The dual charge method for the multimarginal optimal transport with Coulomb cost

Rodrigue Lelotte

46ème Congrès National d'Analyse Numérique, Ile de Ré (Mai '24)

DAUPHINE

Motivation from statistical physics (1/2)

- N identical particles with positions x_{1}, \ldots, x_{N} in \mathbb{R}^{d}
- x_{1}, \ldots, x_{N} distributed along $\mathbb{P}\left(x_{1}, \ldots, x_{N}\right) \in \mathscr{P}_{\text {sym }}\left(\left(\mathbb{R}^{d}\right)^{N}\right)$
- Two-body interaction potential $w(|x-y|)$ with $w: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$Isc

$$
c_{w}\left(x_{1}, \ldots, x_{N}\right):=\sum_{1 \leq i<j \leq N} w\left(\left|x_{i}-x_{j}\right|\right)
$$

- One-body external potential $V_{\text {ex }}(x)$, e.g. confining potential

Ground-state/free energy

$$
F_{N}^{(T)}\left(V_{\mathrm{ex}}\right):=\inf _{\mathbb{P} \in \mathscr{P} \text { sym }\left(\left(\mathbb{R}^{d}\right)^{N}\right)}\left\{\int_{\mathbb{R}^{d N}}\left(c_{w}+\sum_{i=1}^{N} V_{\mathrm{ex}}\left(x_{i}\right)\right) \mathrm{d} \mathbb{P}+T \cdot E n t(\mathbb{P})\right\}
$$

where $T \geq 0$ is temperature and $\operatorname{Ent}(\mathbb{P})=\int_{\mathbb{R}^{d N}} \mathbb{P} \log \mathbb{P}$ is entropy.

Motivation from statistical physics (2/2) $F_{N}^{(T)}\left(V_{\mathrm{ex}}\right):=\inf _{\mathbb{P}}\left\{\int_{\mathbb{R}^{d N}}\left(c_{W}+\sum_{i=1}^{N} V_{\mathrm{ex}}\left(x_{i}\right)\right) \mathrm{dP}+T \cdot \operatorname{Ent}(\mathbb{P})\right\}$

- Computing $F_{N}^{(T)}\left(V_{\text {ex }}\right)$ complicated $N \gg 1$: many local minima

Two-step minimisation : split infimum into two infima

$$
F_{N}^{(T)}\left(V_{\mathrm{ex}}\right)=\inf _{\mathbb{P} \in \mathscr{P}_{\text {sym }}\left(\left(\mathbb{R}^{d}\right)^{N}\right)}\{\cdots\}=\inf _{\rho \in \mathscr{P}\left(\mathbb{R}^{d}\right)} \inf _{\mathbb{P} \in \mathscr{P}_{\text {sym }}\left(\left(\mathbb{R}^{d}\right)^{N}\right) \text { s.t. } \pi_{1}^{\sharp} \mathbb{P}=\rho}\{\cdots\}
$$

Multimarginal OT: rewrite ground-state/free energy as

$$
F_{N}^{(T)}\left(V_{\mathrm{ex}}\right)=\inf _{\rho}\left\{O T_{N}^{(T)}(\rho)+\int_{\mathbb{R}^{d N}} V_{\mathrm{ex}} \rho\right\}, \quad O T_{N}^{(T)}(\rho):=\inf _{\mathbb{P} \text { s.t. } \pi_{1}^{\sharp} \mathbb{P}=\rho}\left\{\int_{\mathbb{R}^{d N}} c_{W} \mathrm{~d} \mathbb{P}+T \cdot \operatorname{Ent}(\mathbb{P})\right\}
$$

- $O T_{N}^{(T)}(\rho)$ complicated, but indep. of $V_{\mathrm{ex}} \Longrightarrow$ use approximations (DFT \& chemists)

What is my problem?

$$
O T_{N}^{(T)}(\rho):=\inf _{\mathbb{P} \text { s.t. } \pi_{1}^{\sharp} \mathbb{P}=\rho}\left\{\int_{\mathbb{R}^{d N}} c_{w} \mathrm{~d} \mathbb{P}+T \cdot \operatorname{Ent}(\mathbb{P})\right\}
$$

- We want to solve numerically $O T_{N}^{(T)}(\rho)$ when $N \gg 1$
- E.g. for small $0<T \ll 1$, in order to approximate the unregularized OT, i.e. $O T_{N}^{(0)}(\rho)$

Kantorovich duality $(T>0)$

$$
O T_{N}^{(T)}(\rho)=\sup _{V: \mathbb{R}^{d} \rightarrow \mathbb{R}}\left\{F_{N}^{(T)}(V)-N \int_{\mathbb{R}^{d}} V \rho\right\}
$$

E Strong duality \& existence of a (unique) Kantorovich potential V_{T} proved in [Chayes, Chayes \& Lieb, '84] in physics paper related to classical DFT

A simple idea

$$
O T_{N}^{(T)}(\rho)=\sup _{V: \mathbb{R}^{d} \rightarrow \mathbb{R}}\left\{F_{N}^{(T)}(V)-N \int_{\mathbb{R}^{d}} V \rho\right\}
$$

Idea to solve $O T_{N}^{(T)}$ (with $0<T \ll 1$ typically)

1. Decompose $V_{T} \in \operatorname{Span}\left(\left\{\phi_{i}\right\}_{i=1, \ldots, M}\right)$ onto finite basis $\left\{\phi_{i}\right\}_{i=1, \ldots, M}$
2. Solve concave maximization problem

$$
O T_{N}^{(T)}(\rho) \simeq \sup _{V \in \operatorname{Span}\left(\left\{\phi_{i}\right\}_{i=1, \ldots, M}\right)}\left\{F_{N}^{(T)}(V)-N \int_{\mathbb{R}^{d}} V \rho\right\}
$$

