A moment approach for entropy solutions of parameter-dependent hyperbolic conservation laws

Clément Cardoen

Nantes Université, Centrale Nantes, Laboratoire de Mathématiques Jean Leray

Joint work with Swann Marx, Anthony Nouy, Nicolas Seguin

May 2024

Consider the problem

$$\partial_t u(t, z, \xi) + \operatorname{div}_z f(u(t, z, \xi), \xi) = 0, \ (t, z, \xi) \in \mathbb{R}_+ \times \mathbb{R}^N \times \Xi,$$
$$u(0, z, \xi) = u_0(z, \xi), \ (z, \xi) \in \mathbb{R}^N \times \Xi,$$

where Ξ is a compact subset of \mathbb{R}^p for some $p \in \mathbb{N}$. We can rewrite this problem in the following form:

$$abla_x \cdot F(u(x,\xi);\xi) = 0, \ x \in D := \mathbb{R}_+ \times \mathbb{R}^N + \text{b.c.}$$

where $u(\cdot, \xi)$ is in a space V of functions defined on the domain $D \subset \mathbb{R}^n$ of "physical" (time and space) variables, by denoting x = (t, z) and F(u) = (u, f(u))

We adopt a measure-theoretic point of view of conservation laws, by considering measure-valued solutions [DiPerna 1985]¹.

To a classical solution u(x) corresponds a measure-valued solution (a map from D to the set of measure on \mathbb{R})



and the associated occupation measure ν on $D\times \mathbb{R}$ supported on the graph of u

$$\nu(dx, dy) = \mu_x(dy)dx.$$

¹DiPerna, R.J.: Measure-valued solutions to conservation laws. Archive for Rational Mechanics and Analysis (1985) (1985)

Consider the problem

$$abla_x \cdot F(u(x)) = 0, \ x \in D \subset \mathbb{R}^n$$

with boundary conditions $u = u_{\Gamma}$ on $\Gamma \subset \partial D$.

• It admits a weak form

$$\int_{D} \nabla_{x} \phi(x) \cdot F(u(x)) dx - \underbrace{\int_{\Gamma} \phi(x) n \cdot F(u_{\Gamma}(x)) dx}_{L_{F}(\phi)} = 0$$

for some class of sufficiently smooth functions $\phi.$

Consider the problem

$$abla_x \cdot F(u(x)) = 0, \ x \in D \subset \mathbb{R}^n$$

with boundary conditions $u = u_{\Gamma}$ on $\Gamma \subset \partial D$.

• It admits a weak form

$$\int_{D} \nabla_{x} \phi(x) \cdot F(u(x)) dx - \underbrace{\int_{\Gamma} \phi(x) n \cdot F(u_{\Gamma}(x)) dx}_{L_{F}(\phi)} = 0$$

for some class of sufficiently smooth functions $\phi.$

• It even admits an ultra weak form on the measure-valued solution $\mu_{\rm X} = \delta_{u({\rm X})}$

$$\int_{D} \int \nabla_{x} \phi(x) \cdot F(y) \underbrace{\mu_{x}(dy)dx}_{\nu(dx,dy)} - L_{F}(\phi) = 0$$

which is a linear equation in μ_{x} (or ν).

In order to pick one of the solutions of the weak form, we impose additional conditions.

• Introduce a class \mathcal{E} of "entropy" functions $E : \mathbb{R} \to \mathbb{R}^n$ such that

$$E'(u) = \eta'(u)F'(u)$$

for some sufficiently smooth and convex function η .

In order to pick one of the solutions of the weak form, we impose additional conditions.

• Introduce a class \mathcal{E} of "entropy" functions $E : \mathbb{R} \to \mathbb{R}^n$ such that

$$E'(u) = \eta'(u)F'(u)$$

for some sufficiently smooth and convex function η .

• Consider the stronger form

$$\int \nabla_{x} \phi(x) \cdot E(u(x)) dx - L_{E}(\phi) \geq 0, \ \forall E \in \mathcal{E},$$

and for all ϕ in some class of sufficiently smooth and positive test functions.

In order to pick one of the solutions of the weak form, we impose additional conditions.

• Introduce a class \mathcal{E} of "entropy" functions $E : \mathbb{R} \to \mathbb{R}^n$ such that

$$E'(u) = \eta'(u)F'(u)$$

for some sufficiently smooth and convex function η .

• Consider the stronger form

$$\int \nabla_{\mathsf{x}} \phi(\mathsf{x}) \cdot \mathsf{E}(u(\mathsf{x})) d\mathsf{x} - \mathsf{L}_{\mathsf{E}}(\phi) \geq 0, \ \forall \mathsf{E} \in \mathcal{E},$$

and for all ϕ in some class of sufficiently smooth and positive test functions.

