How to compute WOT?

Guillaume Carlier, Hugo Malamut, Maxime Sylvestre Université Paris-Dauphine PSL (CEREMADE)

May 28, 2024

Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$. Let $c : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ l.s.c., lower bounded. The optimal transport problem is the following

$$\inf_{\tau \in \Pi(\mu,\nu)} \int c(x,y) d\pi(x,y)$$
(OT)

where $\Pi(\mu, \nu)$ is the set of probability measures on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals μ, ν . Usually the cost $c(x, y) = ||x - y||^2$ is used.

 τ

Entropic optimal transport

To compute the optimal transport problem the entropy regularized problem is often used to compute optimal transport [Cut13]

$$\inf_{\pi\in\Pi(\mu,\nu)}\int c(x,y)d\pi(x)+\epsilon H(\pi\mid\mu\otimes\nu) \tag{EOT}_{\epsilon}$$

where $H(\pi \mid \mu \otimes \nu)$ is the relative entropy of π with respect to $\mu \otimes \nu$. The Sinkhorn algorithm computes the solution to the dual problem.

$$\sup_{\phi,\psi}\int \phi d\mu + \int \psi d\nu - \epsilon \int \exp\left(\frac{\phi(x) + \psi(y) - c(x,y)}{\epsilon}\right) d\mu \otimes \nu(x,y)$$

which by duality is equivalent to the entropic optimal transport problem. We moreover have the following relationship:

$$rac{d\pi^*}{d\mu\otimes
u}(x,y)=\exp\left(rac{\phi(x)+\psi(y)-c(x,y)}{\epsilon}
ight)$$

Sinkhorn's algorithm is essentially an alternatig minimization algorithm on each variables $\phi,\psi.$

Indeed fixing ψ_k and maximizing in ϕ the first order conditions grant that

$$\phi_{k+1}(x) = \epsilon \ln \left(\int \exp \left(\frac{\psi_k(y) - c(x, y)}{\epsilon} \right) d\nu(y) \right)$$

similarly for ψ we have

$$\psi_{k+1}(y) = \epsilon \ln\left(\int \exp\left(\frac{\phi_{k+1}(x) - c(x, y)}{\epsilon}\right) d\mu(x)\right)$$

Towards weak optimal transport

Both problems require to minimize a convex function in π over $\Pi(\mu, \nu)$. And in fact they have a common formulation.

If we disintegrate π with respect to the projection onto the first variable we can write $\pi=\mu\otimes\pi_{\rm x}$ and thus

$$\int c d\pi = \int \left(\int c(x,y) d\pi_x(y)
ight) d\mu(x), \quad H(\pi \mid \mu \otimes
u) = \int H(\pi_x \mid
u) d\mu(x)$$

where the second equality holds by additivity of the entropy. Note that now both functions are of the form

$$\int c(x,\pi_x)d\mu(x)$$

where for every x the function c(x, .) is convex.

Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$. Let $c : \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$ jointly l.s.c., lower bounded and convex in the second variable. We study the following problem called weak optimal transport [GRST15]

$$\inf_{\pi \in \Pi(\mu,\nu)} \int c(x,\pi_x) d\mu(x) \tag{WOT}$$

Existence of solutions by [VBP19] and a review of applications by [BVP20].

Entropy regularized optimal transport :

$$c(x,\pi_x) = \int c(x,y) d\pi_x + \epsilon H(\pi_x \mid \nu)$$

Vector Quantile Regression [CCG15] :

$$c(x, \pi_x) = \begin{cases} \int \|x - p_E(y)\|^2 d\pi_x & \text{if } \int p_{E^{\perp}}(y) d\pi_x = 0 \\ +\infty & \text{else} \end{cases}$$

Monopolist problem [DDT17]:

$$c(x,\pi_x) = \inf_{q \leq \pi_x} \|x - \int y dq\|$$

Examples

Strassen Theorem [GJ20]:

$$c(x,\pi_x) = \|x - \int y d\pi_x\|^2$$

Martingale optimal transport [BHLP13]:

$$c(x,\pi_x)=c^0(x,\pi_x)+\theta\left(x-\int y\pi_x\right)$$

Bass martingale [BVST23] :

$$c(x, \pi_x) = egin{cases} W_2^2(\pi_x, \mathcal{N}(x, 1)) & ext{if } \int y \pi_x = 0 \ +\infty & ext{else} \end{cases}$$

We restrict ourselves to compactly supported measures μ,ν and study for $\epsilon\geq 0$ the following problem

$$\inf_{\substack{\pi \in \Pi(\mu,\nu) \\ \int f(y) d\pi_x = 0}} \int c(x, \pi_x) d\mu(x) + \epsilon H(\pi \mid \mu \otimes \nu)$$
(WOT_e)

where *c* has a **continuity modulus** with respect to W_{∞} which is uniform in *x*, *f* is vector valued, continuous. We further assume that $\int f \otimes f d\nu$ is **invertible** (constraint qualification).

.....