- Optimise with gradient ascent : gradient can be computed by MCMC methods
- Dual of Moment Constrained OT [Alfonsi, Coyaud, Ehrlacher \& Lombardi, '21]

$$
\pi_{1}^{\sharp} \mathbb{P}_{T}=\rho \quad \text { v.s. } \quad \int_{\mathbb{R}^{d N}} \sum_{j=1}^{N} \phi_{i}\left(x_{j}\right) d \mathbb{P}_{T}=\int_{\mathbb{R}^{d}} \phi_{i} \rho \quad \forall i=1, \ldots, M .
$$

How to choose ϕ_{i} 's ? Special case of Coulomb interaction (1/2)

- Coulomb interaction $w(|x-y|)=|x-y|^{-1}$ in dimension $d=3$
- If $\rho_{N}:=\rho$ for fixed $\rho \in \mathscr{P}\left(\mathbb{R}^{d}\right)$, following mean-field limit holds

$$
\frac{V_{0, N}}{N} \underset{N \rightarrow \infty}{\longrightarrow}-\rho *|x|^{-1} \quad \text { (formally by [Cotar, Friesecke \& Pass, '14]) }
$$

where $V_{0, N}$ Kantorovich potential for $O T_{N}^{(0)}(\rho)$.
Takeaway message : $\quad V_{0, N}(x)=-N \rho *|x|^{-1}+$ correction terms $\quad(N \gg 1)$.

How to choose the ϕ_{i} 's ? Special case of Coulomb interaction (2/2)

Our idea to discretize V_{T} for $T \ll 1$ [L, '24] - also [Mendl \& Lin, '14]

1. Write V_{T} as potential generated by an external dual charge $\rho_{T}^{(e)}$

$$
V_{T}(x)=-\rho_{T}^{(e)} *|x|^{-1}:=-\int_{\mathbb{R}^{3}} \rho_{T}^{(e)}(y)|x-y|^{-1} \mathrm{~d} y
$$

Theorem : $\forall T \geq 0, \rho_{T}^{(e)}$ exists and can be assumed to be positive and s.t. $\int_{\mathbb{R}^{d N}} \rho_{T}^{(e)}=N-1$ as proved in [L, '24]
2. Decompose $\rho_{T}^{(e)} \in \operatorname{Span}\left(\left\{\mu_{i}\right\}_{i=1, \ldots, M}\right)$ onto a finite basis $\left\{\mu_{i}\right\}_{i=1, \ldots, M}$

- Otherwise stated : $V_{T} \in \operatorname{Span}\left(\left\{\phi_{i}\right\}_{i=1, \ldots, M}\right)$ with $\phi_{i}=\mu_{i} *|x|^{-1}$

Vague claim (formally by [Cotar, Friesecke \& Pass, '14], true in $d=1$ [L, '24])

If $\rho_{N}:=\rho$ with fixed $\rho \in \mathscr{P}\left(\mathbb{R}^{d}\right)$, then $\frac{\rho_{0}^{(e)}}{N} \xrightarrow[N \rightarrow \infty]{\text { narrow }} \rho$

Numerics of uniform droplets

- Uniform Droplets, i.e.

$$
N \in \mathbb{N}, \quad \rho_{N}=N^{-1} \mathbb{1}_{B_{N}}, \quad \text { with } B_{N}:=B\left(0, r_{N}\right) \subset \mathbb{R}^{3} \text { s.t. }\left|B_{N}\right|=N
$$

- Ball B_{N} discretized into M concentric shells, i.e.

$$
B_{N}=\cup_{i=1}^{M} S_{i} \quad \text { where } S_{i}:=B\left(r_{i}\right) \backslash B\left(r_{i-1}\right), \quad 0=r_{0}<r_{1} \leq \cdots \leq r_{M-1}<r_{M}=r_{N}
$$

- μ_{i} are indicators of S_{i} 's, i.e.

$$
V_{T} \simeq \widehat{V}\left(\omega_{1}, \ldots, \omega_{M}\right)=\sum_{i=1}^{M} \omega_{i} \mu_{i} *|x|^{-1} \text { with } \quad \mu_{i}=\mathbb{1}_{s_{i}} \quad(T \ll 1)
$$

- Initialised on mean-field limit i.e $\omega_{i}^{(0)}=1$ for $i=1, \ldots, M$
- Parameters: $N=2$, with $M \in\{10,20\}$ and $T \in\left\{50^{-1}, 500^{-1}\right\}$
- Optimised $\widehat{V}\left(\widehat{\omega_{1}}, \ldots, \widehat{\omega_{M}}\right)$ is plugged into unregularized OT dual, i.e.

$$
D_{0}(\widehat{V}):=\min _{x_{1}, \ldots, x_{N}}\left\{c_{w}+\sum_{i=1}^{N} \widehat{V}\left(x_{i}\right)\right\}-\int_{\mathbb{R}^{3}} \widehat{V} \rho
$$

- Parameters: $N=20$, with $M=50$ and $T=150^{-1}$
- Compared with upper bound of [Räsänen, Gori-Giorgi \& Seidl, '16]

Conclusion

- Efficient discretisation of Kantorovich potentials for Coulomb-like cost
- Lots of room for optimisation improvement - gradient \& MCMC methods
- Question : In which sense $V_{0} \simeq-N \rho *|x|^{-1}$? $1^{\text {st }} / 2^{\text {nd }}$-order corrections ?
- [L, '24]: An external dual charge approach to the multimarginal optimal transport with Coulomb cost, ESAIM COCV

Thank you!

