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Optimal transport

Let µ, ν ∈ P(Rd). Let c : Rd × Rd → R l.s.c., lower bounded. The optimal transport
problem is the following

inf
π∈Π(µ,ν)

∫
c(x , y)dπ(x , y) (OT)

where Π(µ, ν) is the set of probability measures on Rd × Rd with marginals µ, ν.
Usually the cost c(x , y) = ∥x − y∥2 is used.



Entropic optimal transport

To compute the optimal transport problem the entropy regularized problem is often
used to compute optimal transport [Cut13]

inf
π∈Π(µ,ν)

∫
c(x , y)dπ(x) + ϵH(π | µ⊗ ν) (EOTϵ)

where H(π | µ⊗ ν) is the relative entropy of π with respect to µ⊗ ν. The Sinkhorn
algorithm computes the solution to the dual problem.

sup
ϕ,ψ

∫
ϕdµ+

∫
ψdν − ϵ

∫
exp

(
ϕ(x) + ψ(y) − c(x , y)

ϵ

)
dµ⊗ ν(x , y)

which by duality is equivalent to the entropic optimal transport problem. We moreover
have the following relationship:

dπ∗

dµ⊗ ν
(x , y) = exp

(
ϕ(x) + ψ(y) − c(x , y)

ϵ

)



Sinkhorn’s Algorithm

Sinkhorn’s algorithm is essentially an alternatig minimization algorithm on each
variables ϕ,ψ.
Indeed fixing ψk and maximizing in ϕ the first order conditions grant that

ϕk+1(x) = ϵ ln
(∫

exp
(
ψk(y) − c(x , y)

ϵ

)
dν(y)

)
similarily for ψ we have

ψk+1(y) = ϵ ln
(∫

exp
(
ϕk+1(x) − c(x , y)

ϵ

)
dµ(x)

)



Towards weak optimal transport

Both problems require to minimize a convex function in π over Π(µ, ν). And in fact
they have a common formulation.
If we disintegrate π with respect to the projection onto the first variable we can write
π = µ⊗ πx and thus∫

cdπ =
∫ (∫

c(x , y)dπx (y)
)

dµ(x), H(π | µ⊗ ν) =
∫

H(πx | ν)dµ(x)

where the second equality holds by additivity of the entropy.
Note that now both functions are of the form∫

c(x ,πx )dµ(x)

where for every x the function c(x , .) is convex.



Weak Optimal Transport

Let µ, ν ∈ P(Rd). Let c : Rd × P(Rd) → R jointly l.s.c., lower bounded and convex in
the second variable. We study the following problem called weak optimal transport
[GRST15]

inf
π∈Π(µ,ν)

∫
c(x ,πx )dµ(x) (WOT)

Existence of solutions by [VBP19] and a review of applications by [BVP20].



Examples

Entropy regularized optimal transport :

c(x ,πx ) =
∫

c(x , y)dπx + ϵH(πx | ν)

Vector Quantile Regression [CCG15] :

c(x ,πx ) =


∫

∥x − pE (y)∥2dπx if
∫

pE⊥(y)dπx = 0
+∞ else

Monopolist problem [DDT17]:

c(x ,πx ) = inf
q≤πx

∥x −
∫

ydq∥



Examples

Strassen Theorem [GJ20]:

c(x ,πx ) = ∥x −
∫

ydπx∥2

Martingale optimal transport [BHLP13]:

c(x ,πx ) = c0(x ,πx ) + θ

(
x −

∫
yπx

)
Bass martingale [BVST23] :

c(x ,πx ) =

W 2
2 (πx ,N (x , 1)) if

∫
yπx = 0

+∞ else



Framework

We restrict ourselves to compactly supported measures µ, ν and study for ϵ ≥ 0 the
following problem

inf
π∈Π(µ,ν)∫
f (y)dπx =0

∫
c(x ,πx )dµ(x) + ϵH(π | µ⊗ ν) (WOTϵ)

where c has a continuity modulus with respect to W∞ which is uniform in x , f is
vector valued, continuous. We further assume that

∫
f ⊗ fdν is invertible (constraint

qualification).



Dual formulation

As in the optimal transport case the problem WOTϵ admits a dual formulation.
Under the hypothesis made before there is no duality gap and the following dual
problem has solutions in L∞.

max
ϕ,λ∈L∞(µ)),ψ∈L∞(ν)

β∈L∞(µ⊗ν)

∫
ϕdµ+

∫
ψdν − σϵ,µ⊗ν(ϕ+ ψ + λf + c∗

x (βx ) − β)

where

σϵ,µ⊗ν(a) =

ϵ
∫

exp
(

a(x ,y)
ϵ

)
dµ⊗ ν(x , y) if ϵ > 0

1a≤0 else



Convergence as ϵ → 0

The gamma convergence for EOTϵ [CDPS17] introduced a block approximation. Here to
derive rates of convergence we introduce a slice approximation.
Let (Ai)i a partition of Rd the slice approximation πA of π is defined as πA = µ⊗ πA

x
where

dπA
x

dν =
∑

i

πx (Ai)
ν(Ai)

If the diameter of Ai is less than δ we have H(πA | µ⊗ ν) = O(− ln(δ)).

Thus since f is continuous and λ is bounded, as soon as c is uniformly hölder we get

WOTϵ(µ, ν) − WOT0(µ, ν) = O(ϵ ln(ϵ)).



SISTAlgorithm

Introduced in [CDGS20] the algorithm to compute WOTϵ is an extension of the Sinkhorn
algorithm.
If F (ϕ,ψ,λ,β) is the dual function then the algorithm is the following:

ϕk+1 ∈ arg min
ϕ

F (ϕ,ψk ,λk ,βk)

ψk+1 ∈ arg min
ψ

F (ψk+1,ψ,λk ,βk)

(λk+1,βk+1) = (λk ,βk) − ∇λ,βF (ϕk+1,ψk+1,λk ,βk)

This algorithm was also successfully used in [GNT23] for geodesics extrapolation in
Wasserstein space.



Numerical examples - Projection onto convex order

In [GRST15] they studied a WOT problem with the following cost
c(x , p) = ∥x −

∫
ydp(y)∥2.

They proved that if the solution is π∗ then T♯µ is the solution to

inf
µ̃≤cvν

W 2
2 (µ, µ̃)

where T (x) =
∫

ydπx and {. ≤cv ν} is the set of measures µ̃ such that there is a
Martingale coupling µ̃ and ν.



Numerical examples - Brenier Strassen interpolation

Let µ = N (0, 1) and ν = N (−1, 2) + N (1, 2). For t ∈ [0, 1] using the cost
c(x , p) = t

∫
∥x − y∥2dp + (1 − t)∥x −

∫
ydp∥2 we interpolate between a diffusion

from µ to ν and the optimal transport.



Thank you for your attention !
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