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Systems with different time-scales

• Many natural phenomena feature interaction of processes
on different times scales. Electro-mechanical systems are
one of the several examples of interest.

• A lot of difficulties appear. For instance, huge cost in
numerical simulations since the fastest time scale
sub-system must be fully solved over a timespan of the
slowest scales’ order.

• Desirable : we want instead solve a limit system,
describing approximately the full behavior when some
parameters (representing the scales) go to zero (or infinity)
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General Question
Consider general linear finite-dimensional systems :

εẏ = A1y + B1C1z, fast dynamics
ż = A2z + B2C2y, slow dynamics
y(0) = y0, z(0) = z0

with y ∈ Rn, z ∈ Rm and the matrices Ai,Bi,Ci of appropriate
dimension. One looks for conditions on the involved matrices
such that, setting H = Rn × Rm

∥(y, z)∥H ≤ Ce−µt∥(y0, z0)∥H

Question
Supposing ε small enough, is it possible to obtain "easy"
stability conditions?

Answer : apply the singular perturbation method !
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The singular perturbation principle

The singular perturbation principle consists in decoupling the
coupled system into two approximated systems :

1. The reduced order system ≃ slower system
2. The boundary layer system ≃ faster system

Question
How can one compute these two systems?
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Reduced order system

Suppose that ε = 0 and that A1 is invertible, then :

y = −A−1
1 B1C1z.

Plugging this equality in the second equation, we obtain

Reduced order system

˙̄z = (A2 − B2C2A−1
1 B1C1)z̄
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Boundary layer system

Set τ = t
ε and ỹ = y + A−1

1 B1C1z. Then,

d
dτ

ȳ = A1 (y + A−1
1 B1C1z)︸ ︷︷ ︸
=ȳ

+ε
d
dt

A−1
1 B1C1z

Taking ε = 0, one obtains

Boundary layer system
d

dτ
ȳ = A1ȳ.
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Result in finite dimension

Result
There exists ε∗ > 0 such that, for every ε ∈ (0, ε∗) :

Boundary layer system stable + Reduced order system stable ⇒
Full-system stable.

Such a result can be found for instance in [Kokotović, Khalil,
O’Reilly, 1986]. The strategy relies on a frequency approach.

Question
What about the infinite-dimensional case?
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An interesting counter-example

Very few results exist for the infinite-dimensional setting : [Tang,
Mazanti, 2017], [Cerpa, Prieur, 2020]. These results focus on
hyperbolic systems
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An interesting counter-example

Counter-example
εẏ(t) = −0.1y(t)− z(1, t)

zt(t, x) + zx(t, x) = 0

z(0, t) = 2z(1, t) + 0.2y(t).

The reduced order system is given by{
z̄t(t, x) + z̄x(t, x) = 0

z̄(0, t) = 0

and the boundary layer system reads

d
dτ

ȳ(τ) = −0.1ȳ(τ).

Both systems are always exponentially stable. But the
full-system is not (proof based on the method of
characteristics).
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An interesting counter-example

Question
Is it still possible to obtain general results ?

Answer : yes, but under restrictive assumptions.
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Abstract systems
The semigroup framework is adopted with Hi and Ui Hilbert
spaces (i = 1 or 2).

Abstract systems 
εẏ = A1y + B1C1z,

ż = A2z + B2C2y,

y(0) = y0, z(0) = z0

1. The operators Ai : D(Ai) ⊂ Hi → Hi generate strongly
continuous semigroups (Ti(t))t≥0 ;

2. Bi ∈ L(Ui,D(A∗
i )

′) admissible for (Ti(t))t≥0 ;
3. C1 ∈ L(D(A2,U2)) (resp. C2 ∈ L(D(A1,U2)))

admissibles.

Remarks
The operators Ai can represent partial derivatives.
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Additional assumptions

The counter-example dealt with a fast ODE coupled with a slow
PDE.
General results can be obtained under this assumption :

Finite-dimension assumption
The Hilbert spaces H2 and U2 are of finite-dimensions.
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Additional assumptions

Moreover, one needs to assume that

Stability assumptions

The semigroups generated by A1 and A2 − B2C2A−1
1 B1C1 are

exponentially stable.
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Results on abstract systems

Theorem (M., 2024)
Under the latter assumptions, there exists ε∗ such that, for every
ε ∈ (0, ε∗), the full-system is exponentially stable.

Unlike the finite-dimensional case, the proof of the latter result is
based on the construction of Lyapunov functional.

