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Parameter-dependant conservation laws

Consider the problem

∂tu(t, z , ξ) + divz f (u(t, z , ξ), ξ) = 0, (t, z , ξ) ∈ R+ × RN × Ξ,

u(0, z , ξ) = u0(z , ξ), (z , ξ) ∈ RN × Ξ,

where Ξ is a compact subset of Rp for some p ∈ N.
We can rewrite this problem in the following form:

∇x · F (u(x , ξ); ξ) = 0, x ∈ D := R+ × RN + b.c.

where u(·, ξ) is in a space V of functions defined on the domain D ⊂ Rn

of ”physical” (time and space) variables, by denoting x = (t, z) and
F (u) = (u, f (u))
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Measure-theoretic approach to conservation laws

We adopt a measure-theoretic point of view of conservation laws, by
considering measure-valued solutions [DiPerna 1985]1.
To a classical solution u(x) corresponds a measure-valued solution (a map
from D to the set of measure on R)

µx(dy) = δu(x)(dy)

and the associated occupation measure ν on D × R supported on the
graph of u

ν(dx , dy) = µx(dy)dx .

1DiPerna, R.J.: Measure-valued solutions to conservation laws. Archive for Rational
Mechanics and Analysis (1985)
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Measure-theoretic approach to conservation laws

Consider the problem

∇x · F (u(x)) = 0, x ∈ D ⊂ Rn

with boundary conditions u = uΓ on Γ ⊂ ∂D.

It admits a weak form∫
D
∇xϕ(x) · F (u(x))dx −

∫
Γ
ϕ(x)n · F (uΓ(x))dx︸ ︷︷ ︸

LF (ϕ)

= 0

for some class of sufficiently smooth functions ϕ.

It even admits an ultra weak form on the measure-valued solution
µx = δu(x) ∫

D

∫
∇xϕ(x) · F (y)µx(dy)dx︸ ︷︷ ︸

ν(dx ,dy)

−LF (ϕ) = 0

which is a linear equation in µx (or ν).
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Measure-theoretic approach to conservation laws

In order to pick one of the solutions of the weak form, we impose
additional conditions.

Introduce a class E of ”entropy” functions E : R → Rn such that

E ′(u) = η′(u)F ′(u)

for some sufficiently smooth and convex function η.

Consider the stronger form∫
∇xϕ(x) · E (u(x))dx − LE (ϕ) ≥ 0, ∀E ∈ E ,

and for all ϕ in some class of sufficiently smooth and positive test
functions.

If E contains the functions F (u) and −F (u), this includes the
previous weak conditions and introduce new ones.

The solution is called the entropy solution for the class E .

Clément Cardoen Nantes Université, Centrale Nantes May 2024 5 / 15



Measure-theoretic approach to conservation laws

In order to pick one of the solutions of the weak form, we impose
additional conditions.

Introduce a class E of ”entropy” functions E : R → Rn such that

E ′(u) = η′(u)F ′(u)

for some sufficiently smooth and convex function η.

Consider the stronger form∫
∇xϕ(x) · E (u(x))dx − LE (ϕ) ≥ 0, ∀E ∈ E ,

and for all ϕ in some class of sufficiently smooth and positive test
functions.

If E contains the functions F (u) and −F (u), this includes the
previous weak conditions and introduce new ones.

The solution is called the entropy solution for the class E .

Clément Cardoen Nantes Université, Centrale Nantes May 2024 5 / 15
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Measure-theoretic approach to conservation laws

The problem then admits an entropy measure-valued solution µx for the
class E , such that∫ ∫

∇xϕ(x) · E (y)ν(dx , dy)− LE (ϕ) ≥ 0, ∀E ∈ E ,

and for all ϕ ≥ 0 in some class of smooth functions. Under some
(smoothness) conditions, we prove that µx = δu(x) with u the entropy
solution.
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Measure-theoretic approach to conservation laws

We end up with a linear formulation in the occupation measure ν∫
∇xϕ(x) · E (y) ν(dx , dy)− LE (ϕ) ≥ 0, ∀E ∈ E

which is a set of linear inequalities in ν.

If test functions ϕ and entropy functions E are polynomials in x and
y , it yields linear inequalities in the moments of ν.

For piecewise polynomial functions ϕ or entropies E (e.g. Kruzhkov’s
entropies), possible reformulation with multiple measures.

The occupation measure ν has for marginal in x the Lebesgue
measure λ(dx) = dx . Restricting the problem to compact domains,
this yields conditions

mα,0(ν) = mα(λ) ∀α.

