GD Convergence

SGD for Training SW Neural Networks

Properties of Discrete Sliced Wasserstein Losses

Eloi Tanguy, Rémi Flamary, Julie Delon

MAP5, Université Paris-Cité

27 May 2024

Eloi Tanguy, Rémi Flamary, Julie Delon Properties of Discrete Sliced Wasserstein Losses MAP5, Université Paris-Cité

GD Convergence

SGD for Training SW Neural Networks

• The Discrete Sliced Wasserstein Distance

- Optimisation Properties
- **B** SGD Convergence

GGD for Training SW Neural Networks

Eloi Tanguy, Rémi Flamary, Julie Delon

Properties of Discrete Sliced Wasserstein Losses

MAP5, Université Paris-Cité

Optimisation Properties

SGD Convergence

SGD for Training SW Neural Networks $_{\rm OOOOO}$

Discrete Optimal Transport

Eloi Tanguy, Rémi Flamary, Julie Delon

Optimisation Properties

SGD Convergence

SGD for Training SW Neural Networks $_{\rm OOOOO}$

Discrete Optimal Transport

Assignment Cost:

$$\frac{1}{5} \times c(x_1, y_1) + \frac{1}{5} \times c(x_1, y_3) + \frac{1}{5} \times c(x_2, y_3) + \frac{2}{5} \times c(x_3, y_2).$$

Constraints on $\pi \in \mathbb{R}^{3 \times 3}_+$: $\pi \mathbf{1} = (2/5, 1/5, 2/5), \ \pi^\top \mathbf{1} = (1/5, 2/5, 2/5).$

Optimal Transport Cost :
$$\min_{\pi} \sum_{i,j} c(x_i, y_j) \pi_{i,j}$$
.

Eloi Tanguy, Rémi Flamary, Julie Delon

Properties of Discrete Sliced Wasserstein Losses

MAP5, Université Paris-Cité

 The Discrete Sliced Wasserstein Distance
 Optimisation Properties
 SGD Convergence
 SGD for Training SW Neural Networks

 000000
 0000
 0000
 0000
 0000
 00000

2-Wasserstein Distance: $c(x, y) = ||x - y||_2^2$

$$\begin{aligned} \text{Measures } \mu &= \frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}, \ \nu = \frac{1}{m} \sum_{j=1}^{m} \delta_{y_{j}}. \\ \text{W}_{2}^{2}(\mu, \nu) &= \min_{\substack{\pi \in \mathbb{R}^{n \times m}_{+} \\ \pi \mathbf{1} = a, \ \pi^{\top} \mathbf{1} = b}} \sum_{i=1}^{n} \sum_{j=1}^{m} \|x_{i} - y_{j}\|_{2}^{2} \pi_{i,j}. \end{aligned}$$

Eloi Tanguy, Rémi Flamary, Julie Delon Properties of Discrete Sliced Wasserstein Losses The Discrete Sliced Wasserstein Distance
oooooOptimisation Properties
oooooSGD Convergence
ooooSGD for Training SW Neural Networks
ooooo2-Wasserstein Distance: $c(x, y) = ||x - y||_2^2$

Measures
$$\begin{split} \mu &= \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}, \ \boldsymbol{\nu} = \frac{1}{m} \sum_{j=1}^{m} \delta_{y_j}.\\ W_2^2(\boldsymbol{\mu}, \boldsymbol{\nu}) &= \min_{\substack{\pi \in \mathbb{R}^{n \times m}_+ \\ \pi \mathbf{1} = a, \ \pi^\top \mathbf{1} = b}} \sum_{i=1}^{n} \sum_{j=1}^{m} \|\boldsymbol{x}_i - \boldsymbol{y}_j\|_2^2 \pi_{i,j}. \end{split}$$

Continuous case: $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$,

$$W_{2}^{2}(\mu,\nu) = \min_{\pi \in \Pi(\mu,\nu)} \int_{\mathbb{R}^{2d}} \|x - y\|_{2}^{2} d\pi(x,y) = \min_{\pi \in \Pi(\mu,\nu)} \mathbb{E}_{(X,Y) \sim \pi} \left[\|X - Y\|_{2}^{2} \right].$$

Eloi Tanguy, Rémi Flamary, Julie Delon

Optimisation Properties

SGD Convergence

SGD for Training SW Neural Networks $_{\rm OOOOO}$

1D Wasserstein and Sliced Wasserstein

Optimisation Properties

SGD Convergence

SGD for Training SW Neural Networks

1D Wasserstein and Sliced Wasserstein

Eloi Tanguy, Rémi Flamary, Julie Delon Properties of Discrete Sliced Wasserstein Losses

