Low to high order finite element resolution for elliptic problems in the presence of a Dirac source term

Silvia Bertoluzza¹, Christophe Prud'homme², Thomas Saigre², Marcela Szopos³

¹IMATI CNR, Pavia, Italy

²Institut de Recherche Mathématique Avancée, UMR 7501 Université de Strasbourg et CNRS ³Université Paris Cité, CNRS, MAP5, E-75006 Paris, France

> Congrès d'Analyse Numérique 2024 28th May 2024

Elliptic problem with Dirac source term

muoduction	Numerical resolution			
Context Mode				
Conton	-			
Contex				
			с <u>на н</u>	
	Previous work ¹ : reduced order m	odeling of heat trai	nsfer within the human	eyeball,
	in 3D focusing on studying the	consitivity of tompo	rature outputs to mod	
	in 5D, locusing on studying the s	sensitivity of tempe	rature outputs to mou	CI

parameters.

- Problem of the form −∇ · (k∇u) = f, with various boundary conditions, with an output of interest s = ℓ(u) := ⟨δ_O, u⟩.
- Dirac possibly on the border of the domain,
- Applications in various domains (accoustic, elasticity, etc.).

¹Thomas Saigre et al. "Model order reduction and sensitivity analysis for complex heat transfer simulations inside the human eyeball". Minor revision in IJNMBE. Dec. 2023.

Introduction	Numerical resolution	Error analysis	Conclusion	References
Context Model description				

Reduced basis method

In the context of certified reduced basis method (RBM), to recover **quadratic convergence** in the output of the reduced solution, we need to compute the solution of the dual problem¹: find $\psi(\mu) \in H^1(\Omega)$ such that

$$a(u,\psi(\mu);\mu)=-\ell(u)\quad \forall u\in H^1_0(\Omega)$$

Issue: the functionnal $\ell: u \mapsto \langle \delta_O, u \rangle$ is not well defined in H^1 , so the usual theory (Lax-Milgram, results of minimization) does not apply.

Figure 1: Convergence of the errors on the field and the output on point *O*, using the dual problem.

¹ Prud'homme et al. "Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods". In: *Journal of Fluids Engineering* (2001)

Thomas Saigre

Elliptic problem with Dirac source term

Introduction		Conclusion	References
Context Model description			

Description of the benchmark problem

Let $X_0 = (x_0, y_0)$ be a point in a domain $\Omega \subset \mathbb{R}^2$. We vary the position of X_0 . We consider the following elliptic problem:

 $\begin{cases} -\Delta u = \delta_{\mathbf{X}_0} & \text{in } \Omega \\ + \text{ boundary conditions on } \partial \Omega \end{cases}$

- Dirichlet boundary conditions: u = 0 on $\partial \Omega$,
- ▶ Neumann boundary conditions: $\partial_n u = 0$ on $\partial \Omega$,
- Robin boundary conditions: $\partial_n u + \mu u = g$ on $\partial \Omega$,
- Mixed boundary conditions, on Γ_{left} and Γ_{right} .

Figure 2: Description of the domain Ω .

Ir	itroduction	Numerical resolution	Error analysis	Conclusion	References
		State of the art			

Computation of the error

Convergence theorem [Nitsche and Schatz 1974]

Let $\Omega_0 \subsetneq \Omega_1(\subsetneq \Omega)$, both not containing the singularity. If the solution u_h is regular enough in Ω_1 , then the solution is converging at the order k for the norm $\|\cdot\|_{H^1(\Omega_0)}$.

Convergence theorem [Bertoluzza et al. 2018]

The \mathbb{P}_k -finite element method converges at the order k on a domain $\Omega_0 \subsetneq \Omega$ not containing the singularity.

- Treated in theory for Dirichet boundary conditions.
- The error is computed on points that are « far » from the singularity.
- Domain considered: $\Omega_0 = \Omega \setminus B(X_0, r)$.