• If \mathcal{E} contains the functions F(u) and -F(u), this includes the previous weak conditions and introduce new ones.

In order to pick one of the solutions of the weak form, we impose additional conditions.

• Introduce a class \mathcal{E} of "entropy" functions $E : \mathbb{R} \to \mathbb{R}^n$ such that

$$E'(u) = \eta'(u)F'(u)$$

for some sufficiently smooth and convex function η .

• Consider the stronger form

$$\int \nabla_{\mathsf{x}} \phi(\mathsf{x}) \cdot \mathsf{E}(u(\mathsf{x})) d\mathsf{x} - \mathsf{L}_{\mathsf{E}}(\phi) \geq 0, \,\, \forall \mathsf{E} \in \mathcal{E},$$

and for all ϕ in some class of sufficiently smooth and positive test functions.

- If \mathcal{E} contains the functions F(u) and -F(u), this includes the previous weak conditions and introduce new ones.
- The solution is called the entropy solution for the class \mathcal{E} .

The problem then admits an entropy measure-valued solution $\mu_{\rm X}$ for the class ${\cal E},$ such that

$$\int \int \nabla_x \phi(x) \cdot E(y) \nu(dx, dy) - L_E(\phi) \ge 0, \ \forall E \in \mathcal{E},$$

and for all $\phi \ge 0$ in some class of smooth functions. Under some (smoothness) conditions, we prove that $\mu_x = \delta_{u(x)}$ with u the entropy solution.

We end up with a linear formulation in the occupation measure u

$$\int \nabla_x \phi(x) \cdot E(y) \ \boldsymbol{\nu}(dx, dy) - L_E(\phi) \geq 0, \ \forall E \in \mathcal{E}$$

which is a set of linear inequalities in ν .

If test functions φ and entropy functions E are polynomials in x and y, it yields linear inequalities in the moments of ν.

We end up with a linear formulation in the occupation measure u

$$\int \nabla_x \phi(x) \cdot E(y) \ \boldsymbol{\nu}(dx, dy) - L_E(\phi) \geq 0, \ \forall E \in \mathcal{E}$$

which is a set of linear inequalities in ν .

- If test functions φ and entropy functions E are polynomials in x and y, it yields linear inequalities in the moments of ν.
- For piecewise polynomial functions ϕ or entropies E (e.g. Kruzhkov's entropies), possible reformulation with multiple measures.

We end up with a linear formulation in the occupation measure u

$$\int \nabla_x \phi(x) \cdot E(y) \ \boldsymbol{\nu}(dx, dy) - L_E(\phi) \geq 0, \ \forall E \in \mathcal{E}$$

which is a set of linear inequalities in ν .

- If test functions φ and entropy functions E are polynomials in x and y, it yields linear inequalities in the moments of ν.
- For piecewise polynomial functions ϕ or entropies E (e.g. Kruzhkov's entropies), possible reformulation with multiple measures.
- The occupation measure ν has for marginal in x the Lebesgue measure λ(dx) = dx. Restricting the problem to compact domains, this yields conditions

$$m_{\alpha,0}(\nu) = m_{\alpha}(\lambda) \ \forall \alpha.$$

• In a polynomial setting, the problem is recasted as a moment problem

$$\min_{\nu} G(m(\nu)) \text{ s.t. } Am(\nu) \ge d$$

with some function G of the moments $y = m(\nu)$ of ν .

• In a polynomial setting, the problem is recasted as a moment problem

 $\min_{\nu} G(m(\nu)) \text{ s.t. } Am(\nu) \geq d$

with some function G of the moments $y = m(\nu)$ of ν .

 We then use a moment-SOS hierarchy that consists in minimizing over a truncated moment sequence y^(r) = (y_α)_{|α|≤2r}, r ∈ N.

• In a polynomial setting, the problem is recasted as a moment problem

 $\min_{\nu} G(m(\nu)) \text{ s.t. } Am(\nu) \geq d$

with some function G of the moments $y = m(\nu)$ of ν .

- We then use a moment-SOS hierarchy that consists in minimizing over a truncated moment sequence y^(r) = (y_α)_{|α|≤2r}, r ∈ N.
- To favorize approximate measures $\nu^{(r)}$ that are concentrated, we can choose (for a relaxation order r)

$$G(m(\boldsymbol{\nu})) = \operatorname{Tr}(M_r(\boldsymbol{\nu})), \ M_r(m(\boldsymbol{\nu})) = \int \phi_r(x,y) \phi_r(x,y)^T \boldsymbol{\nu}(dx,dy),$$

where $\phi_r(x) = (x^{\alpha})_{|\alpha| \le r}$ is a basis of the space of polynomials of degree $\le r$, which is a convex relaxation of a minimization of the rank of the moment matrix $M_r(m(\nu))$.