Optimisation Properties

SGD Convergence

SGD for Training SW Neural Networks $_{\rm OOOOO}$

Monte-Carlo Approximation

The Discrete Sliced Wasserstein Distance ${\scriptstyle 00000} \bullet$

Optimisation Properties

SGD Convergence

SGD for Training SW Neural Networks $_{\rm OOOOO}$

Statistical Properties

Eloi Tanguy, Rémi Flamary, Julie Delon

Optimisation Properties

SGD Convergence

SGD for Training SW Neural Networks $_{\rm OOOOO}$

Statistical Properties

Eloi Tanguy, Rémi Flamary, Julie Delon

MAP5, Université Paris-Cité

Optimisation Properties

SGD Convergence

SGD for Training SW Neural Networks

Statistical Properties

Eloi Tanguy, Rémi Flamary, Julie Delon

MAP5, Université Paris-Cité

The Discrete Sliced Wasserstein Distance	Optimisation Properties	SGD Convergence	SGD for Training SW Neural Networks
	00000		

Optimisation Properties

B SGD Convergence

GGD for Training SW Neural Networks

Eloi Tanguy, Rémi Flamary, Julie Delon

Properties of Discrete Sliced Wasserstein Losses

8 / 22

The	Discrete	Sliced	Distance

SGD Convergence 0000 SGD for Training SW Neural Networks $_{\rm OOOOO}$

Global Optima

 ${\scriptstyle \bullet \, SW_2}$ is a distance:

$$\underset{X \in \mathbb{R}^{n \times d}}{\operatorname{argmin}} \mathcal{E}(X) = \underset{X \in \mathbb{R}^{n \times d}}{\operatorname{argmin}} \operatorname{SW}_{2}^{2}(\gamma_{X}, \gamma_{Y})$$
$$= \{Y \text{ up to a permutation}\}$$

The	Discrete	Sliced	Distance

SGD Convergence 0000 SGD for Training SW Neural Networks $_{\rm OOOOO}$

Global Optima

 ${\scriptstyle \bullet \, SW_2}$ is a distance:

$$\operatorname{argmin}_{X \in \mathbb{R}^{n \times d}} \mathcal{E}(X) = \operatorname{argmin}_{X \in \mathbb{R}^{n \times d}} \operatorname{SW}_{2}^{2}(\gamma_{X}, \gamma_{Y})$$
$$= \{Y \text{ up to a permutation}\}$$

$$\mathcal{E}_p$$
 with $p = 1$.

• $\widehat{SW}_{2,p}$ is **not** a distance:

$$\widehat{\mathrm{SW}}_{2,p}(\gamma,\gamma_Y) = 0 \iff \forall i \in \llbracket 1,p \rrbracket, \ \theta_i \# \gamma = \theta_i \# \gamma_Y.$$

Eloi Tanguy, Rémi Flamary, Julie Delon

 $\begin{array}{c} \text{Optimisation Properties} \\ \text{oo} \bullet \text{ooo} \end{array}$

SGD Convergence 0000 SGD for Training SW Neural Networks $_{\rm OOOOO}$

Reconstruction Problem

Eloi Tanguy, Rémi Flamary, Julie Delon Properties of Discrete Sliced Wasserstein Losses

Optimisation Properties

SGD Convergence 0000 SGD for Training SW Neural Networks $_{\rm OOOOO}$

Reconstruction Problem

Eloi Tanguy, Rémi Flamary, Julie Delon Properties of Discrete Sliced Wasserstein Losses

Optimisation Properties

GD Convergence

SGD for Training SW Neural Networks $_{\rm OOOOO}$

Consequences of the Reconstruction Problem on \mathcal{E}_p

If $p \leq d$,

$$\mathcal{E}_p(X) = 0 \implies X \in \{Y \text{ up to a permutation}\}.$$

If p > d, almost-surely,

 $\mathcal{E}_p(X) = 0 \Longrightarrow X \in \{Y \text{ up to a permutation}\}.$

$$\mathcal{E}_p$$
 with $p=1$.

$$\mathcal{E}_p$$
 with $p=3$.

