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The model
Explanation and motivation

Let l ∈ Ò+, σ ≥ 0 the logistic parameter, d > 0 the diffusion rate,
and γ the motility function, positive and decreasing.

PDE of Keller-Segel type: cross-diffusion and logistic
reaction, [KS71; WX21].

∂tu = ∆(γ (v)u) + σu(1 − u), (x, t) ∈ (0, l) ×Ò∗
+

∂tv = d∆v + u − v, (x, t) ∈ (0, l) ×Ò∗
+

∂xu(x, t) = 0, ∂xv(x, t) = 0, (x, t) ∈ {0, l} ×Ò∗
+

(1)

Where u and v represent cells concentration and chemical
concentration, respectively.
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The model
Precision

Study of the stationary states to understand the longtime
behavior of solutions of the ‘K-S equation’ (1).

Stationary equation

∆(γ (v)u) + σu(1 − u) = 0, x ∈ (0, l)

d∆v + u − v = 0, x ∈ (0, l)

∂xu(x) = 0, ∂xv(x) = 0, x ∈ {0, l}

(2)

Remark: For all σ , (1, 1) is a solution of (2).
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The model
Use of Fourier Series

We can look for solutions of the stationary problem (2) on the
form:

u(x) = u0 + 2
+∞∑
k=1

uk cos

(
kπ
l x

)
and v(x) = v0 + 2

+∞∑
k=1

vk cos

(
kπ
l x

)
.

Figure: Geometric justification
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The model

Let u = (u0, u1, . . . , uk, . . . ) = (Fk(u))k∈Î, v = (Fk(v))k∈Î and
γ (v) = (Fk(γ ◦ v))k∈Î.

With the discrete convolution and the Laplacian in 1D,
∆ = diag

(
0,−

(
π
l
)2
,−

( 2π
l
)2
, . . . ,−

( kπ
l
)2
, . . .

)
, we have:

Fourier Sequences Equation
∆ (γ (v) ∗ u) + σu ∗ (1 − u) = 0

d∆v + u − v = 0
(3)

It can be written as follows F(u, v) = (0, 0).
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Approximate solutions
I) Newton’s Method

We apply the well-known Newton’s Method !

Firstly, we calculate item-by-item the derivative of F in U = (u, v) :

DF(u, v) =
©«
∆γ (v) + σ (1 − 2u) ∆γ′(v) ∗ u

1 d∆ − 1

ª®®®®¬
. (4)

Fast method: With U = (u, v), Uk+1 = Uk − [DF(Uk)]−1F(Uk) with U0
a perturbation of (1, 1). We call Ufinal the last iteration we choose.
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Approximate solutions
I) Newton’s Method. Perturbation

Theorem on the instability of the trivial state
Assume we have the following conditions satisfied

(γ (1) + γ′(1) + dσ)2 − 4dσγ (1) ≥ 0

γ (1) + γ′(1) + dσ < 0
(5)

Then the stationary state (1, 1) is unstable. And we know the
direction (in ℓ 1

ν) of instability.
Otherwise, it is linearly stable.
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Approximate solutions
I) Newton’s Method. Illustration
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Figure 2: σ = 0.053, γ (x) = 1
1 + x9 , d = 1, and l = 3π
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Approximate solutions
II) A good guess. From [WX21].
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Figure 3: σ = 0.6, γ (x) = 1
1 + exp(9(x − 1)) , d = 1, and l = 4π
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Theoretical solutions
The theoretical framework

To calculate, we see our sequences in the Banach algebra ℓ 1
ν

which is the set that contains the sequences u such that :

∥u∥ν := |u0 | + 2
+∞∑
k=1

|uk |νk < +∞, ν ≥ 1.

We compute F(u, v) ∈ (ℓ 1
ν)2, and DF(u, v) ∈ L((ℓ 1

ν)2).

BUT . . .

Reminder: (ℓ 1
ν, ∗, ∥ · ∥ν) is a Banach algebra means, (ℓ 1

ν, ∥ · ∥ν) is a
complete normed space and (ℓ 1

ν, ∗, +) is an associative algebra,
with ∗ satisfying ∥u ∗ v∥ν ≤ ∥u∥ν ∥v∥ν . The identity element is 1.
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Theoretical solutions
Motivation and approximate inverse

I do not know how to literally inverse this operator . . .
In other words, the calculation of [DF(U)]−1 in the " Newton’s
method" earlier is rigorously false.

To overcome this obstacle we use a fixed-point method adapted
from the Newton’s one on the functional U ↦→ U − AF(U) with A an
approximate inverse of DF(U) in L((ℓ 1

ν)2), U a
finite approximate solution.

