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Motivation for MFGs

> A game refers to a mathematical framework that models the interactions and
behavior of a large number of rational agents, often referred to as players or agent.

» Each agent aims to optimize their own profit, taking into account the behavior of the
other agents.

» Studying such systems = differential games, through Nash equilibrium.

» Almost impossible to approximate the equilibria for games with large (big) number of
agents.

> MFG = Games with N number of players as N — co.



Motivation: Many agent system

In today’s interconnected world, systems involving numerous agents are prevalent.

Visual examples:

Crowd motion

Flocking Distributed Al systems



Other examples:

Financial market

Energy production Networks
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First order MFG system

The first order mean field game system is given by

—d¢u+ H(x,Du) = F(x, m(t)) in (0, T)xRY,
d¢m —div(DpH(x, Du)m) = 0 in (0, T)x RY, (MFG);
m(0,-)=mg, u(T,x)=G(x,m(T)) inR9.
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The first order mean field game system is given by

—d¢u+ H(x,Du) = F(x, m(t)) in (0, T)xRY,
d¢m —div(DpH(x, Du)m) = 0 in (0, T)x RY, (MFG);
m(0,-)=mg, u(T,x)=G(x,m(T)) inR9.

> The first equation is the Hamilton Jacobi Bellman equation for the agents’ value
function u.

» The second equation is the continuity equation for the distribution of agents.
m(t) is the probability density of the state of players at time t

> mg € P(fRd) can be seen as the initial distribution of the agents
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—d¢u+ H(x,Du) = F(x, m(t)) in (0, T)xRY,
d¢m —div(DpH(x, Du)m) = 0 in (0, T)x RY, (MFG);
m(0,-)=mg, u(T,x)=G(x,m(T)) inR9.

> The first equation is the Hamilton Jacobi Bellman equation for the agents’ value
function u.

» The second equation is the continuity equation for the distribution of agents.
m(t) is the probability density of the state of players at time t

> mg € P(fRd) can be seen as the initial distribution of the agents

Solutions to (MFG); are not regular in general, which makes the analysis more
complicated.

»> Forward-Backward system.
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Lagrange-Galerkin method for the first order MFG system

» Main idea: Apply a semi-Lagrangian scheme to the HJB equation then couple it
with a Lagrange-Galerkin scheme for the continuity equation.
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Lagrange-Galerkin method for the first order MFG system

» Main idea: Apply a semi-Lagrangian scheme to the HJB equation then couple it
with a Lagrange-Galerkin scheme for the continuity equation.

> Assumptions:
e The Hamiltonian H is given by

H(x,p) = sup {—(a,p)—L(x,a)} forallx,pe RY,
aeRd

where L is of class C2, andforall x,a € [Rd, we have
L(x,a)< C(lal? +1),
IDcL(x,a) < C |a|2+1>,
C|bl? < D2,L(x,a)(b,b),
DEL(va)y,y) < c<|a|2 + 1>|y|2.

These assumptions on L imply that H has quadratic growth and
[DpH(x,p)l < C(1+|pl) forallx,pe RY.

A typical example is H(x, p) = a(x)|p|2 +(b(x), p), with a and b of class Cb2 and a bounded
from below by a strictly positive constant.
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e F and G are bounded, continuous, and for every u € Pl([Rd),
(Lip) |F(x, 1) = Fly, pl +1G(x, p) = Gly, p)l < Clx =y,
(SC) Flx+y,p)—2F(x, )+ F(x—y,u) < Clyl?,
(SC) G(x+y, 1) = 2G(x, u)+ G(x—y, ) < Clyl>.

Notice that no differentiability is assumed for F and G.

e mg has compact support and m € LP(RY) for some p € (1,00].
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Approximation to the HJB equation

Let u € C([0, T];P1(RY)) and consider the HJB equation
—diu+H(x,Du) = F(x, u(t)) in[0, T]x RY,

u(T,x) = G(x, w(T)) inRY,

If u[u] denotes its solution, then for every (t,x) € [0, T]x R,

T
ulp(t, x) =igf£ L(y(s) a(s)) +F(y(s), p(s)) ds + G(y(T), u(T))

Running cost Final cost

y satisfies p(s) = —a(s)in]s, T[, p(t)=x.
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Approximation to the HJB equation

Let u € C([0, T];P1(RY)) and consider the HJB equation
—diu+H(x,Du) = F(x, u(t)) in[0, T]x RY,

u(T,x) = G(x, w(T)) inRY,

If u[u] denotes its solution, then for every (t,x) € [0, T]x R,

T
ulpl(t,x) =if;fJ; L(y(s) a(s)) +F(y(s), p(s)) ds + G(y(T), u(T))

Running cost Final cost
y satisfies p(s) = —a(s)in]s, T[, p(t)=x.
Proposition:
The value function is uniformly bounded, and the following hold:

(Lip) u[p](t,x) = u[p](t, y)| < Clx - yl,
(SC)  u[pl(x +y, )= 2ulp)(x, u) + ulp)(x —y, u) < Clyl%.
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Semi-Lagrangian scheme for HJB equation

> u[u] satisfies the Dynamic Programming Principle:

t+h
u[plt,x) = inf {f (L) a(s) + Fy(s),pls)lds + ulul(e-+ h, y(e-+ )}
ael2(RAH)\ )¢

forallh € [0, T —t].