MAP5, Université Paris-Cité

Eloi Tanguy, Rémi Flamary, Julie Delon

Optimisation Properties

SGD Convergence

SGD for Training SW Neural Networks $_{\rm OOOOO}$

\mathcal{E}_p Cell Decomposition

$$\mathcal{E}_p(X) = \frac{1}{p} \sum_{i=1}^p W_2^2(\theta_i \# \gamma_X, \theta_i \# \gamma_Y) = \min_{(\sigma_1, \cdots, \sigma_p) \in \mathfrak{S}_n^p} \frac{1}{np} \sum_{i=1}^p \sum_{k=1}^n (\theta_i^T(x_k - y_{\sigma_i(k)}))^2.$$

Eloi Tanguy, Rémi Flamary, Julie Delon Properties of Discrete Sliced Wasserstein Losses MAP5, Université Paris-Cité

Optimisation Properties

SGD Convergence

SGD for Training SW Neural Networks $_{\rm OOOOO}$

\mathcal{E}_p Cell Decomposition

$$\mathcal{E}_{p}(X) = \frac{1}{p} \sum_{i=1}^{p} W_{2}^{2}(\theta_{i} \# \gamma_{X}, \theta_{i} \# \gamma_{Y}) = \min_{(\sigma_{1}, \cdots, \sigma_{p}) \in \mathfrak{S}_{n}^{p}} \frac{1}{np} \sum_{i=1}^{p} \sum_{k=1}^{n} (\theta_{i}^{T}(x_{k} - y_{\sigma_{i}(k)}))^{2} + \frac{1}{np} \sum_{i=1}^{p} \sum_{i=1}^{n} (\theta_{i}^{T}(x_{k} - y_{\sigma_{i}(k)}))^{2} + \frac{1}{np} \sum_{i=1}^{n} (\theta_{i}^{T}(x_{k} - y_{\sigma$$

Eloi Tanguy, Rémi Flamary, Julie Delon

Properties of Discrete Sliced Wasserstein Losses

MAP5, Université Paris-Cité

Optimisation Properties

SGD Convergence

SGD for Training SW Neural Networks $_{\rm OOOOO}$

\mathcal{E}_p Cell Decomposition

Eloi Tanguy, Rémi Flamary, Julie Delon

MAP5, Université Paris-Cité

Optimisation Properties

SGD Convergence

SGD for Training SW Neural Networks

\mathcal{E}_p Cell Decomposition

Optimisation Properties

SGD Convergence

SGD for Training SW Neural Networks $_{\rm OOOOO}$

${\mathcal E}$ Differentiable Critical Points

Critical Points of \mathcal{E} [5]

$$\forall X \in \mathcal{D}_{\mathcal{E}}, \\ \nabla \mathcal{E}(X) = 0 \Longleftrightarrow F(X) = X$$

Eloi Tanguy, Rémi Flamary, Julie Delon

Properties of Discrete Sliced Wasserstein Losses

MAP5, Université Paris-Cité

Optimisation Properties

SGD Convergence 0000 SGD for Training SW Neural Networks $_{\rm OOOOO}$

${\mathcal E}$ Differentiable Critical Points

Critical Points of \mathcal{E} [5]

$$\forall X \in \mathcal{D}_{\mathcal{E}},$$
$$\nabla \mathcal{E}(X) = 0 \Longleftrightarrow F(X) = X$$

Critical Point Approximation [5]

For X_p critical points of \mathcal{E}_p , $X_p - F(X_p) \xrightarrow[n \to +\infty]{\mathbb{P}} 0$.

Eloi Tanguy, Rémi Flamary, Julie Delon

Properties of Discrete Sliced Wasserstein Losses

13 / 22

The Discrete Sliced Wasserstein Distance	Optimisation Properties	SGD Convergence	SGD for Training SW Neural Networks
		0000	

Optimisation Properties

3 SGD Convergence

GGD for Training SW Neural Networks

Eloi Tanguy, Rémi Flamary, Julie Delon

Optimisation Properties

SGD Convergence

SGD for Training SW Neural Networks $_{\rm OOOOO}$

Convergence of Interpolated Trajectories

SGD on
$$\mathbb{E}_{\theta \sim \mathcal{U}(\mathbb{S}^d)} \left[\underbrace{W_2^2(\theta \# \gamma_X, \theta \# \gamma_Y)}_{w_{\theta}(X)} \right]$$
:

$$X^{(k+1)} = X^{(k)} - \alpha \nabla w_{\theta^{(k+1)}}(X^{(k)})$$

Eloi Tanguy, Rémi Flamary, Julie Delon

Optimisation Properties

SGD Convergence

SGD for Training SW Neural Networks $_{\rm OOOOO}$

Convergence of Interpolated Trajectories

SGD on
$$\mathbb{E}_{\theta \sim \mathcal{U}(\mathbb{S}^d)} \Big[\underbrace{W_2^2(\theta \# \gamma_X, \theta \# \gamma_Y)}_{w_{\theta}(X)} \Big] :$$

$$X^{(k+1)} = X^{(k)} - \alpha \nabla w_{\theta^{(k+1)}}(X^{(k)})$$

Eloi Tanguy, Rémi Flamary, Julie Delon Properties of Discrete Sliced Wasserstein Losses