The approach can be extended to parameter-dependent equations

$$abla_x \cdot F(u(x,\xi);\xi) = 0, \ x \in D \subset \mathbb{R}^n + \text{ b.c.}$$

 Reformulation of the problem in terms of the occupation measure ν over D × Ξ × ℝ supported on the graph of the solution u(x, ξ)

$$\nu(dx, d\xi, dy) = dx \rho(d\xi) \delta_{u(x,\xi)}(dy)$$

with ρ some measure on the parameter space Ξ . Requires new notions of weak-parametric entropy (measure-valued) solutions. The approach can be extended to parameter-dependent equations

$$abla_x \cdot F(u(x,\xi);\xi) = 0, \ x \in D \subset \mathbb{R}^n + \text{ b.c.}$$

 Reformulation of the problem in terms of the occupation measure ν over D × Ξ × ℝ supported on the graph of the solution u(x, ξ)

$$\nu(dx, d\xi, dy) = dx \rho(d\xi) \delta_{u(x,\xi)}(dy)$$

with ρ some measure on the parameter space Ξ . Requires new notions of weak-parametric entropy (measure-valued) solutions.

• Then apply a SOS hierarchy to get approximate moments of ν .

Moment methods to parameter-dependent conservation laws

Given approximate moments, different post-processing are possible.

Moment methods to parameter-dependent conservation laws

Given approximate moments, different post-processing are possible.

• Directly estimate quantities of interest

$$\int g(x,\xi,u(x,\xi))dx\rho(d\xi) = \int g(x,\xi,y)\nu(dx,d\xi,dy)$$

where g is a polynomial or well approximated by polynomials.

Moment methods to parameter-dependent conservation laws

Given approximate moments, different post-processing are possible.

Recover the graph of the solution using Christoffel-Darboux approximation method [Marx et al. 2021]².
 If M_r(m(v)) is invertible, the Christoffel-Darboux kernel is defined by

$$\kappa_{\boldsymbol{\nu},\boldsymbol{r}}(\boldsymbol{a},\boldsymbol{b}) = \phi_{\boldsymbol{r}}(\boldsymbol{a})^{\mathsf{T}} M_{\boldsymbol{r}}(\boldsymbol{\nu})^{-1} \phi_{\boldsymbol{r}}(\boldsymbol{b}).$$

Exploit the fact that the Christoffel-Darboux polynomial $\kappa_{\nu,r}((x,\xi,y),(x,\xi,y))$ tends to localize on the graph of u and approximate

$$u(x,\xi) \approx \operatorname*{argmin}_{y} \kappa_{\nu,r}((x,\xi,y),(x,\xi,y))$$

²Marx, S., Pauwels, E., Weisser, T., Henrion, D., Lasserre, J.B.: Semi-algebraic approximation using Christoffel-Darboux kernel. Constructive Approximation (2021)

Consider the solution $u(t, x, \xi)$ of the Riemann problem for the Burgers equation

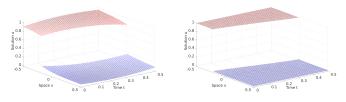
$$\partial_t u + \partial_x (u^2/2) = 0, \ t \in [0, 1/2], \ x \in [-1/2, 1/2]$$
 (*)

with parametrized initial condition

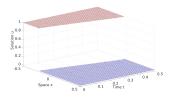
$$u_0(x,\xi) = \begin{cases} 1 \text{ if } x < \frac{1}{4}(\xi-1), \\ 0 \text{ if } x \ge \frac{1}{4}(\xi-1). \end{cases}$$

With $(t,x) = \mathbf{x}$ and $F(u) = (u, u^2/2)$, (*) writes $\nabla_{\mathbf{x}}F(u(\mathbf{x}, \xi)) = 0.$

Illustration : Burgers equation



(a) r = 2



(c) r = 8

Figure: Graphs of the approximate solution for different relaxation orders r and $\xi = 0$ 13 / 15

Clément Cardoen

May 2024

Illustration : Burgers equation

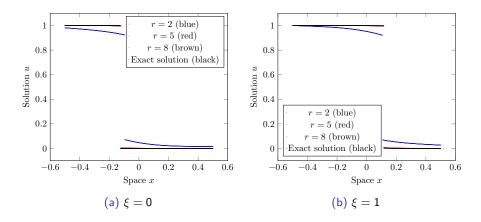


Figure: Graphs of the approximate solution for different relaxation orders and exact solution, at fixed ξ and time t = 1/4.

Cardoen C., Marx S., Nouy A. and Seguin N.

A moment approach for entropy solutions of parameter-dependent hyperbolic conservation laws.

arXiv:2307.10043, 2023.