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Motivation : The stability analysis in control theory, allows to know the behaviour of systems at infinity. For
finite dimension systems, there exist some useful approaches to characterize stability which are very handy in
practice. We are interesting of wheither we can extend some of these to certain infinite dimension systems.
I- Input-to-state stability of time-delay system. Consider the following class of time-delay system :

ẋ(t) = f (xt ,u(t)), (1)

where xt ∈C0([−∆,0],Rn) is defined by xt(s) := x(t + s), ∆ > 0 is the maximum delay, u is the input and f is
Lipschitz on bounded sets with f (0,0) = 0. In order to further the robustness properties of (1), we address its
input-to-state stability (ISS), which is the stability that takes account of disturbances. The existing Lyapunov-
Krasovskii functional (LKF) tool to ensure ISS for system (1) requires the so called LKF-wise dissipation
meaning that the LKF V satisfies V̇ ≤−α(V )+ γ(|u|). But, for input free system (u = 0), only the point-wise
dissipation (V̇ ≤−α(|x(t)|)) is required to ensure global asymptotic stability for the system. As the dissipation
rate α involves the current value of the system’s solution in the point-wise dissipation, it is more easier to obtain
in practice than the LKF one for which α involves the functional V itself. In [2], we provide some conditions
to ensure ISS of (1) with the point-wise dissipation. Roughly speaking, we state the following :

Theorem 1. Assume that there exists a LKF V which dissipates point-wisely. Then if the dissipaton rate domi-
nates its maximal increase along the system’s solution at infinity, the system (1) is ISS.

We show through examples that the obtained conditions are more general than the existing techniques. Some
other LKF-wise dissipation constructions will be mentionned [1].
II-Backstepping stabilization of PDE. Consider now the following control system

∂tv = A v+Bw, (2)

where A is a differential operator which generates a C0 semigroup etA , B is a given operator and w is the
control. We would like to find a feedback law w(t) = Kv(t) such that the system (2) is exponentially stable
meaning all the solutions converge exponentially quickly to 0. A classical way to do that is by the so-called
backstepping method which has met significant success for finite diemension systems. Using duality and com-
pacteness analysis, this method was extended to some infinite dimension systems namely when A is skew-
adjoint, self-adjoint, etc... But until now, there is no backstepping-based result for general spectral operator A .
In [3], we provide some conditions to stabilize (2) for spectral operator A in general using backstepping.

Theorem 2. Consider the control system (2). Assume that the family of eigenvectors of A forms a Riesz basis
and its eigenvalues λn satisfy λn ∼ nα , α > 1 and for any λ > 0, |λn−λm +λ | & |λn−λp| & nα−1|n−m|.
Then, for any uniformely bounded from above and below B, there exists bounded linear feedback K such that
the closed loop system ∂tv = A v+BKv is exponentially stable.
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