Using results from Bianchi et al. [1]

Eloi Tanguy, Rémi Flamary, Julie Delon

Properties of Discrete Sliced Wasserstein Losses

15 / 22

Optimisation Properties

SGD Convergence

SGD for Training SW Neural Networks $_{\rm OOOOO}$

Convergence of Noised Trajectories

Noised SGD:
$$X^{(k+1)} = X^{(k)} - \alpha \nabla w_{\theta^{(k+1)}}(X^{(k)}) + \alpha \varepsilon^{(k+1)}$$

Using results from Bianchi et al. [1]

The	Discrete	Sliced	Distance

SGD Convergence

SGD for Training SW Neural Networks $_{\rm OOOOO}$

Convergence of Decreasing-Step Noised Trajectories

$$X^{(k+1)} = X^{(k)} - \alpha^{(k)} \nabla w_{\theta^{(k+1)}}(X^{(k)}) + \alpha \varepsilon^{(k+1)}.$$

Steps
$$\alpha^{(k)} \ge 0$$
 with $\sum_{k=0}^{+\infty} \alpha^{(k)} = +\infty$ and $\sum_{k=0}^{+\infty} (\alpha^{(k)})^2 < +\infty$.

Convergence of Decreasing-Step Noised SGD [5]

If
$$(X^{(k)})$$
 is a.s. bounded, then a.s.:

•
$$(\mathcal{E}(X^{(k)})_k \text{ converges.})$$

• If
$$X^{(\varphi(k))} \xrightarrow[k \longrightarrow +\infty]{} X^{\infty}$$
, then $X^{\infty} \in \mathbb{Z}$.

With
$$\mathcal{Z} = \left\{ X \in \mathbb{R}^{n \times d} \mid 0 \in -\partial_C \mathcal{E}(X) \right\}.$$

Using results from Davis et al. [2]

17 / 22

The Discrete Sliced Wasserstein Distance	Optimisation Properties	SGD Convergence	SGD for Training SW Neural Networks
			•0000

- Optimisation Properties
- **B** SGD Convergence

GGD for Training SW Neural Networks

Eloi Tanguy, Rémi Flamary, Julie Delon

The	Discrete	Sliced	Distance	

SGD Convergence

SGD for Training SW Neural Networks 0000

Generative Modelling

Eloi Tanguy, Rémi Flamary, Julie Delon

SGD Convergence

SGD for Training SW Neural Networks 00000

Problem Statement

 $f(u, X, Y, \theta) = \mathrm{W}_2^2(\theta \# T_u \# \gamma_X, \theta \# \gamma_Y), \quad X \sim \mathbf{x}^{\otimes n}, \ Y \sim \mathbf{y}^{\otimes n}, \ \theta \sim \mathbf{\sigma}.$

Population loss:

$$F(u) = \mathop{\mathbb{E}}_{X,Y,\theta} \left[W_2^2(\theta \# T_u \# \gamma_X, \theta \# \gamma_Y) \right] = \mathop{\mathbb{E}}_{X,Y} \left[SW_2^2(T_u \# \gamma_X, \gamma_Y) \right].$$

Convergence Results [3]

Under technical assumptions:

- Approximation of (Clarke) gradient flows
- Convergence in the parameters $\boldsymbol{u}^{(t)}$ for a modified SGD scheme

The Discrete Sliced Wasserstein Distance	Optimisation Properties	SGD Convergence	SGD for Training SW Neural Networks
			00000

Thank You

 Pascal Bianchi, Walid Hachem, and Sholom Schechtman. Convergence of constant step stochastic gradient descent for non-smooth non-convex functions.

Set-Valued and Variational Analysis, 30(3):1117–1147, 2022.

[2] Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D Lee. Stochastic subgradient method converges on tame functions. Foundations of computational mathematics, 20(1):119–154, 2020.

[3] Eloi Tanguy.

Convergence of sgd for training neural networks with sliced Wasserstein losses.

Transactions on Machine Learning Research, October 2023.

[4] Eloi Tanguy, Rémi Flamary, and Julie Delon.

Reconstructing discrete measures from projections. consequences on the empirical sliced Wasserstein distance. *arXiv preprint arXiv:2304.12029*, 2023.

[5] Eloi Tanguy, Rémi Flamary, and Julie Delon.

Properties of discrete sliced Wasserstein losses.

Eloi Tanguy, Rémi Flamary, Julie Delon

22 / 22