Local density interpolation applied to boundary integral methods

Dongchen He

Supervisors: Aline Lefebvre-Lepot, Luiz M. Faria

Institute: POEMS, ENSTA

CANUM 2024 May 30, 2024

Introduction

(a) Euglenoid algae swimming by deforming its shape.

(b) Example of droplet production in microfluidics

Figure: Boundary integral equations (BIE) applied to deforming surfaces

Advantage:

- Less dimension, easier to mesh;
- Directly applicable to unbounded domains.

2/13

Boundary integral equations

General formulation of elliptic equations

$$\begin{cases} \mathcal{L}u(\textbf{\textit{r}}) = 0 & \text{for } \textbf{\textit{r}} \in \Omega \text{ or } \mathbb{R}^d \backslash \overline{\Omega}, \\ \text{Boundary condition} & \text{for } \textbf{\textit{x}} \in \Gamma := \partial \Omega, \\ \text{Radiation condition at infinity} & \text{if } \textbf{\textit{r}} \in \mathbb{R}^d \backslash \overline{\Omega}, \end{cases}$$

Examples

	2-d Laplace	3-d Helmholtz
\mathcal{L}	$-\Delta$	$-\Delta - k^2$
Green's function	$G(\mathbf{x}, \mathbf{y}) = \frac{\log \mathbf{x} - \mathbf{y} }{2\pi}$	$G(\mathbf{x}, \mathbf{y}) = \frac{e^{i\mathbf{k} \mathbf{x} - \mathbf{y} }}{4\pi \mathbf{x} - \mathbf{y} }$
Boundary condition	$\gamma_0 u = u; \gamma_1 u = \partial_n u$	$\gamma_0 u = u; \gamma_1 u = \partial_n u$
Radiation condition	$u(\mathbf{r}) = O(\log \mathbf{r})$	$\partial_n u - iku(\mathbf{r}) = o(\mathbf{r} ^{-1})$

Boundary integral equations

Let G be the Green's function associated with \mathcal{L} .

• Ansatz: for $\mathbf{r} \in \Omega$ or $\mathbb{R}^d \backslash \overline{\Omega}$

$$u(\mathbf{r}) = \alpha \int_{\Gamma} \gamma_{1,\mathbf{y}} G(\mathbf{r}, \mathbf{y}) \varphi(\mathbf{y}) ds_{\mathbf{y}} - \beta \int_{\Gamma} \gamma_{0,\mathbf{y}} G(\mathbf{r}, \mathbf{y}) \varphi(\mathbf{y}) ds_{\mathbf{y}};$$

• Take the trace γ_0 on both sides we have: for $\mathbf{x} \in \Gamma$

$$u(\mathbf{x}) = \pm \alpha \frac{\varphi(\mathbf{x})}{2} + \alpha \int_{\Gamma} \gamma_{1,\mathbf{y}} G(\mathbf{x},\mathbf{y}) \varphi(\mathbf{y}) ds_{\mathbf{y}} - \beta \int_{\Gamma} \gamma_{0,\mathbf{y}} G(\mathbf{x},\mathbf{y}) \varphi(\mathbf{y}) ds_{\mathbf{y}};$$

• Integral operators: for $x \in \Gamma$

Single-layer:
$$S[\varphi](\mathbf{x}) := \int_{\Gamma} \gamma_{0,\mathbf{y}} G(\mathbf{x},\mathbf{y}) \varphi(\mathbf{y}) \mathrm{d}s(\mathbf{y}),$$

Double-layer: $K[\varphi](\mathbf{x}) := \text{p.v.} \int_{\Gamma} \gamma_{1,\mathbf{y}} G(\mathbf{x},\mathbf{y}) \varphi(\mathbf{y}) \mathrm{d}s(\mathbf{y}).$

Difficulty: *singular* integrals on surfaces.

Nyström method

Target: approach the integral

$$\alpha K[\varphi](\mathbf{x}) - \beta S[\varphi](\mathbf{x}) = \int_{\Gamma} (\alpha \gamma_{1,\mathbf{y}} G(\mathbf{x},\mathbf{y}) \varphi(\mathbf{y}) - \beta G(\mathbf{x},\mathbf{y}) \varphi(\mathbf{y})) ds_{\mathbf{y}}$$

by nodal values of φ at $\mathbf{y}_1, \dots, \mathbf{y}_N \in \Gamma$. If regular

$$\alpha K[\varphi](\mathbf{x}) - \beta S[\varphi](\mathbf{x}) \approx \sum_{i=1}^{N} (\alpha \gamma_1 G(\mathbf{x}, \mathbf{y}_i) - \beta G(\mathbf{x}, \mathbf{y}_i)) \varphi(\mathbf{y}_i) w_i.$$

Needs correction near x.