As in the optimal transport case the problem WOT_{ϵ} admits a dual formulation. Under the hypothesis made before there is **no duality gap** and the following dual problem **has solutions** in L^{∞} .

$$\max_{\substack{\phi,\lambda \in L^{\infty}(\mu)), \psi \in L^{\infty}(\nu) \\ \beta \in L^{\infty}(\mu \otimes \nu)}} \int \phi d\mu + \int \psi d\nu - \sigma_{\epsilon,\mu \otimes \nu} (\phi + \psi + \lambda f + c_{x}^{*}(\beta_{x}) - \beta)$$

where

$$\sigma_{\epsilon,\mu\otimes\nu}(a) = \begin{cases} \epsilon \int \exp\left(\frac{a(x,y)}{\epsilon}\right) d\mu \otimes \nu(x,y) & \text{ if } \epsilon > 0\\ 1_{a \leq 0} & \text{ else} \end{cases}$$

The gamma convergence for EOT_{ϵ} [CDPS17] introduced a block approximation. Here to derive rates of convergence we introduce a slice approximation.

Let $(A_i)_i$ a partition of \mathbb{R}^d the slice approximation π^A of π is defined as $\pi^A = \mu \otimes \pi^A_x$ where

$$\frac{d\pi_x^A}{d\nu} = \sum_i \frac{\pi_x(A_i)}{\nu(A_i)}$$

If the diameter of A_i is less than δ we have $H(\pi^A \mid \mu \otimes \nu) = O(-\ln(\delta))$.

Thus since f is continuous and λ is bounded, as soon as c is **uniformly hölder** we get

$$WOT_{\epsilon}(\mu, \nu) - WOT_{0}(\mu, \nu) = O(\epsilon \ln(\epsilon)).$$

Introduced in [CDGS20] the algorithm to compute WOT_{ϵ} is an extension of the Sinkhorn algorithm.

If $F(\phi, \psi, \lambda, \beta)$ is the dual function then the algorithm is the following:

$$\phi_{k+1} \in \underset{\phi}{\arg\min} F(\phi, \psi_k, \lambda_k, \beta_k)$$
$$\psi_{k+1} \in \underset{\psi}{\arg\min} F(\psi_{k+1}, \psi, \lambda_k, \beta_k)$$
$$(\lambda_{k+1}, \beta_{k+1}) = (\lambda_k, \beta_k) - \nabla_{\lambda,\beta} F(\phi_{k+1}, \psi_{k+1}, \lambda_k, \beta_k)$$

This algorithm was also successfully used in [GNT23] for geodesics extrapolation in Wasserstein space.

In [GRST15] they studied a WOT problem with the following cost $c(x, p) = ||x - \int y dp(y)||^2$. They proved that if the solution is π^* then $T_{\sharp}\mu$ is the solution to

 $\inf_{ ilde{\mu}\leq_{cv}
u}W_2^2(\mu, ilde{\mu})$

where $T(x) = \int y d\pi_x$ and $\{. \leq_{cv} \nu\}$ is the set of measures $\tilde{\mu}$ such that there is a Martingale coupling $\tilde{\mu}$ and ν .

Let
$$\mu = \mathcal{N}(0, 1)$$
 and $\nu = \mathcal{N}(-1, 2) + \mathcal{N}(1, 2)$. For $t \in [0, 1]$ using the cost $c(x, p) = t \int ||x - y||^2 dp + (1 - t) ||x - \int y dp ||^2$ we interpolate between a diffusion from μ to ν and the optimal transport.

Thank you for your attention !

References i

- Mathias Beiglböck, Pierre Henry-Labordère, and Friedrich Penkner.
 Model-independent bounds for option prices: A mass transport approach, 2013.
- Julio Daniel Backhoff-Veraguas and Gudmund Pammer. Applications of weak transport theory, 2020.
- Julio Backhoff-Veraguas, Walter Schachermayer, and Bertram Tschiderer. The bass functional of martingale transport, 2023.
- Guillaume Carlier, Victor Chernozhukov, and Alfred Galichon.
 Vector quantile regression: An optimal transport approach, 2015.
- Guillaume Carlier, Arnaud Dupuy, Alfred Galichon, and Yifei Sun.
 Sista: learning optimal transport costs under sparsity constraints, 2020.

References ii

- Guillaume Carlier, Vincent Duval, Gabriel Peyré, and Bernhard Schmitzer.
 Convergence of entropic schemes for optimal transport and gradient flows, 2017.
- Marco Cuturi.

Sinkhorn distances: Lightspeed computation of optimal transportation distances, 2013.

Constantinos Daskalakis, Alan Deckelbaum, and Christos Tzamos.
 Strong duality for a multiple-good monopolist.
 Econometrica, 85(3):735–767, 2017.

References iii

- Nathael Gozlan and Nicolas Juillet.
 - On a mixture of brenier and strassen theorems.

Proceedings of the London Mathematical Society, 120(3):434–463, March 2020.

- Thomas Gallouët, Andrea Natale, and Gabriele Todeschi.
 From geodesic extrapolation to a variational bdf2 scheme for wasserstein gradient flows, 2023.
- Nathael Gozlan, Cyril Roberto, Paul-Marie Samson, and Prasad Tetali.
 Kantorovich duality for general transport costs and applications, 2015.
- Julio Backhoff Veraguas, Mathias Beiglboeck, and Gudmund Pammer. Existence, duality, and cyclical monotonicity for weak transport costs, 2019.