Annealed quantitative estimates for the quadratic 2D-discrete random matching problem

Nicolas CLOZEAU, ISTA - Vienna Francesco MATTESINI, MPI - Leipzig

We study the following quadratic matching problem on the flat torus \mathbb{T}^{2}

$$
\begin{equation*}
\min _{\pi \in \Pi_{n m}} \sum_{i=1}^{n} \sum_{j=1}^{m} \pi_{i j}\left|X_{i}-Y_{j}\right|^{2} \quad \text { with } \Pi_{n m}:=\left\{\pi \in[0,1]^{n \times m} \left\lvert\, \sum_{i=1}^{n} \pi_{i j}=\frac{1}{m}\right. \text { and } \sum_{j=1}^{m} \pi_{i j}=\frac{1}{n}\right\} \tag{1}
\end{equation*}
$$

between two families of random points $\left\{X_{k}\right\}_{1 \leq k \leq n}$ and $\left\{Y_{k}\right\}_{1 \leq k \leq m}$ (with $m \geq n$) that may possess correlations and that are identically distributed according to a density ρ that satisfies

$$
\lambda \leq \rho \leq \Lambda \quad \text { for } \lambda, \Lambda>0 .
$$

We are interested in approximating the minimizers of (1) in the regime $n, m \uparrow \infty$. Using the point of view of optimal transport, I will present a PDE approach for approximating the minimizers of (1) based on a formal linearisation of the Monge-Ampère equation; and explain how that can be made rigorous in a quantitative way. This is based on the publication [1].

[^0] matching problem. Probability Theory and Related Fields, pp. 1-57, 2024.

Contact: nicolas.clozeau@ist.ac.at

[^0]: [1] N. Clozeau, F. Mattesini. Annealed quantitative estimates for the quadratic 2d-discrete random

