

Modélisation du système urinaire inférieur de l'enfant.

Nadia Boudaoud² & Lisa Grandjean¹, Guillaume Dollé¹, Stéphanie Salmon¹, Marie-Laurence Poli-Mérol²

1. Université de Reims Champagne-Ardenne, Laboratoire de Mathématiques UMR CNRS 9008 2. CHU de Reims & Université de Reims Champagne-Ardenne, CreSTIC

 -111

ミドマミド

∍

 Ω

May 2024, 29th

ミー 299

Summary

1 [Context and Introduction](#page-2-0)

メロメメ 倒 メメ きょく きょう

ミー 299

Summary

1 [Context and Introduction](#page-2-0)

2 [Modeling](#page-6-0)

³ [Models and results](#page-11-0)

メロメメ 倒 メメ きょく きょう

Context.

American Memorial Hospital Foundation : Child Hospital of Reims

- Phd Lisa Grandjean.
- Grant : Patronage "Amis de l'hôpital Américain" Commitee.
- Three-dimensional modeling and numerical simulations of the child's lower urinary tract.
- Dates : 2022–2025
- Development of numerical models of the bladder's functions.

医尿囊的

重

 Ω

Purpose of this project

Provide physicians/medical doctors with auxiliary/complementary elements

- to "see what happens" in a non-invasive way,
- to understand normal behavior by highlighting principal features and parameters,
- then to infer development of diseases.
- to finally help diagnosis and treatment of diseases.

 \Rightarrow "in silico" experiments !

- Medical multi-modal data available (Nadia Boudaoud's work) to build the model.
- Medical expertise

[Intro](#page-2-0) [Models and results](#page-11-0) and results and

 \equiv

 QQ

Lower urinary tract

Urine flow $=$ water I

Detrusor = muscle, large deformations ! \implies **Fluid-structure interaction.** State of the art : not a well-studied subject, not much fo[r c](#page-4-0)h[ild](#page-6-0)[re](#page-4-0)[n.](#page-5-0)

高山 299

Summary

1 [Context and Introduction](#page-2-0)

³ [Models and results](#page-11-0)

St. Salmon [Modeling of child's lower urinary tract](#page-0-0)

メロメメ 倒 メメ きょく きょう

Ξ, Ε

Medical data

Clinical data : size, volume from literature and study \Longrightarrow 5 to 10 y.o bladders

Cystography : dynamic X-ray (2D+t) of the bladder and urethra allowing to explore the walls of the bladder by injecting a contrast product - Mesh extracted from the cystography.

 \leftarrow \Box

UroDynamical results

K 등 K K 등 K ...

← ロ ▶ → イ 何 ▶

GHT. QQ

Numerical method

Objective start from 2D models to move towards a 3D model.

Free access, reproducible research, in-house code : based on FreeFem++ (http://www.freefem.org).

 $\mathbf{A} \oplus \mathbf{A} \rightarrow \mathbf{A} \oplus \mathbf{A} \rightarrow \mathbf{B} \oplus \mathbf{A}$

 QQ

Navier-Stokes Equations in a moving domain

Navier-Stokes Equations (NS) with Arbitrary Lagrangian Eulerian (ALE) formulation

$$
\begin{cases}\n\rho \left(\frac{\partial \vec{u}}{\partial t} + \underbrace{(\vec{u} - \vec{c}) . \nabla \vec{u}}_{\text{inertia}} \right) - \underbrace{\mu \Delta \vec{u}}_{\text{viscous}} + \nabla \rho = 0 \quad \text{dans } \Omega^t \\
\nabla . \vec{u} = 0 \quad \text{dans } \Omega^t\n\end{cases} (1)
$$

 ρ : density $(kg.m^{-3})$ μ : viscosity (Pa.s) \vec{u} : velocity $(m.s^{-1})$ p : pressure $(Pa = kg.m^{-1}.s^{-2})$ \vec{c} : mesh velocity.

- Allows to solve the PDE in a moving domain.
- Build a map \mathcal{A}^t from $\hat{\Omega}$ (reference domain) to Ω^t (current domain).

$$
\mathcal{A}_t:\overline{\widehat{\Omega}}\to\mathsf{R}^2
$$

where A_t continuous and bijective, \hat{c} mesh velocity computed e.g. by harmonic extension.

