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Outline

A cardiology problem

An unfitted numerical method

Some numerical analysis elements

Numerical simulations
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A cardiology problem

Goal : run simulations involving left atrium, left ventricle, mitral valves
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Technical difficulties

Several difficulties from Fluid-Structure Interaction (FSI) problems

two systems : fluid and structure

→ splitting scheme (separate
resolution for fluid and solid)

contact between several deformable solids

→ contact algorithm
has to be considered

deformation of the fluid domain over time

high pressure jumps through the valves
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Technical difficulties

two systems : fluid and structure → splitting scheme (separate
resolution for fluid and solid), case of thin-walled structures

[Kamensky, Hsu, Schillinger, Evans, Aggarwal, Bazilevs, Sacks,
Hughes 15]

[Boilevin-Kayl, Fernández, Gerbeau 19]

[Boilevin-Kayl, Fernández, Gerbeau 19]

[Fernández, Landajuela 20]

[Annese, Fernández, Gastaldi 22]
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Technical difficulties

contact between several deformable solids

[Kamensky, Xu, Lee, Yan, Bazilevs, Hsu 19]

[Mlika, Renard, Chouly 17]

[Burman, Fernández, Frei 20]

[Burman, Fernández, Frei, Gerosa 22]
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Technical difficulties

Deformation of the fluid domain :
standard method : Arbitrary Lagrangian Eulerian (ALE)
[Hu, Patankar, Zhu 01]

enables to account for the domain deformation
but ... : we need to fully remesh when large deformations are applied
→ not adapted when contact occurs

a more recent approach : extended finite elements (XFEM)
[Groß, Reusken 07]

the mesh does not need to fit the boundary / interface
optimal convergence rates are established
but ... : needs to double the degrees of freedom for the cut cells →
matrix size depends on the position of the interface + needs to
handle small cuts

another try : fictitious domain :
similar to XFEM, but we do not double the degrees of freedom in the
cut cells
gain : the matrix size is fixed along the whole simulation
main drawbacks : we do not have optimal convergence rates + the
velocity is more sensitive to the pressure
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The domain and its triangulation

Ω = Ω1 ∪ Σ ∪ Ω2 ⊂ Rd bounded polygonal, d ∈ {2, 3}
Σ : immersed interface
ΓD : Dirichlet boundary (top, bottom)
ΓN : Neumann boundary (left, right)
Th a triangulation of Ω (not fitted to Σ)
Sh : a discretization of Σ
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The Stokes problem

We want to find (u, p) solution to

−div σ(u, p) = f in Ω1 ∪ Ω2

div u = 0 in Ω1 ∪ Ω2

u = vs on Σ

u = 0 on ΓD

σ(u, p)n = gN on ΓN

with σ(u, p) := ν∇u− pI.

We want a good approximation of Jσ(u, p)nK through the
interface.
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A fictitious domain method

We consider the following FE spaces (P1-P1-P1 FE method)

Vh := {vh ∈ H1(Ω;Rd) | vh = 0 on ΓD and vh|T ∈ P1(T ;Rd) ∀T ∈ Th}
Qh := {qh ∈ H1(Ω) | qh|T ∈ P1(T ) ∀T ∈ Th}
Λh := {µh ∈ H1(Σ;Rd) | µh|S ∈ P1(S;Rd) ∀S ∈ Sh}

Find (uh, ph,λh) ∈ Vh ×Qh ×Λh s.t.

ah(uh,vh)− bh(vh, ph) + ch(vh,λh) = `h(vh) ∀vh ∈ Vh

bh(uh, qh) + sBPh (ph, qh) = 0 ∀qh ∈ Qh
−ch(uh,µh) + sBHh (λh,µh) = −ch(vs,µh) ∀µh ∈ Λh

with

ah(wh,vh) := ν(∇wh,∇vh)Ω

bh(wh, qh) := (div wh, qh)Ω

ch(wh,µh) := (wh,µh)Σ

`h(wh) := (f ,vh)Ω + (gN ,vh)ΓN
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Stabilization terms

We need the following stabilization terms:
Brezzi–Pitkäranta stabilization for the pressure
[Brezzi, Pitkäranta 84]

sBPh (ph, qh) :=
γph

2

ν
(∇ph,∇qh)Ω

with γp = 0.1 in the sequel
Barbosa–Hughes stabilization for the multiplier
[Barbosa, Hughes 91]

sBHh (λh,µh) :=
γλh

ν
(λh,µh)Σ

with γλ = 0.01 in the sequel
inf-sup condition for the bilinear form
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First results

