Remarks on boundary conditions for Projected Hyperbolic models

Martin Parisot - CARDAMOM Inria Bordeaux

Boundary conditions for water waves problems Theoretical and numerical issues

Pratical (for the use)

Innía_

```
Source terms (PML,...)
      [Berenger'94]
       [Wei, Kirby, Sinha'99]
       [Besse, Gavrilyuk, Kazakova, Noble'22]
       ....
  Hyperbolisation (relaxation)
[Favrie, Gavrilyuk'17]
      [Escalante, Dumbser, Castro'19]
       ·...]
  Couplage dispersif/hyperbolique
•
      [Lannes, Rigal]
       [Galaz, Kazolea, Rousseau]
       [Parisot]
```

Theoretical (to understand the model)

- Basé sur un opérateur Dirichlet-to-Neumann
 [Besse, Ehrhardt, Lacroix-Violet'16]
 [Besse, Mésognon-Giraut, Noble'18]
 [Kazakova, Noble'20]
 [...]
- Basé sur une formulation en ODE
 [Lannes, Weynans'20]
 [...]
- Basé sur une structure de projection
 [Noelle, Parisot, Tscherpel'22]

Boundary conditions for projected hyperbolic models	General setting			
Consider an hyperbolic model:	$\partial_t U + A(U) \partial_x U = 0$ (hyperbolic)			
L^2 -stable, i.e. $G(U)$ such that $U^T \cdot A(U) = \nabla_U G$	$\partial_t \langle U, U \rangle = 0. \qquad (Energy)$			
The projected hyperbolic model (PH): reads				
$\partial_t U + A(U)\partial_X U = -\Psi(Q)$,				
$L(U) = 0$, (Linear constraint) $U \in \mathbb{A} = \left\{ V \in L^2 \mid L(V) = 0 \right\}$				
$\langle V, \Psi(P) \rangle = 0$, (Orthogon	hality) $P \in \Psi^{-1}(\mathbb{A}^{\perp})$			

Boundary conditions for projected hyperbolic models General setting $\partial_t U + A(U) \partial_x U = 0$ (hyperbolic) Consider an hyperbolic model: L^2 -stable, i.e. G(U) such that $U^T \cdot A(U) = \nabla_{II} G$, $\partial_t \langle U, U \rangle = 0$. (Energy) THE PROJECTED HYPERBOLIC MODEL (PH): reads $\partial_t U + A(U)\partial_x U = -\Psi(Q)$, $L(U) = 0 , \qquad \text{(Linear constraint)} \quad U \in \mathbb{A} = \left\{ V \in L^2 \mid L(V) = 0 \right\}$ $\langle V, \Psi(P) \rangle = 0$, (Orthogonality) $P \in \Psi^{-1}(\mathbb{A}^{\perp})$ Similar to the incompressible fluids. ٠ allows reuse of tools (analysis and numerical) from the literature. $\partial_t u + u \cdot \nabla u = -\nabla p$, $\begin{array}{ll} \nabla \cdot \boldsymbol{u} = \boldsymbol{0} \ , & (\text{Linear constraint}) \ \boldsymbol{u} \in H^0_{Div} = \left\{ \boldsymbol{v} \in L^2 \mid \nabla \cdot \boldsymbol{v} = \boldsymbol{0} \right\} \\ \left\langle \boldsymbol{v}, \nabla \boldsymbol{q} \right\rangle = \boldsymbol{0} \ , & (\text{Orthogonality}) \ \boldsymbol{q} \in L^2 \end{array}$

Boundary conditions for projected hyperbolic models General setting $\partial_t U + A(U) \partial_x U = 0$ (hyperbolic) Consider an hyperbolic model: L^2 -stable, i.e. G(U) such that $U^T \cdot A(U) = \nabla_{II} G$, $\partial_t \langle U, U \rangle = 0$. (Energy) THE PROJECTED HYPERBOLIC MODEL (PH): reads $\partial_t U + A(U)\partial_x U = -\Psi(Q)$, $L(U) = 0 , \qquad \text{(Linear constraint)} \ U \in \mathbb{A} = \left\{ V \in L^2 \mid L(V) = 0 \right\}$ $\langle V, \Psi(P) \rangle = 0$, (Orthogonality) $P \in \Psi^{-1}(\mathbb{A}^{\perp})$ Similar to the incompressible fluids. ٠ allows reuse of tools (analysis and numerical) from the literature. $\partial_{+}u + u \cdot \nabla u = -\nabla p$, $\begin{array}{l} \nabla \cdot \boldsymbol{u} = \boldsymbol{0} \;, \quad (\text{Linear constraint}) \; \boldsymbol{u} \in H^0_{Div} = \left\{ \boldsymbol{v} \in L^2 \; | \; \nabla \cdot \boldsymbol{v} = \boldsymbol{0} \right\} \\ \left\langle \boldsymbol{v}, \nabla \boldsymbol{q} \right\rangle = \boldsymbol{0} \;, \qquad (\text{Orthogonality}) \; \boldsymbol{q} \in L^2 \end{array}$ Many dispersive models of waves satisfy this mathematical structure,