9/23



Semi-Lagrangian scheme for HJB equation

> Set At >0 as the time step and let ty = kAt, k =0,---Nt.
> Semi-discrete DPP: let uy [p](x) =~ u[p](tk, x) be such that

lplx) = inf AL (x,a)+ (o ()] + i [p](x - aAt)
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Semi-Lagrangian scheme for HJB equation

> Set At >0 as the time step and let ty = kAt, k =0,---Nt.
> Semi-discrete DPP: let uy [p](x) =~ u[p](tk, x) be such that

Ul = inf AL (o a) + Flo ()] + e [)0x - aAt)

> Discretization in space: let Ax > O be the space step and let Ga, = {x; = iAx|i € Z9)
be the grid space.

Initial State
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Semi-Lagrangian scheme for HJB equation

> Set At >0 as the time step and let tk = kAt, k =0,---NT.
> Semi-discrete DPP: let uy [p](x) = u[p](tk, x) be such that

Ul = inf AL (o a) + Flo )] + e [)0x - aAt)

> Discretization in space: let Ax > be the space step and let Ga, = {x; = iAx|i € Z9) be
the grid space.

x —aAt

/’
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As in Carlini-S’14, given (At, Ax) we consider the following semi-Lagrangian scheme for
the HJB equation:

ug,j = inf {AtL(xi, a)+ E [Uks1,-](xi = Ata)} + AtF(x;, p(tk)),
acRd
Un,i = G(X,', P‘(T))r
where, given ¢ defined on Gax = {x; = Ax|i € z9)

Hel(x) = Z BL(x)p(x;), forall xeRY,

iezd

where {ﬁ,l |i € Z9) is the @ -basis defined on the regular mesh Ga,.
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As in Carlini-S’14, given (At, Ax) we consider the following semi-Lagrangian scheme for
the HJB equation:

ug,j = inf {AtL(xi, a)+ E [Uks1,-](xi = Ata)} + AtF(x;, p(tk)),
acRd
Un,i = G(X,', P‘(T))r

where, given ¢ defined on Gax = {x; = Ax|i € z9)

Hel(x) = Z BL(x)p(x;), forall xeRY,

iezd
where {ﬁ,l |i € Z9) is the @ -basis defined on the regular mesh Ga,.

This scheme is shown to be consistent, stable, and preserves:
» (Lip) The Lipschitz property.

» (SC) The semiconcavity.
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A regularized version

Given € > 0 and a standard mollifier p;, we set A = (At,Ax,¢) and

uPlul(t,x) = (pe + 1[ug)(x)  forall t € [ty, txy1), x € RY,

> uA[y] preserves the Lipschitz property.

» The following semi-concavity estimate holds:

2
(D2 [ul(t,x)y,y) < C(l +(g) ]Iylz-

» Theorem: Under suitable assumptions on the parameters, if 4, — pand A, — 0,
then ufn [#n] — u[p] uniformly over compact sets, and DyuPn[u,] —
Dyulu] a.e.
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Approximation to the continuity equation

Let us consider the following continuity equation

d¢m —div(DpH(x, Dxu[p])m)=0 in (0, T)x RY,
m(0) = mg.

Using the properties of u[u], one can show the existence of m[u] solution to the
continuity equation such that:

> m[u](t,-) has a compact support, independent of p.
» The mass does not concentrate on final time
Im{p](t, )llLe < ClimgliLe, forallt € (O,T).

where C is independent of p.
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To discretize the MFG system, we focus on

d¢m —div(DpH(x, DXuA[,u])m) =0 in(0,T)xRY,
m(0) = mg.
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To discretize the MFG system, we focus on
dym —div(DpH(x, Dyu®[u))m)=0 in (0, T)xRY,
m(0) = mg.

A

Since u” is smooth w.r.t state, this equation has a unique solution

mAu)(t,) = A [0, )img,
where qDA[y](s, t, x) is the solution, at time t, of the ODE:
7(r) = =DpH((r), Deu® [kl p(r) in (s, T),
Y(s) =x.

Equivalently, for ¢ integrable with respect to mA[

Kl(s),

o P00 = | (@ pl(s, 20 dm A pl(s)(x)

(CE)
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To discretize the MFG system, we focus on
dym —div(DpH(x, Dyu®[u))m)=0 in (0, T)xRY,

m(0) = mg.

A

Since u” is smooth w.r.t state, this equation has a unique solution

mA[ul(t,) = @2 [u](0,t, ),
where qDA[y](s, t, x) is the solution, at time t, of the ODE:

Y(r) = =Dp H(r), D u®[pl(r, p(r)) in (s, T),
Y(s) =x.