Test case:

Results:

Similar results for:
P1–P0
P2–P0
Crouzeix–Raviart, ...
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An interpretation of the problem

We expect the approximation

‖∇(u− uh)‖Ω+‖p− ph‖Ω≤ C( inf
vh∈Vh

‖∇(u− vh)‖Ω+ inf
qh∈Qh

‖p− qh‖Ω)

≤ C(|u|H1+γ(Ω) + |p|Hγ(Ω))h
γ

with γ < 1
2 because of jumps through the interface

We need to represent the pressure jump in the discrete space
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Main idea

Enrich the pressure FE space with an Heavyside function

χ1(x) :=

{
1, x ∈ Ω1

0, x ∈ Ω2

Q̃h := Qh ⊕ Span(χ1)

The new formulation is : Find (uh, ph,λh) ∈ Vh × Q̃h ×Λh s.t.

ah(uh,vh)− bh(vh, ph) + ch(vh,λh) = `h(vh) ∀vh ∈ Vh

bh(uh, qh) + sBPh (ph, qh) + s̃BHh ((λh, ph), (0, qh)) = 0 ∀qh ∈ Q̃h
−ch(uh,µh) + s̃BHh ((λh, ph), (µh, 0)) = −ch(vs,µh) ∀µh ∈ Λh

where

s̃BHh ((λh, ph), (µh, qh)) :=
γλh

ν
(λh − JphKn,µh − JqhKn)Σ
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Another formulation

This problem can be rewritten under the form : Find
(uh, p̃h, p̂h,λh) ∈ Vh ×Qh × R×Λh s.t.

ah(uh,vh)− bh(vh, p̃h) + ch(vh,λh)− dh(vh, p̂h) = `h(vh) ∀vh ∈ Vh

bh(uh, q̃h) + sBPh (p̃h, q̃h) = 0 ∀q̃h ∈ Qh
−ch(uh,µh) + s̃BHh ((λh, p̂hχ1), (µh, 0)) = −ch(vs,µh) ∀µh ∈ Λh

dh(uh, q̂h) + s̃BHh ((λh, p̂hχ1), (0, q̂hχ1)) = dh(vs, q̂h) ∀q̂h ∈ R

where

dh(uh, q̂h) := q̂h

∫
∂Ω1

uh · n

This enrichment can be seen as globally imposing mass conservation in
Ω1

Similar idea in [Hisada , Washio 16] (in japanese)
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Inf-sup condition

We define

Ah((wh, rh, ζh), (vh, qh,µh))

:= ah(wh,vh)− bh(vh, rh) + ch(vh, ζh) + bh(wh, qh)− ch(wh,µh)

+ sBPh (rh, qh) + s̃BHh ((ζh, rh), (µh, qh))

The solution fulfills

Ah((uh, ph,λh), (vh, qh,µh)) = `h(vh)− ch(vs,µh)

|||wh, rh, ζh|||2 := ‖∇wh‖2Ω + ‖rh‖2Ω + h‖ζh‖2Σ

Inf-sup condition

There exists a constant β > 0 independent from h such that for all
(wh, rh, ζh) ∈ Uh × Q̃h ×Λh

β|||wh, rh, ζh||| ≤ sup
(vh,qh,µh)∈Uh×Q̃h×Λh\{(0,0,0)}

Ah((wh, rh, ζh), (vh, qh,µh))

|||vh, qh,µh|||

proof : similar arguments as the ones in [Fournié, Lozinski 18]
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Main steps of the proof (1/2)

Denote
S := sup(vh,qh,µh)∈Uh×Q̃h×Λh\{(0,0,0)}

Ah((wh, rh, ζh), (vh, qh,µh))

|||vh, qh,µh|||
Step 1 : velocity and stabilization terms

ν‖∇wh‖2Ω +
γph

2

ν
‖∇rh‖2Ω +

γλh

ν
‖ζh − JrhKn‖2Σ

= ah(wh,wh) + sBPh (rh, rh) + s̃BHh ((ζh, rh), (ζh, rh))

= Ah((wh, rh, ζh), (wh, rh, ζh))≤ S|||wh, rh, ζh|||

Step 2 : pressure
There exists vp ∈ H1

0 (Ω1 ∪ Ω2) such that and div vp = rh − rh in
Ω and ‖vp‖H1(Ω) ≤ C‖rh − rh‖Ω

‖rh − rh‖2Ω = (rh − rh,div vp)Ω

= (rh − rh,div (vp − Ih(vp)))Ω + (rh − rh,div Ih(vp))Ω

|(rh − rh,div (vp − Ih(vp)))Ω| = |(∇(rh − rh),vp − Ih(vp))Ω|
≤ Ch‖∇rh‖Ω‖rh − rh‖Ω
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Main steps of the proof (2/2)

