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o A cardiology problem

o An unfitted numerical method

o Some numerical analysis elements

o Numerical simulations
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Goal : run simulations involving left atrium, left ventricle, mitral valves
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Several difficulties from Fluid-Structure Interaction (FSI) problems

o two systems : fluid and structure
@ contact between several deformable solids

o deformation of the fluid domain over time

@ high pressure jumps through the valves
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Technical difficulties

Several difficulties from Fluid-Structure Interaction (FSI) problems

e two systems : fluid and structure — splitting scheme (separate
resolution for fluid and solid)

@ contact between several deformable solids — contact algorithm
has to be considered

o deformation of the fluid domain over time

@ high pressure jumps through the valves
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two systems : fluid and structure — splitting scheme (separate
resolution for fluid and solid), case of thin-walled structures

o [Kamensky, Hsu, Schillinger, Evans, Aggarwal, Bazilevs, Sacks,
Hughes 15]

o [Boilevin-Kayl, Fernandez, Gerbeau 19]
o [Boilevin-Kayl, Fernandez, Gerbeau 19]
@ [Fernandez, Landajuela 20]

o [Annese, Fernandez, Gastaldi 22]
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contact between several deformable solids
o [Kamensky, Xu, Lee, Yan, Bazilevs, Hsu 19]
o [Mlika, Renard, Chouly 17]
@ [Burman, Fernandez, Frei 20]

@ [Burman, Fernandez, Frei, Gerosa 22]
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Deformation of the fluid domain :

o standard method : Arbitrary Lagrangian Eulerian (ALE)
[Hu, Patankar, Zhu 01]
e enables to account for the domain deformation
e but ... : we need to fully remesh when large deformations are applied
— not adapted when contact occurs
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@ standard method : Arbitrary Lagrangian Eulerian (ALE)
[Hu, Patankar, Zhu 01]
e enables to account for the domain deformation

e but ... : we need to fully remesh when large deformations are applied
— not adapted when contact occurs

@ a more recent approach : extended finite elements (XFEM)
[GroR, Reusken 07]
o the mesh does not need to fit the boundary / interface
e optimal convergence rates are established
e but ... : needs to double the degrees of freedom for the cut cells —

matrix size depends on the position of the interface + needs to
handle small cuts
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Technical difficulties

Deformation of the fluid domain :

@ standard method : Arbitrary Lagrangian Eulerian (ALE)
[Hu, Patankar, Zhu 01]
e enables to account for the domain deformation
e but ... : we need to fully remesh when large deformations are applied
— not adapted when contact occurs

@ a more recent approach : extended finite elements (XFEM)
[GroR, Reusken 07]
o the mesh does not need to fit the boundary / interface
e optimal convergence rates are established
e but ... : needs to double the degrees of freedom for the cut cells —
matrix size depends on the position of the interface + needs to
handle small cuts

@ another try : fictitious domain :
e similar to XFEM, but we do not double the degrees of freedom in the
cut cells
e gain : the matrix size is fixed along the whole simulation
e main drawbacks : we do not have optimal convergence rates + the
velocity is more sensitive to the pressure
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e 0=, UXUQy C R? bounded polygonal, d € {2,3}
@ Y : immersed interface

e I'p : Dirichlet boundary (top, bottom)
o I'y : Neumann boundary (left, right)

e T, a triangulation of Q (not fitted to X)
@ S;, : a discretization of X
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o We want to find (u,p) solution to

—divo(u,p) =fin QO Uy
divu=0in Q; Uy
u=v,onx

u=0onIp

o(u,p)n =gy on 'y

with o(u,p) := vVu — pl.

o We want a good approximation of [o(u, p)n] through the
interface.
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A fictitious domain method

We consider the following FE spaces (P'-P!-P! FE method)

Vi, = {vi, € H(Q;RY) | v, =00on T'p and v}, | € PH(T;RY) VT € Ty}
Qn = {an € H'(Q) | an|r € P(T) VT € Tn}
A= {p, € H'(Z;RY) | pyls € PH(S;RY) VS € Sy}

Find (uh,ph,)\h) €V X Qn X Ay, s.t.