Local density interpolation method (DIM)

Figure: Using Green's identity, transport the integral to a surface farther away from the source point.

Construct a domain Σ such that $\tau \subset \partial \Sigma$, and a function Φ satisfying

$$\begin{cases} \mathcal{L}\Phi = 0, & \text{in } \Sigma; \\ \gamma_0 \Phi = \alpha \varphi, & \text{on } \tau; \\ \gamma_1 \Phi = \beta \varphi, & \text{on } \tau, \end{cases} \tag{1}$$

so that

$$\frac{\varphi(\mathbf{x})}{2} \mathbf{1}_{\mathbf{x} \in \tau} + \int_{\tau} \left(\alpha \gamma_{1,\mathbf{y}} G(\mathbf{x}, \mathbf{y}) \varphi(\mathbf{y}) - \beta G(\mathbf{x}, \mathbf{y}) \varphi(\mathbf{y}) \right) ds_{\mathbf{y}}
= \int_{\tau^{c}} \left(\gamma_{1,\mathbf{y}} G(\mathbf{x}, \mathbf{y}) \Phi(\mathbf{y}) - G(\mathbf{x}, \mathbf{y}) \gamma_{1} \Phi(\mathbf{y}) \right) ds_{\mathbf{y}}.$$

Error analysis

With the nodal values on τ , we construct Φ as follows:

$$\varphi \xrightarrow[E_{\tau}^{\mathsf{interpolation}}]{\mathcal{\tilde{G}}} \xrightarrow[\varphi]{\mathsf{extension}} \widetilde{\Phi} \xrightarrow[E_{\tau^c}]{\mathsf{quadrature}} Q_{\tau^c} \big(\widetilde{\Phi}\big).$$

$$\begin{split} E_{\tau} &\leq E_{\tau}^{\mathsf{interp}} + E_{\tau^c}^{\mathsf{quad}}, \\ E_{\tau}^{\mathsf{interp}} &\lesssim |\tau| \|\varphi - \tilde{\varphi}\|_{L_{\tau}^{\infty}}, \\ E_{\tau^c}^{\mathsf{quad}} &\to \mathsf{dependent} \ \mathsf{on} \ \mathsf{dist}(\boldsymbol{x}, \tau^c). \end{split}$$

Construction using source points

$$\widetilde{\Phi}(\mathbf{r}) := \sum_{\ell=1}^{L} G(\mathbf{r}; \mathbf{z}_{\ell}) c_{\ell}.$$

$$\gamma_0 \widetilde{\Phi}(\mathbf{y}_j) = \alpha \varphi(\mathbf{y}_j),$$

$$\gamma_1 \widetilde{\Phi}(\mathbf{y}_j) = \beta \varphi(\mathbf{y}_j).$$

x: pre-selected source points (z_{ℓ}) , \cdot : nodes on the target patch (y_{ℓ}) .

Figure: Construction of local density interpolant using source points.

Problem: rigorous estimate of $\|\varphi - \tilde{\varphi}\|_{L^{\infty}_{\tau}}$.

Numeric test

Test identity:

$$\int_{\Gamma} (\partial_n G(\mathbf{y}, \mathbf{x}_0) G(\mathbf{y}, \mathbf{x}_c) - G(\mathbf{y}, \mathbf{x}_0) \partial_n G(\mathbf{y}, \mathbf{x}_c)) ds_{\mathbf{y}} = G(\mathbf{x}_0, \mathbf{x}_c)/2$$

- N: number of patches;
- P: number of Gauss-Legendre nodes on each patch.

Numeric test

Expected error: $O(N^{-(2P-1)} + \varepsilon(P)N^{-1})$

Semi-analytic construction

In the case of 2-d Laplace's equation, (1) becomes

$$\begin{cases} \Delta \Phi = 0, & \text{in } \Sigma; \\ \Phi = \alpha \varphi, & \text{on } \tau; \\ \partial_{\mathbf{n}} \Phi = \beta \varphi, & \text{on } \tau. \end{cases}$$

We search $\Phi = \text{Re}(f)$, where f is holomorphic in Σ satisfying

$$\begin{cases} \operatorname{Re}(f) = \alpha \varphi & \text{on } \tau; \\ \operatorname{Im}(\partial_s f) = \beta \varphi & \text{on } \tau, \end{cases}$$

which gives the solution

$$f = \alpha \hat{\varphi} + i\beta \int \hat{\varphi} \mathrm{d}s,$$

where $\hat{\varphi}$ is the analytic extension of φ .

Numeric test

Expected error: $O(N^{-(2P-1)} + \varepsilon(P)N^{-1})$

Conclusion

Local density interpolation: correcting singular integrals with Green's identity.

	Source points	Semi-analytic
Error estimate	hard	simple
Generalization to other equations	simple	hard

Table: Comparison of two approaches to constructing the interpolant.

13 / 13