With A well-chosen, injective, numerically calculable and
satisfying the following assertions.
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Theoretical solutions
The Theoretical Tool

Newton-Kantorovitch Theorem
Let ν > 1, assume there exist Y, Z1, Z2 and r∗ > 0 satisfying :

∥AF(U)∥ν ≤ Y (6a)
∥I − ADF(U)∥ν ≤ Z1 (6b)
∥AD2F(U)∥ν ≤ Z2, [U ∈ B(U, r∗) (6c)

Z1 < 1 (7a)
2YZ2 < (1 − Z1)2 (7b)

Then for all r such that

1 − Z1 −
√
(1 − Z1)2 − 2YZ2

Z2
≤ r < min(r∗, 1 − Z1

Z2
) , (8)

There exist a unique solution U∗ ∈ Bν (U, r) of the ‘Fourier
equation’ (3). The functions (u∗, v∗) described by the Fourier
sequences (u∗, v∗) are solutions of the stationary problem (2).
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Approximated inverse of the differential

According to [Bre22], we choose

A =
©«

A11

w11∆−1
A12

w12∆−1

A21

w21∆−1
A22

w22∆−1

ª®®®¬ , (9)

with(
w11 w12

w21 w22

)
, the inverse of

(
γ (v̄) γ′ (v̄)ū

0 d

)
in ℓ 1

ν

and Aij are from the inverse of a finite dimensional projection of
DF(ū, v̄).

Here, the choice of A is balanced between what can be known by
approximation (the information given by the computer) and
what must be known by estimation (the information provided by
the mathematician).
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How to manage nonlinearities
Guiding ideas

In the literature [Des+19; Bre22; MPW20; WX21], we are interested
in several types of γ : polynomial, power series, rational fraction.
We want to manage all these cases. In order to obtain the
inequalities of the ‘N-K Theorem’ (5) we need to answer the
following questions:

• Given an analytical expression of γ, can we find a “good”
approximation of γ (v̄), called γ (v̄), in ℓ 1

ν for any v̄ finite?

• Given γ (v̄), can we estimate the error ∥γ (v̄) − γ (v̄)∥ν? Can we
bound the value ∥γ (v)∥ν for v ∈ Bν (v̄, r)?

Two ideas :

⋆ Taylor Expansion
⋆ Neumann series
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How to manage nonlinearities
Toolbox

Let x, y ∈ ℓ 1
ν . Assume we have x and y approximations of x and y

with the corresponding errors εx and εy, i.e. ∥x − x∥ν ≤ εx and
∥y − y∥ν ≤ εy. Let us describe the common operations

Op. Approximation Bounded Error

x + y x + y = x + y εx+y = εx + εy

x ∗ y x ∗ y = x ∗ y εx∗y = ∥x∥νεy + ∥y∥νεx + εxεy

x−1
x−1 = a ∈ ℓ 1

ν s.t.

∥x ∗ a − 1∥ν + ∥a∥νεx < 1
εx−1 = ∥a∥ν

∥x ∗ a − 1∥ν + ∥a∥νεx

1 − ∥x ∗ a − 1∥ν − ∥a∥νεx
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How to manage nonlinearities
Use of the Toolbox and Taylor Expansion

Let v̄ ∈ ℓ 1
ν finite (i.e. v̄ = v̄, εv̄ = 0). Let v ∈ Bν (v̄, r), we can see v as

v = v̄ and εv = r.
Let f be an entire function, f (x) = ∑+∞

k=0 akxk.

Approximation: f (v̄) =
K−1∑
k=0

akv̄∗k

Error bound: εf (v̄) =
∥v̄∥K

ν

K! sup
z∈[0,v̄]

∥f (K) (z)∥ν

Local bound: ∥f (v)∥ν ≤ ∥f (v̄)∥ν + εf (v̄) + |f ′ | (∥v̄∥ν + r)r

With such tools, we can manage any product and division of any
power series or polynomials!