an(up, vi) — bn(Vh, pr) + cn(Va, An) = Ch(vh) Vv, € Vi
br(un,qn) + s, (pr.qn) =0 Van € Qn
—cn(an, ) + 55 Ay ) = —cn(ve, ) Yy, € Ay,
with
an(wp,vy) = v(Vwy, Vvy)o
br(Wh, qr) = (div wp, qn)o
Ch(wh,ﬂh) (whvu’h)
bh(wr) = (£, vi)a + (8N, Vi)rx
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Stabilization terms

We need the following stabilization terms:

@ Brezzi—Pitkaranta stabilization for the pressure
[Brezzi, Pitkdranta 84]

2

h
sp¥ (pnyan) = %V (Vonr, Van)a

with v, = 0.1 in the sequel

e Barbosa—Hughes stabilization for the multiplier
[Barbosa, Hughes 91]

B B

Ah7l~‘l‘h) = Ah7l~‘l‘h)2

with v, = 0.01 in the sequel
o inf-sup condition for the bilinear form
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First results

Test case:

velocity pressure

0.000+00 2500609 5.000e-09 7.500e-09 1.000e-08 0.000e+00 3.750e+04 7.500e+04 1.1256+05 1.5008+05

Results:

~§

velocity pressure

0.000e+00 1.000e+04 2.000e+04 3.000e+04 4.000e+04 0.000e+00 3.750e+04 7.500e+04 1.125e+05 1.500+05

Similar results for:
e P1-PO
e P2-PO

@ Crouzeix—Raviart, ...
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@ We expect the approximation
[V(a—up)letlp—prlla< C( inf [[V(u—=va)llo+ inf [lp—gnla)
VLREV) arnEQR
< C(Julgr~(a) + [pla(@)h”

with v < % because of jumps through the interface

@ We need to represent the pressure jump in the discrete space
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Enrich the pressure FE space with an Heavyside function

1, x€Q
Xl(x) = { 0’ xc Q;

Qn := Qn @ Span(x1)
The new formulation is : Find (up, pp, An) € Vi X Qh x Ap, s.t.

an(un, Vi) — bn(Vi, pn) + cn(Vi, An) = Ch(vh) Vv, € Vy
b (un, qn) + 527 (phyan) + 522 (An,pn), (0,q1)) = 0 Yan € Qn
_Ch(uhal'l’h) + gEH(()‘haph)’ (/J‘h)O)) = _Ch(v&"“h) vIJ’h € Ah

where

gEH((AmPh)a (1, qn)) == F%h(Ah — [pnln, 1y, — [gn]n)s
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Another formulation

This problem can be rewritten under the form : Find
(Up, Phs Dy An) € Vi X Qp x R x Ay, sit.

ap(up, vp) — br(Vi, Pr) + cn(Vi, An) — dn(Vi, Pr) = Cn(Vi) Vv, € Vp,
bn(an, Gn) + st " (Ph> Gn) = 0 Van € Qn
—cn(un, ) + 357 (An, Prxa), (1, 0)) = —en(Ve, y) - Vg, € A

dn(an, Gn) + 5K (Ans Drxa), (0, Qth)) dn(vs,qn)  Van €R

where
dn(un, qn) = ?]\h/ u,-n
o

This enrichment can be seen as globally imposing mass conservation in
M

Similar idea in [Hisada , Washio 16] (in japanese)
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We define

Ah((whaTh) Ch)? (Vh7 quuh))
= ah(wh,vh) — bh(Vh, Th) + Ch(vh’ Ch) + bh(wh’ Qh) - Ch(wh» “h)

+ 515 (rnqn) + 557 ((Cnorn)s (s an))
The solution fulfills

Ah((uhaphy Ah)y (Vh7 dh, p’h)) = gh(Vh) - Ch(VS, p’h)

Wi, s Cull? o= VW1 + rnlié, + RICAIIS

There exists a constant 3 > 0 independent from £ such that for all
(Wh,Ths Cp) € Up X Qp X Apy

Bmwh,rh,Ch"I < S'llP Ah((wharhvch)v(Vhaqhay’h))
(Vi@ ) EUR X Qn x AR\ {(0,0,0)} e an, pnl

proof : similar arguments as the ones in [Fournié, Lozinski 18]
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Main steps of the proof (1/2)

@ Denote
S =g _ -Ah((Wh’Tthh)a(VhthaHh))
= buP(vh,qh,uh)eUthh x Ap\{(0,0,0)} ”|Vh7 h, thl\

o Step 1: velocity and stabilization terms

HCh [raln%

= ah(Wh,Wh) + 5,7 (rnorn) + 5K (Chorn)s (Chon)
= An((Why7hy Cp)s (Why Thy €)) < SllWh, 7hs Gl
@ Step 2 : pressure