Equivalently, for ¢ integrable with respect to mA[

Kl(s),

o P00 = | (@ pl(s, 20 dm A pl(s)(x)

> We approximate CDA[y](tk, tx+1, %) by explicite one-step Euler scheme

DR [](x) = x = AtDpH (x, Dy u [](t, x)).

(CE)
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> Let {Bj};czd be a FE basis and approximate mA[y](tk) by
1(tk, x Z M, i Bi(x
iezd
> Using this approximation and taking ¢ = g; in (CE), we get

D mens [ B0 @EIM)dx= )

iezd iezd

mk,f B (&P ](3))8 (x) dx
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> Let {Bj};czd be a FE basis and approximate mA[y](tk) by
MATul(tx) = ) miiBi(x).
iezd

> Using this approximation and taking ¢ = g; in (CE), we get

D mens [ BB Y i [ @R xdx

iezd iezd

> Let us choose f3; = [5,0 =g, where

E; = [xi — Ax/2, x; + Ax/2]9.
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> Let {Bj};czd be a FE basis and approximate mA[y](tk) by
MATul(tx) = ) miiBi(x).
iezd

> Using this approximation and taking ¢ = g; in (CE), we get

D mens [ BB Y i [ @R xdx

iezd iezd

> Let us choose f3; = ﬁlo =g, where
E; = [xi — Ax/2, x; + Ax/2]9.

This choice yields the following Lagrange-Galerkin scheme:
_ 1 0(pA
111 g L L BO(@L [ulx)) dx (o)

1 *
mo,i = W L,- mgq(x)dx.
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The scheme preserves the properties

> Given (my ;) solution to (LG), for t € [ty, ty41), let us define

MEE0) = (5 ) Ym0+ (5 ) 1 menipicn

iezd iezd

> MA[u] e C([0, T PL(RY)).

> There exists C* > 0 such that supp(M2[](t, ) C B(O, C*).

> The map [0, T] 3 t > MA[y](t,-) € PL(RY) is Lipschitz continuous.
> If Ax = O(At) and At = O(2), then

IMAI(E e < CllmglLe.

The proof of the LP-stability mainly relies on the following facts:
> At/e small enough = CD,? (] is one-to-one.

> The estimate on D, u®[u](ty, ) implies that
det(D, P2 [u](x) ™! <1+ CAt.
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Approximation of the MFG problem

Let uA[y] be the solution to the SL scheme and M2 the solution to the LG scheme, then:

» (MFQ); is discretized as follows:
Fi _MA A
ind p such that y = M%[y] (MFG)=.

Using the Brouwer’s fixed point theorem, we show that (MFG)A admits at least one
solution.

» Convergence holds in general state dimensions.

Let A, = (Atp, Axp,€5) €]0,00[3, let m™ be a solution to (MFG)An, and u” = u®[m,].
Assume that, as A, — 0, Ax, = o(At,) and At, = O(5,21). Then, up to some subsequence,
(u", m") converges to a solution (u*, m*) of (MFG) .
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Numerical results

» In order to implement the scheme, we follow Morton-Priestley-Stili'88 by considering
the following approximation called area weighting

GDkA[y](x) = x - AtDpH(x;, DXuA[y](tk,x,-)) if x e Ej,

to obtain

L @Bl x)dx = BL@](x)).
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Numerical results

» In order to implement the scheme, we follow Morton-Priestley-Stili'88 by considering
the following approximation called area weighting

CDkA[y](X) = x - AtDpH(x;, DXuA[y](tk,x,-)) if x e Ej,

to obtain

L' BO@L[l()dx = B @R [l

> In the numerical test below, we set d = 2, and we consider the MFG problem defined
2
on [0,1]x[0,2]2, and set At = (Ax)3

mg(x) = L)()H[O’Z]z with v(x) = e xol?/001 4y xo = (0.75,0.75).
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We also consider

2
H(x,p)= %, G=0
and
F(x,m)= ymin(R,|x—xf|2) + (pg * m)(x)
[ — —_—

penalize the deviation from xf  encourage avoiding the crowd
with x¢ = (1.75,1.75).
In the figures below, we display the distributions for y =1 and y =3.
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We also consider

2
H(x,p)= %, G=0
and
F(x,m)= ymin(R,|x—xf|2) + (po * m)(x)
[ —— ~—_—

penalize the deviation from xf  encourage avoiding the crowd
with x¢ = (1.75,1.75).
In the figures below, we display the distributions for y =1 and y = 3.

2

The evolutionof m, y =1
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We also consider

2
H(x,p)= %, G=0
and
F(x,m)= ymin(R,|x—xf|2) + (po * m)(x)
[ — S —

penalize the deviation from xf  encourage avoiding the crowd
with x¢ = (1.75,1.75).
In the figures below, we display the distributions for y =1 and y = 3.

The evolution of m, y =1 The evolution of m, y =3
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