NB: |g| (x) =
+∞∑
k=0

|bk |xk where g(x) =
+∞∑
k=0

bkxk
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How to manage nonlinearities
Examples

γ (x) 1
1 + x9 1 + exp(9(x − 1))

γ (v̄) (1 + v̄∗9)−1 := a 1 +∑K−1
k=0

9k

k! (v̄ − 1)∗k

εγ (v̄) ∥a∥ν
∥a ∗ (1 + v̄∗9) − 1∥ν

1 − ∥a ∗ (1 + v̄∗9) − 1∥ν
9K ∥v̄ − 1∥K

ν

K! exp(9∥v̄ − 1∥ν)

And the local bounds:

∥(1 + v∗9)−1∥ν ≤ ∥a∥ν + ∥a∥ν
∥a ∗ (1 + v̄∗9) − 1∥ν + ∥a∥νr

1 − ∥a ∗ (1 + v̄∗9) − 1∥ν − ∥a∥νr

∥1 + exp(9(v − 1))∥ν ≤ ∥γ (v̄)∥ν + εγ (v̄) + 9 exp(9(∥v̄ − 1∥ν + r))r
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What to keep in mind when calculating by hand
A quick parenthesis - The example of Y

We have to express all the bounds with just what the computer
can know.

F(U) =
©«
∆(γ (v̄) ∗ ū) + σū ∗ (1 − ū)

d∆v̄ + ū − v̄

ª®®®®¬
,

Y =
������AF(U)

������
ν︸     ︷︷     ︸

finite part

+

outcome of the operation on the rests︷                                           ︸︸                                           ︷
(
����A11∆

����
ν
+
����A21∆

����
ν
) | |ū| |ν × εγ (v̄)︸︷︷︸

error on γ

.

For more details look at [BP23].
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Results
Summary of the method

Get a numerical approximation:

• Newton’s Method applied to a perturbation of the trivial
state

• A good guess from literature
• Numerical continuation based on the Bifurcation Theory -

not shown here, but in [BP23]

Algorithm to check numerical approximation:

1. Given a point (ū, v̄) finite.
2. Build the object A from DF(U) using the toolbox.
3. Compute Y, Z1, Z2 from (6a-c)
4. Are (7a-b), (8) satisfied? Conclude.
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2. Build the object A from DF(U) using the toolbox.
3. Compute Y, Z1, Z2 from (6a-c)

4. Are (7a-b), (8) satisfied? Conclude.

19 26



Results
Summary of the method

Get a numerical approximation:
• Newton’s Method applied to a perturbation of the trivial

state
• A good guess from literature
• Numerical continuation based on the Bifurcation Theory -

not shown here, but in [BP23]

Algorithm to check numerical approximation:
1. Given a point (ū, v̄) finite.
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Results

Theorem (Validation of Figure 2)

Let σ = 0.053, d = 1, l = 3π and γ (x) = 1
1 + x9 . Let (ū, v̄) the

functions described in Figure 2. There exists a smooth steady
states (u, v) of the ‘K-S equation’ (1),
such that sup

[0,l]
|u − ū| + sup

[0,l]
|v − v̄ | ≤ 2.5199 × 10−8.

Let N = 100, ν = 1.0001 and r∗ = 1 × 10−6. With the toolbox and
some calculations (made by hand and by the computer with
Matlab and intlab). We have Y = 2.4052 × 10−8, Z1 = 3.1193 × 10−2

and Z2 = 3.6099 × 104. They satisfy the hypothesis of the ‘N-K
Theorem’. We have the existence and uniqueness of (u, v) with
r = 2.5199 × 10−8.
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Results

Theorem (Validation of Figure 3)

Let σ = 0.6, d = 1, l = 4π and γ (x) = 1
1 + exp(9(x − 1)) . Let (ū, v̄) the

functions described in Figure 3. There exists a smooth steady
states (u, v) of (1),
such that sup

[0,l]
|u − ū| + sup

[0,l]
|v − v̄ | ≤ 1.6956 × 10−12.

This result corroborates with [WX21]. It affirms the existence of
theoretical solution of their numerical solution.

Let N = 100, ν = 1.0001 and r∗ = 1 × 10−6. With the toolbox and
some calculations (made by hand and by the computer with
Matlab and intlab). We have Y = 1.5327 × 10−12,
Z1 = 2.4338 × 10−2 and Z2 = 6.4843 × 102. They satisfy the
hypothesis of the ‘N-K Theorem’. We have the existence and
uniqueness of (u, v) with r = 1.6956 × 10−12.

21 26



Conclusion

⋆ The computer assisted proof method is consistent and
efficient. We have theorems of existence of solutions to the
stationary problem (2). And a (very) close approximation of
solution.

⋆ We can systematise the process of obtaining a solution. see
[BP23]

⋆ We have developed (and are developing) a technique, a
toolbox, to manage non-polynomial terms.
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Outlook

⋆ Willingness to understand the dynamics behind the stationary
states. Study the stability of the solutions. - work in progress

⋆ Gain speed in all calculations. Develop the code, to improve
performance and enable increasingly complex operations.

⋆ All this is being worked on with Olivier Hénot and Maxime
Breden.
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Thanks for your attention!
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