4 00 16

④差を ④差をつ

重

 QQ

高山 299

Summary

1 [Context and Introduction](#page-2-0)

³ [Models and results](#page-11-0)

St. Salmon [Modeling of child's lower urinary tract](#page-0-0)

メロメメ 倒 メメ きょく きょう

[Intro](#page-2-0) **[Modeling](#page-6-0) Modeling Modeling** Modeling Modeling Modeling Model and results and result

First Model

Emptying with free surface (Γ_t^{free}) : Spherical form (in 2D) when filled, vesical dome mobile, fixed part called trigone.

 299

化重新分 Ε

ALE Formulation (1) + boundary conditions :

$$
\begin{cases}\n\vec{u} = 0 & \text{sur } \Gamma^{wall} \\
\vec{u} = \vec{u}_{out} & \text{sur } \Gamma^{out} \\
\nu \frac{\partial \vec{u}}{\partial \vec{n}} - p\vec{n} = -(p_e + \sigma(\kappa))\vec{n} & \text{sur } \Gamma_t^{free}\n\end{cases}
$$

 \vec{u}_{out} such that emptying occurs in less than 30 s. p_e : abdominal pressure (\approx 13cmH2O)

 σ : air/water interface

 -111

Results

E.

ミドマミドー

Discussions/limits

But :

- First model in moving domain with NS+ALE
- Filling by urethra is possible and realistic.
- Allows to reproduce cystography : filling and voidind by urethra.

Limits :

- Filling by ureters non realistic.
- Passive structure whereas for voiding active structure (contraction of the detrusor).
- Not so important fixed part.

ヨメ メヨメー

 \equiv

 QQ

2nd model : fluid with imposed displacement

Fixed part

Vesical dome : contact when the bladder is empty.

Figure: Empty bladder (left) and filled (right)

 \Rightarrow 2nd model : imposed displacement for reproducing movement observed in cystography.

4 00 16

2nd model : fluid with imposed displacement

Algorithm for filling : While $V < V$ *max* :

- 1. Compute displacement of the mesh \vec{d}^{n+1}
- 2. Solve fluid equations on Ω_n
- 3. Define the deformation
	- $T_n(\hat{x}) = \hat{x} + (\vec{d}^{n+1} \vec{d}^n)$
- 4. Compute new domain $\Omega_{n+1} = T_n(\Omega_n)$

 -111

 $\mathbf{A} \equiv \mathbf{B} \quad \mathbf{A} \equiv \mathbf{B} \quad \mathbf{A}$

 299

∍

3rd model : Fluid-Structure Interaction

- Fluid-Structure Interaction (FSI) : to find similar results as those with an imposed displacement.
- **•** Numerically :

Monolithic : Treats fluid and structure dynamics in the same mathematical framework.

- High computational cost (possible in 2D but very expensive in 3D).
- Ensure well-posedness and convergence of the numerical model.

Partitioned : Treats fluid and structure as two computational fields.

(手) ※ 手) → 一

∍

 Ω

- Reduce code development time and computational cost.
- Can be unstable, in particular when structure's density is close to fluid's density.

 \Rightarrow Our choice : Monolithic approach.

[Intro](#page-2-0) **[Modeling](#page-6-0) Modeling Modeling** Modeling Modeling Modeling Model and results and result

重し 299

Study of the structure

Structure :
\n
$$
\int_{\Omega} \rho \frac{\partial^{2} U}{\partial t^{2}}. W dX + a(U, W) = \int_{\Omega} f.W dX
$$
\n
$$
= \int_{\Omega} d(U, W) = \int_{\Omega} \sigma(U) : \nabla W dX
$$
\nwith
\n
$$
\sigma(U) = \lambda tr(U)Id + 2\mu \epsilon(U)
$$
\n
$$
\epsilon(U) = \frac{1}{2} ((\nabla U)^{T} + \nabla U)
$$
\n
$$
\lambda = \frac{\nu E}{(1 - 2\nu)(1 + \nu)}, \quad \mu = \frac{E}{2(1 + \nu)}
$$
\n
$$
(2)
$$
\n
$$
= \frac{1}{2} ((\nabla U)^{T} + \nabla U + (\nabla U)^{T} \nabla U)
$$
\n
$$
= \frac{1}{2} ((\nabla U)^{T} + \nabla U + (\nabla U)^{T} \nabla U)
$$