Tikhonov’s theorem (M., 2024)
Suppose that

∥y0∥H1 = O(ε), ∥z0∥H2 = O(ε),

then, there exists ε∗ such that, for every ε ∈ (0, ε∗), we have
∥y(t)∥H1 = O(ε) and ∥z(t)∥H2 = O(ε) for all t ≥ 0.
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Sketch of the proof : ISS property
Since the semigroup generated by A1 is exponentially stable,
there exists a symmetric and positive definite operator
P ∈ L(H1) such that, for every

⟨PA1y, y⟩H1 + ⟨Py,A1y⟩H1 = −∥y∥2
H1

Input-to-state stability (ISS) property
For every d ∈ U1, the derivative of the Lyapunov functional
V = ⟨Py, y⟩H1 along the trajectories of

d
dt

y = A1y + B1d,

satisfies

d
dt

V(y) ≤ −α∥y∥2
H1

+ β∥d∥2
U1
, α, β > 0.
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Sketch of the proof : Forwarding approach

Forwarding approach (Mazenc, Praly, 1996)
Based on the introduction of a Lyapunov functional

W(y, z) = εV(y) + ∥z − My∥2
H2
,

with M defined as M = B2C2A−1
1 which is bounded (due to the

boundedness assumption).

Proof
ISS property + Forwarding Lyapunov functional yield the
desired result.
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Explaining the counter-example

Question
What happens in the counter example ?

Lyapunov functionals cannot provide counter-examples in
general. One needs rather to study the spectrum.



Swann Marx (LS2N)

Singular perturbation
for ODEs

Singular perturbation
for PDEs

15/20

Tranport Equation/ODE

System 
εẏ = Ay + Bz(t, 1)

zt + Λzx = 0

z(t, 0) = G1z(t, 1) + G2y(t)

y(0) = y0, z(0, x) = z0(x).

y(t) ∈ Rn, z(t, ·) ∈ Lp(0, 1;Rm) and the involved matrices are of
appropriate dimension.

Reduced order system
z̄t + Λz̄x = 0

z̄(t, 0) = (G1 − G2A−1B)z̄(t, 1)

z̄(0, x) = z̄0(x)
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Tranport Equation/ODE

System 
εẏ = Ay + Bz(t, 1)

zt + Λzx = 0

z(t, 0) = G1z(t, 1) + G2y(t)

y(0) = y0, z(0, x) = z0(x).

y(t) ∈ Rn, z(t, ·) ∈ Lp(0, 1;Rm) and the involved matrices are of
appropriate dimension.

Boundary layer system
d

dτ
ȳ(t) = Aȳ(t), τ :=

t
ε
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The uncoupled PDE

We already know that

Boundary layer system & Reduced order system stable ̸⇒
full-system stable.

We have even more :

Proposition (Arías, M., Mazanti, 2024)
If the uncoupled system is unstable, meaning that{

zt + Λzx = 0,

z(t, 0) = G1z(t, 1),

is unstable, then the full-system is unstable for all ε > 0
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Going back to the counter-example

Counter-example
εẏ(t) = −0.1y(t)− z(1, t)

zt(t, x) + zx(t, x) = 0

z(t, 0) = 2z(t, 1) + 0.2y(t).

Uncoupled system 
zt + zx = 0,

z(t, 0) = 2z(t, 1),

z(0, x) = z0(x).

It is clearly unstable.
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An approximation result

Theorem (Arías, M., Mazanti, 2024)
Suppose that

The uncoupled system and the boundary layer system are
stable.

The reduced order system satisfies the Hale-Silkowski
criterion,

then there exists ε∗ such that, for all ε ∈ (0, ε∗), the full-system
is stable.

Reduced order system
z̄t + Λz̄x = 0

z̄(t, 0) = (G1 − G2A−1B)z̄(t, 1)

z̄(0, x) = z̄0(x)
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An approximation result

Theorem (Arías, M., Mazanti, 2024)
Suppose that

The uncoupled system and the boundary layer system are
stable.

The reduced order system satisfies the Hale-Silkowski
criterion,

then there exists ε∗ such that, for all ε ∈ (0, ε∗), the full-system
is stable.

Hale-Silkowski criterion
The uncoupled system satisfies this criterion if

max{ρ
(
(G1 + G2(iηIn − A)−1B)diag{δ1eiθ1 , . . . , δmeiθm}

)
,

θk ∈ R, δk ∈ [0, 1],∀k ∈ {1, . . . ,m}} < 1,

for any η ≥ 0.
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Achievements and open problems

Achievements
1. Some extensions of the the singular perturbation method

have been found ;

2. Counter-examples have been obtained (and explained)

Open problems
1. What about the case of coupled PDEs?

2. Is this possible to obtain simpler controllability criteria
for multi-scale systems ?
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Thank you for your attention

Any question?
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