Clément Cardoen Nantes Université, Centrale Nantes May 2024 7 / 15
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Clément Cardoen Nantes Université, Centrale Nantes May 2024 7 / 15



Measure-theoretic approach to conservation laws

We end up with a linear formulation in the occupation measure ν∫
∇xϕ(x) · E (y) ν(dx , dy)− LE (ϕ) ≥ 0, ∀E ∈ E

which is a set of linear inequalities in ν.

If test functions ϕ and entropy functions E are polynomials in x and
y , it yields linear inequalities in the moments of ν.

For piecewise polynomial functions ϕ or entropies E (e.g. Kruzhkov’s
entropies), possible reformulation with multiple measures.

The occupation measure ν has for marginal in x the Lebesgue
measure λ(dx) = dx . Restricting the problem to compact domains,
this yields conditions

mα,0(ν) = mα(λ) ∀α.

Clément Cardoen Nantes Université, Centrale Nantes May 2024 7 / 15



Measure-theoretic approach to conservation laws

In a polynomial setting, the problem is recasted as a moment problem

min
ν

G (m(ν)) s.t. Am(ν) ≥ d

with some function G of the moments y = m(ν) of ν.

We then use a moment-SOS hierarchy that consists in minimizing
over a truncated moment sequence y (r) = (yα)|α|≤2r , r ∈ N.
To favorize approximate measures ν(r) that are concentrated, we can
choose (for a relaxation order r)

G (m(ν)) = Tr(Mr (ν)), Mr (m(ν)) =

∫
ϕr (x , y)ϕr (x , y)

Tν(dx , dy),

where ϕr (x) = (xα)|α|≤r is a basis of the space of polynomials of
degree ≤ r , which is a convex relaxation of a minimization of the rank
of the moment matrix Mr (m(ν)).
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Moment methods to parameter-dependent conservation
laws

The approach can be extended to parameter-dependent equations

∇x · F (u(x , ξ); ξ) = 0, x ∈ D ⊂ Rn + b.c.

Reformulation of the problem in terms of the occupation measure ν
over D × Ξ× R supported on the graph of the solution u(x , ξ)

ν(dx , dξ, dy) = dxρ(dξ)δu(x ,ξ)(dy)

with ρ some measure on the parameter space Ξ.
Requires new notions of weak-parametric entropy (measure-valued)
solutions.

Then apply a SOS hierarchy to get approximate moments of ν.
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Moment methods to parameter-dependent conservation
laws

Given approximate moments, different post-processing are possible.

Directly estimate quantities of interest∫
g(x , ξ, u(x , ξ))dxρ(dξ) =

∫
g(x , ξ, y)ν(dx , dξ, dy)

where g is a polynomial or well approximated by polynomials.
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Moment methods to parameter-dependent conservation
laws

Given approximate moments, different post-processing are possible.

Recover the graph of the solution using Christoffel-Darboux
approximation method [Marx et al. 2021]2.
If Mr (m(ν)) is invertible, the Christoffel-Darboux kernel is defined by

κν,r (a, b) = ϕr (a)
TMr (ν)

−1ϕr (b).

Exploit the fact that the Christoffel-Darboux polynomial
κν,r ((x , ξ, y), (x , ξ, y)) tends to localize on the graph of u and
approximate

u(x , ξ) ≈ argmin
y

κν,r ((x , ξ, y), (x , ξ, y))

2Marx, S., Pauwels, E., Weisser, T., Henrion, D., Lasserre, J.B.: Semi-algebraic
approximation using Christoffel-Darboux kernel. Constructive Approximation (2021)
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Illustration : Burgers equation

Consider the solution u(t, x , ξ) of the Riemann problem for the Burgers
equation

∂tu + ∂x(u
2/2) = 0, t ∈ [0, 1/2], x ∈ [−1/2, 1/2] (⋆)

with parametrized initial condition

u0(x , ξ) =


1 if x <

1

4
(ξ − 1),

0 if x ≥ 1

4
(ξ − 1).

With (t, x) = x and F (u) = (u, u2/2), (⋆) writes

∇xF (u(x, ξ)) = 0.

Clément Cardoen Nantes Université, Centrale Nantes May 2024 12 / 15



Illustration : Burgers equation

(a) r = 2 (b) r = 5

(c) r = 8

Figure: Graphs of the approximate solution for different relaxation orders r and
ξ = 0
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Illustration : Burgers equation
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Figure: Graphs of the approximate solution for different relaxation orders and
exact solution, at fixed ξ and time t = 1/4.
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