Introduction		Conclusion	References
	State of the art		
Charles of the	a sub-		

State of the art

- The solution of the problem is not regular,
- Even if the problem is not well defined, we can write the discret problem with the finite element method.
- First result²: for $p \ge 0$,

$$\|u-u_h\|_{H^1(\Omega_0)} \leq C(\Omega_0,\Omega_1,\Omega) \left(h^k \|u\|_{H^{k-1}(\Omega_1)} + \|u-u_h\|_{H^{-p}(\Omega_1)}\right)$$

Improved by Bertoluzza et al. 2018³:

$$\|u-u_h\|_{H^1(\Omega_0)} \leqslant C(\Omega_0,\Omega_1,\Omega)h^k\sqrt{|\log(h)|}$$

²Nitsche et al. "Interior estimates for Ritz-Galerkin methods" (1974)

³Bertoluzza et al., "Local error estimates of the finite element method for an elliptic problem with a Dirac source term", Numerical Methods for Partial Differential Equations (2018)

Thomas Saigre

	Numerical resolution	Conclusion	References
Reference solution			

Reference solution

Green function provides the reference solution

The *Green function* $G: \Omega \to \mathbb{R}$ defined by

$$G(x,y) = -rac{1}{2\pi} \log \left(\sqrt{(x-x_0)^2 + (y-y_0)^2}
ight)$$

satisfies $-\Delta G = \delta_{\mathbf{X}_0}$ in Ω .

Numerical resolution	Conclusion	References
Numerical resolution First results		

Example of solution

-

Order	Ndof
\mathbb{P}_1	20,614
\mathbb{P}_2	82,400
\mathbb{P}_3	$1.85\cdot 10^5$
\mathbb{P}_4	$3.29\cdot 10^5$
\mathbb{P}_{5}	$5.15\cdot 10^5$
\mathbb{P}_6	$7.41\cdot 10^5$

Table 1: Number of degrees of freedom, h = 0.0125.

(a) Numerical solution u_h .

(b) Error on the numerical solution u_h compared to the exact solution *G*.

Figure 4: Solution with order \mathbb{P}_1 , and h = 0.0125.

Convergence of the error, for the Dirichet problem⁴

Figure 5: Error $L^2(\Omega_0)$ (r = 0.2). Results from literature in plain lines, present work dashed lines.

⁴Bertoluzza et al., "Local error estimates of the finite element method for an elliptic problem with a Dirac source term", Numerical Methods for Partial Differential Equations (2018)

Thomas Saigre

Elliptic problem with Dirac source term

Convergence of the error, for the Dirichet problem⁴

h-size

Figure 5: Error $H^1(\Omega_0)$ (r = 0.2). Results from literature in plain lines, present work dashed lines.

⁴Bertoluzza et al., "Local error estimates of the finite element method for an elliptic problem with a Dirac source term", Numerical Methods for Partial Differential Equations (2018)

Thomas Saigre

Elliptic problem with Dirac source term

Back to theoretical estimates

- ▶ Between Ω_0 and Ω_1 , there should be *N* layers of elements, where *N* depends on the method, and increases with the order of discretization.
- Heuristically: 1 layer per order of discretization.

Q: Is the theory sharp or pessimistic?

- The mesh size h is fixed (0.0125 and 0.00625)
- We study of the evolution of the error with the radius r.

- The error is degraded when $r \leq 2h$.
- Independent of the order of discretization, up to the constants in the estimate.

Figure 6: Dot marks: h = 0.0125, triangle marks: h = 0.00625.

The error is degraded when $r \leq 2h$.

Independent of the order of discretization, up to the constants in the estimate.

Q: Is the theory sharp or pessimistic?

Figure 6: Dot marks: h = 0.0125, triangle marks: h = 0.00625.

Figure 6: Dot marks: h = 0.0125, triangle marks: h = 0.00625.

The error is degraded when $r \leq 2h$.

- Independent of the order of discretization, up to the constants in the estimate.
- Q: Is the theory sharp or pessimistic? A: Pessimistic

Impact of the singularity position on the error

- The singularity moves on the y-axis, from the center of the domain to the border.
- Error estimate⁵ on the border $\partial \Omega$:

 $\|u-u_h\|_{H^1(\Omega_0)}\leqslant C$

Q: How to account for Dirichet boudary condition and the presence of the Dirac source term on the boundary at the same time ?