There exists v, € Hg (91 U ) such that and div v, =7, — 7 in
Qand |[vpllaio) < Cllrn —Trlla

Irn = TrllG = (rn — Tr, div vp)o
= (rn = Th,div (vp — In(vyp)))a + (rn — Tr, div In(vy))a

|(rh, — T, div (vp — In(vp)))al = |(V(rn — 1), vp — In(vyp))al
< Ch||Vrrllallr, — Trlla
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o This gives
lrn =728 < CSlIwn, s Cull
@ The mean pressure T}, can be estimated separately :
72 1IE, < CSlIwn, 71, €l

Combining both ||ry,||3 < CS||wh,rh, ¢yl
o Step 3 : Lagrange multiplier

h2(Cplls < h2(C, — [rulnlls + A2 || [ry]n]s
< hz ¢, — [ralnlls + Cllralle
< CSllwh,rh, Call

o Step 4 : We conclude with Young's inequality
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There exists C' > 0 independent from A such that

e — o p = P A = Anll < CHY ([l g0y + 12 = Ta (D) |21 ()

1
for every v < 3

proof: We define interpolation operators:

o velocity : I(u) € Vy,

o pressure : Jy(p) := Ju(p) + Ju(p) € Qn & Span(x1)

o Lagrange multiplier : Ly(\) € Ay,
with fh(p) = [plx1 == ([p]. 1)z x1 and Ju(p) a standard interpolation of
p— jh(P)
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o We compute

An((Tn(a) —up, Jn(p) — prs Lu(X) — An), (Vi, qn, 4y,))

= An((Tn(w), Jn(p), Ln(X)), (Vhs s 1)) — Lo (Vi) + cn(Vs, )
=v(V(Ip(u) —u),Vvp)a — (Ju(p) — p,div vp)a

+ (div (In(u) —u),gn)o + (Ln(A) = A, vi)s — (In(u) —u, pp)s

K2 _ h N R
+ (V) Ve + (L) )0,y — Gin)s
@ We have

(Jn(p) — p,div vi)a = (Ju(p) — (» — Ju(p)),div vi)a
(La(A) = A, vi)s = (Liu(A — Ju(p)n) — (A — Ju(p)n), va)s
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@ Then

| A ((Th(w) = up, Jo(p) — pry LX) — An), (Va, qn, 11,))]
< R (|all i) + 1P = Tn@) @) + hE A = Tu(p)n]s)

X Ivas an, ol

o With the inf-sup condition

BITn(a) = up, Ju(p) — pry Ln(X) — Ap|
< ChY(Jull oy + 12 = Tu @)l ) + 27X = Th(p)n]s)

@ We conclude with A := [o(u, p)|n := [¥Vu — pI]n so

IA = Jn(p)nlls < vI[Vullls + Ilp - Ta @)=

and approximation properties of the interpolations
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Numerical simulations (1/4)

Test case :

velocity pressure

0.000e+00 2.500-09 5.000e-09 7.500e-09 1.000e-08 0.000e+00 3.750e+04 7.500e+04 1.125e+05 1.5000+05

Results :

velocity pressure
-

. .
0.000e+00 2.500e-09 5.000e-09 7.500e-09 1.000e-08 -1.000e-06 -5.000e-07 0.000e+00 5.000e-07 1.000e-06

pressure jump : [py] = 1.5 x 10°
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Numerical simulations (2/4)

From now on : Navier—Stokes with symmetric stress tensor
o(u,p) := 3(Vu+ VuT) — pI
Application to FSI : closed valve in a 3d setting

— FD

ALE

0.2

0.1

displacement

0 0.2 0.4 06 0.8 1
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Application to FSI : open valve in a 3d setting
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Application to FSI : simulation of the aortic valve

NORMAL AORTIC VALVE
AORTIC VALVE STENOSIS

Closed
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Achievements
@ a scheme robust to high pressure jumps
@ simulations involving Fluid-Structure Interaction
@ results similar to ALE
@ a publication in ESAIM:M2AN (2024)

Perspectives
@ contact
@ more realistic geometries

@ mitral valves 4+ atrium + ventricle

Thank you for your attention |
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