This gives

‖rh − rh‖2Ω ≤ CS|||wh, rh, ζh|||

The mean pressure rh can be estimated separately :

‖rh‖2Ω ≤ CS|||wh, rh, ζh|||

Combining both ‖rh‖2Ω ≤ CS|||wh, rh, ζh|||
Step 3 : Lagrange multiplier

h
1
2 ‖ζh‖Σ ≤ h

1
2 ‖ζh − JrhKn‖Σ + h

1
2 ‖JrhKn‖Σ

≤ h 1
2 ‖ζh − JrhKn‖Σ + C‖rh‖Ω

≤ CS|||wh, rh, ζh|||

Step 4 : We conclude with Young’s inequality
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A priori bounds

Expected convergence rates

There exists C > 0 independent from h such that

|||u− uh, p− ph, λ− λh||| ≤ Chγ(‖u‖H1+γ(Ω) + ‖p− Ĵh(p)‖Hγ(Ω))

for every γ < 1
2

proof: We define interpolation operators:
velocity : Ih(u) ∈ Vh

pressure : Jh(p) := J̃h(p) + Ĵh(p) ∈ Qh ⊕ Span(χ1)

Lagrange multiplier : Lh(λ) ∈ Λh

with Ĵh(p) := JpKχ1 := (JpK, 1)Σχ1 and J̃h(p) a standard interpolation of
p− Ĵh(p)
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A priori bounds

We compute

Ah((Ih(u)− uh, Jh(p)− ph,Lh(λ)− λh), (vh, qh,µh))

= Ah((Ih(u), Jh(p),Lh(λ)), (vh, qh,µh))− `h(vh) + ch(vs,µh)

= ν(∇(Ih(u)− u),∇vh)Ω − (Jh(p)− p, div vh)Ω

+ (div (Ih(u)− u), qh)Ω + (Lh(λ)− λ,vh)Σ − (Ih(u)− u,µh)Σ

+
γph

2

ν
(∇J̃h(p),∇q̃h)Ω +

γλh

ν
(Lh(λ)− Ĵh(p)n,µh − q̂hn)Σ

We have

(Jh(p)− p,div vh)Ω = (J̃h(p)− (p− Ĵh(p)),div vh)Ω

(Lh(λ)− λ,vh)Σ = (Lh(λ− Ĵh(p)n)− (λ− Ĵh(p)n),vh)Σ
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A priori bounds

Then

|Ah((Ih(u)− uh, Jh(p)− ph,Lh(λ)− λh), (vh, qh,µh))|

≤ Chγ(‖u‖H1+γ(Ω) + ‖p− Ĵh(p)‖Hγ(Ω) + h
1
2−γ‖λ− Ĵh(p)n‖Σ)

× |||vh, qh,µh|||

With the inf-sup condition

β|||Ih(u)− uh, Jh(p)− ph,Lh(λ)− λh|||

≤ Chγ(‖u‖H1+γ(Ω) + ‖p− Ĵh(p)‖Hγ(Ω) + h
1
2−γ‖λ− Ĵh(p)n‖Σ)

We conclude with λ := Jσ(u, p)Kn := Jν∇u− pIKn so

‖λ− Ĵh(p)n‖Σ ≤ ν‖J∇uK‖Σ + ‖Jp− Ĵh(p)K‖Σ

and approximation properties of the interpolations
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Numerical simulations (1/4)

Test case :

Results :

pressure jump : JphK = 1.5× 105

22/26



Numerical simulations (2/4)

From now on : Navier–Stokes with symmetric stress tensor
σ(u, p) := 1

2 (∇u +∇uT )− pI
Application to FSI : closed valve in a 3d setting
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Numerical simulations (3/4)

Application to FSI : open valve in a 3d setting
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Numerical simulations (4/4)

Application to FSI : simulation of the aortic valve
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Wrap up

Achievements
a scheme robust to high pressure jumps
simulations involving Fluid-Structure Interaction
results similar to ALE
a publication in ESAIM:M2AN (2024)

Perspectives
contact
more realistic geometries
mitral valves + atrium + ventricle

Thank you for your attention !
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