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Optimal transport

Let u,v € P(RY). Let ¢ : R? x RY — R I.s.c., lower bounded. The optimal transport
problem is the following

inf / c(x,y)dn(x,y) (OT)
mel(pny).

where M(p, v) is the set of probability measures on RY x RY with marginals i, .
Usually the cost c(x,y) = |[x — y||? is used.



Entropic optimal transport

To compute the optimal transport problem the entropy regularized problem is often
used to compute optimal transport [Cut13]
[i1r1(f )/C(X,y)dw(x) +eH(m | p@ V) (EQT.)
mell(pv

where H(m | u ® v) is the relative entropy of 7 with respect to 1 ® v. The Sinkhorn
algorithm computes the solution to the dual problem.

sup /(j)dﬂ + /1/sz/ - e/exp (gb(x) +9() - c(x,y)) dp®v(x,y)

bb - . €

which by duality is equivalent to the entropic optimal transport problem. We moreover

have the following relationship:

dr (x,y) = ex (
du®v )= A

P(x) +Y(y) — C(X.y))

€



Sinkhorn’s Algorithm

Sinkhorn'’s algorithm is essentially an alternatig minimization algorithm on each
variables ¢, 1.
Indeed fixing 1, and maximizing in ¢ the first order conditions grant that

Prt1(x) = €ln (/ exp (wkmc(xy)> dl/()/))

€

similarily for ¢ we have

Yrs1(y) = €ln </ exp <¢k+1(x) — C(X'Y)) d/L(X))

€



Towards weak optimal transport

Both problems require to minimize a convex function in 7 over IM(u, v). And in fact
they have a common formulation.
If we disintegrate 7 with respect to the projection onto the first variable we can write

T = pu ® 7w and thus

[ear= [ ([ cter)dnts)) dut). Hir | wow) = [ Hime | v)du()

where the second equality holds by additivity of the entropy.
Note that now both functions are of the form

[ elxmduto)

where for every x the function c(x,.) is convex.



Weak Optimal Transport

Let 1, v € P(RY). Let ¢ : RY x P(RY) — R jointly l.s.c., lower bounded and convex in
the second variable. We study the following problem called weak optimal transport
[GRST15]

- :
WE|ﬂn(lw)/c(x,7r )dp(x) (WOT)

Existence of solutions by [VBP19] and a review of applications by [BVP20].



Entropy regularized optimal transport :
(0,7 = / c(x, y)dmy + eH(mx | v)

Vector Quantile Regression [CCGI5] :

c(x,mx) = {f = peIFdme if [ pes(y)dme =0

+0o0 else

Monopolist problem [DDT17]:

c(x.m) = inf |lx— [ yeal



Strassen Theorem [GJ20]:
() = lIx = [ ym?
Martingale optimal transport [BHLP13]:
c(x, m) = (x,mx) + 0 (x — /ywx>
Bass martingale [BVST23] :

e {Wf(wx,f\/(x, 1)) if [yme =0

+00 else



Framework

We restrict ourselves to compactly supported measures i, v and study for € > 0 the
following problem

i /c(x,wx)du(x) M | e ) (WOT,)

mel(uv)
J f(y)dmx=0

where ¢ has a continuity modulus with respect to W, which is uniform in x, f is
vector valued, continuous. We further assume that [ f @ fdv is invertible (constraint
qualification).



Dual formulation

As in the optimal transport case the problem WOT, admits a dual formulation.

Under the hypothesis made before there is no duality gap and the following dual
problem has solutions in L.

) /(bd,UJF /d)d’/ Ucu®11(¢+w+)‘f+c (3) 6)

¢>AeLx(u)) ueLoc
BEL> (uev)

where

Uf:u@u(a):{dexp( ))duxy(x y) ife>0

1a§0 else



Convergence as ¢ — 0

The gamma convergence for EOT, [CDPST7] introduced a block approximation. Here to
derive rates of convergence we introduce a slice approximation.

Let (A;); a partition of RY the slice approximation 74 of 7 is defined as 74 = p ® 72
where

drf Z 7x(Ai)
dv —~ v(A;)
If the diameter of A; is less than § we have H(7” | u ® v) = O(— In(0)).

Thus since f is continuous and A is bounded, as soon as c is uniformly hélder we get

WOT (. v) — WOTo (. v) = O(eln(e)).



SISTAlgorithm

Introduced in [CDGS20] the algorithm to compute WOT., is an extension of the Sinkhorn
algorithm.
If F(¢,%, A, B) is the dual function then the algorithm is the following:

Pr+1 € argmin F(¢, i, Ak, Bi)
¢

Vk41 € arg min F(’(/)kJrl, U, Ak, ﬂk)

(Ak+1r Bit1) = (Mo Bi) — VagF (k1 Yrs1r Akr Bic)

This algorithm was also successfully used in [GNT23] for geodesics extrapolation in

Wasserstein space.



Numerical examples - Projection onto convex order

In [GRST15] they studied a WOT problem with the following cost

c(x,p) = lIx = [ ydp(y)I*.
They proved that if the solution is 7" then Ty is the solution to

Jinf W5 (. )

where T(x) = [ ydny and {. <., v} is the set of measures ji such that there is a
Martingale coupling /i and v.



Numerical examples - Brenier Strassen interpolation

Let © = N(0,1) and v = N(—1,2) + N(1,2). For t € [0, 1] using the cost
c(x,p) =t [|x —y|?dp+ (1 — t)||x — [ ydpl||? we interpolate between a diffusion
from p to v and the optimal transport.



Thank you for your attention !
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