Lamé coefficients from Young modulus de Young $E>0$ and Poisson ratio $\nu\in]0,\frac{1}{2}[$

メロメ メ御 メメ きょくきょう

化重变 化重变性

GHT. QQ

3rd model : Fluid-Structure Interaction

FSI Equations :

- $NS + ALE(1)$ for fluid, in Ω_t^F
- Elasticity problem ([??](#page-18-0)) (linear or not) for the structure, in Ω_t^S
- Coupling conditions on the interface Σ_t :

$$
\begin{cases} \vec{u}^F = \vec{u}^S \quad \text{sur } \Sigma_t \\ \sigma^F(\vec{u}^F, \rho) \vec{n}^F = -\sigma^S(\vec{d}^S) \vec{n}^S \quad \text{sur } \Sigma_t \end{cases} \tag{3}
$$

 $-10⁻¹$

€. QQ

3rd model : Fluid-Structure Interaction

Monolithic formulation 1

 $\Omega_n = \Omega_n^F \cup \Omega_n^S$

$$
u^{n+1} = \begin{cases} u^{F,n+1} \text{ in } \Omega_n^F \\ u^{S,n+1} \text{ in } \Omega_n^S \end{cases}
$$

$$
\begin{cases} \int_{\Omega_n^F} \rho^F \frac{u^{n+1}}{\Delta t} \cdot v \, dx + \int_{\Omega_n^F} \rho^F \left(\left((u^n - \epsilon^n) . \nabla \right) u^{n+1} \right) \cdot v \, dx - \int_{\Omega_n^F} (\nabla . v) \rho^{F,n+1} \, dx \\ + \int_{\Omega_n^F} 2\mu^F \epsilon (u^{n+1}) : \epsilon(v) \, dx + \int_{\Omega_n^F} (\nabla . u^{n+1}) \, q \, dx + \int_{\Omega_n^S} \rho^S \frac{u^{n+1}}{\Delta t} \cdot v \, dx \\ + \int_{\Omega_n^S} L(u^{n+1}) : \nabla v \, dx = \int_{\Omega_n^F, S} \rho^{F, S} \frac{u^n}{\Delta t} \cdot v \, dx + \int_{\Omega_n^F, S} \rho^{F, S} g \cdot v \, dx \end{cases} \tag{4}
$$

¹Three-Dimensional Simulation of Fluid-Structure Interaction Problems [Using](#page-19-0) [Mo](#page-21-0)[no](#page-19-0)[lithi](#page-20-0)[c](#page-21-0) [Se](#page-10-0)[m](#page-11-0)[i-Im](#page-24-0)[pl](#page-10-0)[ici](#page-11-0)[t](#page-24-0)
sprithm. C.M. Murea (2019) Algorithm. C.M Murea (2019)

Results - Non linear structure

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

[Intro](#page-2-0) **[Modeling](#page-6-0) Modeling Modeling** Modeling Modeling Modeling Model and results and result

Discussions

Uniform increasing pressure

Figure: Pressure - Filled bladder

4 0 K \overline{AB} K 등 K K 등 K ...

ミー 299

What is the model for the structure ? What are the parameters ?

Conclusion and work in progress

- Different characteristic times for voiding (\approx 30s) and filling (\approx 3h).
- Different mechanisms : active structure for voiding/passive structure for filling.
- 3D simulations : complex geometry ...

 -111

重き メラメー

 QQ

G.

Figure: Scheme and 3D MRImage of a bladder.

Conclusion et perspectives

Figure: Structure study (Louise COTTON - 6th year Medecine study).

Figure: Active Structure.

Cassandre Logeart - 6th year Medecine study. https://youtu.be/GhYNONlbwdA?feature=shar

Figure 5 : Images de reconstruction de la vessie en trois dimensions à partir du logiciel K ロト K 御 ト K 君 ト K 君 K