⁵Silvia Bertoluzza et al. "Local error estimates of the finite element method for an elliptic problem with a Dirac source term". In: *Numerical Methods for Partial Differential Equations* 34.1 (2018), pp. 97–120

Thomas Saigre

Impact of the singularity position on the error

Figure 7: Evolution of the error L^2 over the domain Ω_0 , dependence on the distance of the discontinuity to the border of the domain, for the Robin problem.

Impact of the singularity position on the error

Figure 7: Comparison of the error for various mesh sizes, for the **Robin** problem.

- Study of the convergence of the finite element method for the resolution of an elliptic problem with a Dirac source term:
 - **same behavior** is observed for other boundary conditions,
 - other results, including geometric singularities, have been studied
- Theory vs. numerical results: impact of r
 - Theoretical convergence estimate are recovered in Ω₀,
 - Theory is **too pessimistic** with respect to the definition of Ω_0 .
 - r affects the constant in the estimates for with at least two layers of elements, the convergence on h being still optimal.

Conclusion and outlook

- Theory vs. numerical results: impact of the position of singularity close to the boundary
 - Theory dictates only boundedness on the error,
 - Numerical experiments show that the error decreases,
 - Higher order approximations are better.

Future wokrs:

- Refine the theory,
- get a better understanding of some case studies.

Conclusion and outlook

- Theory vs. numerical results: impact of the position of singularity close to the boundary
 - Theory dictates only boundedness on the error,
 - Numerical experiments show that the error decreases,
 - Higher order approximations are better.

Future wokrs:

- Refine the theory,
- get a better understanding of some case studies.

Thank you for your attention !

Introduction	Numerical resolution	Error analysis	Conclusion	References
References				
[D _{nm} 10]	Cilvia Dantalumna et al. 41 a		ha finita alamantan atha	
[Per+19]	elliptic problem with a Dira Differential Equations 34.1	ac source term". In: <i>Nu</i> (2018), pp. 97–120.	merical Methods for Pa	artial
[NS74]	Joachim A. Nitsche and Al methods". In: <i>Mathematic</i>	fred H. Schatz. "Interio s of Computation 28.12	r estimates for Ritz-Ga 8 (1974), pp. 937–958.	lerkin
[Pru+01]	C. Prud'homme et al. "Rel Differential Equations: Red <i>Fluids Engineering</i> 124.1 (1	iable Real-Time Solutio luced-Basis Output Bou Nov. 2001), pp. 70–80.	n of Parametrized Part nd Methods". In: <i>Jour</i>	ial nal of

- [Pru+24] Christophe Prud'homme et al. *feelpp/feelpp: Feel++ Release V111 preview.9*. Version v0.111.0-preview.9. Mar. 2024.
- [SPS23] Thomas Saigre, Christophe Prud'Homme, and Marcela Szopos. "Model order reduction and sensitivity analysis for complex heat transfer simulations inside the human eyeball". Minor revision in IJNMBE. Dec. 2023.

Example of implementation in **FEEL++**⁵

```
auto a = form2( trial = Vh, test = Vh);
a = integrate( range = elements(mesh), expr = gradt(u) *
\rightarrow trans(grad(v)));
a += on( range = boundaryfaces(mesh), rhs = 1, element = u,
\rightarrow expr = G expr);
auto s = std::make_shared<SensorPointwise<space_type>>(Vh, n,
→ "O"):
auto l = form1( test = Vh, vector = s->containerPtr() );
a.solve(_rhs=l, _solution=u);
```

⁵ github.com/feelpp/feelpp

Thomas Saigre

Regularized problem

We consider the regularized problem:

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

with
$$f(oldsymbol{X}) = \exp\left(rac{X-oldsymbol{X}_0}{2r^2}
ight)$$

We take $r=2h$.

Impact on the error convergence

- We study the impact of the position of the singularity on the error convergence rate.
- Another domain considered.

Impact on the error convergence

Figure 8: Convergence curve with \mathbb{P}_6 discretization for Dirac position going from the internal corner (y = 0) to the border of the domain (y = 1)