0, (u0)Ψ · n|∂Ω = ub · n|∂Ω

This comes "naturally" from the use of complexes
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Existence of long time limit II

Using those dissipation properties we can prove the following

Theorem
Let

■ p∞ = pb

■ u∞ = (u0)Ψ ∈ RT1(Ω) such that div(u∞
h ) = 0 and u∞ · n|∂Ω = ub · n|∂Ω

Then every solution built with the previous schemes converges in long time to this limit

Proof is based on the fact that (p∞,u∞) is a stationnary solution of the discrete wave
system.

div(u∞) = 0 ⇏ ∆⃗u∞ = 0
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Numerical results I
C++ code Solverlab, results from simulation on cylinder with nr = 5 and nθ = 16.
p0 = 1.5, pb = 2, u0 = (0, 0)t , ub = (1, 0)t

Figure 1: p∞
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Numerical results II

Figure 2: div(u∞)
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Conclusions and perspectives

Conclusions:
■ Energy dissipation for Euler implicit and explicit time integrations

■ Theoretical analysis of the convergence in long time limit

■ Analysis is valid in quad and triangles

■ We infer from our analysis that using staggered schemes do not imply automatically the precision at
Low Mach (Euler explicit time integration : non-classical grad div stabilization needed in order to
both obtain energy dissipation and preservation of stationnary states)

Perspectives:
→ Extension of the scheme on Euler barotropic and full Euler

Questions?
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