Boundary conditions for projected hyperbolic models	General setting			
Consider an hyperbolic model:	$\partial_t U + A(U) \partial_X U = 0$ (h	ıyperbolic)		
L^2 -stable, i.e. $G(U)$ such that $U^T \cdot A(U) = \nabla_U G$	$\partial_t \langle U, U \rangle = 0. $ (E	Energy)		
The projected hyperbolic model (PH)): reads			
$\partial_t U + A(U)\partial_X U = -\Psi(Q)$,				
$L(U) = 0, \qquad \text{(Linear constraint)} U \in \mathbb{A} = \left\{ V \in L^2 \mid L(V) = 0 \right\}$				
$\langle V, \Psi(P) \rangle = 0$, (Orthogonality) $P \in \Psi^{-1}(\mathbb{A}^{\perp})$				
Similar to the incompressible fluids,				
allows reuse of tools (analysis and numerical) from the literature.				
$\partial_t u + u \cdot \nabla u = -\nabla p$,				
$\nabla \cdot \boldsymbol{u} = 0$, (Linear constraint) $\boldsymbol{u} \in \boldsymbol{F}$	$\mathcal{H}_{Div}^{0} = \left\{ v \in L^{2} \mid \nabla \cdot v = 0 \right\}$			
$\langle v, \nabla q \rangle = 0$, (Orthogonality) $q \in L$	2			
Many dispersive models of waves satisfy	this mathematical structure,			

• The energy conservation law still holds for any L(U).

Boundary conditions for projected hyperbolic models	General setting			
Consider an hyperbolic model:	$\partial_t U + A(U) \partial_X U = 0$	(hyperbolic)		
L^2 -stable, i.e. $G(U)$ such that $U^T \cdot A(U) = \nabla_U G$, $\partial_t \langle U, U \rangle = 0.$	(Energy)		
\bigotimes The projected hyperbolic model (<i>PH</i>)	: reads			
$\partial_t U + A(U)\partial_X U = -\Psi(Q)$,				
$L(U) = 0, \qquad \text{(Linear constraint)} U \in \mathbb{A} = \left\{ V \in L^2 \mid L(V) = 0 \right\}$				
$\langle V, \Psi(P) \rangle = 0$, (Orthogonality) $P \in \Psi^{-1}(\mathbb{A}^{\perp})$				
Similar to the incompressible fluids,				
allows reuse of to	ols (analysis and numerical)	from the literature.		
$\partial_t u + u \cdot \nabla u = -\nabla p ,$				
$\nabla \cdot \boldsymbol{u} = 0$, (Linear constraint) $\boldsymbol{u} \in \boldsymbol{F}$	$I_{Div}^{0} = \left\{ v \in L^{2} \mid \nabla \cdot v = 0 \right\}$			
$\langle v, \nabla q \rangle = 0$, (Orthogonality) $q \in L$	2			
Many dispersive models of waves satisfy t	his mathematical structure,			
The energy conservation law still holds for	rany $L(U)$.			

SIMPLE MODEL: projected hyperbolic form

$$\partial_t \begin{pmatrix} u \\ w \end{pmatrix} + \begin{pmatrix} u & 0 \\ 0 & c \end{pmatrix} \partial_x \begin{pmatrix} u \\ w \end{pmatrix} = -\Psi(Q) , \qquad \qquad \partial_t \int_{\mathbb{R}} (u^2 + w^2) \, dx = 0$$

$$w + \alpha \partial_x u = 0 , \qquad \text{(Linear constraint)} \quad \mathbb{A} = \left\{ \begin{pmatrix} u \\ w \end{pmatrix} \in L^2 \mid w + \alpha \partial_x u = 0 \right\}$$

$$\left\langle \begin{pmatrix} u \\ w \end{pmatrix}, \begin{pmatrix} \psi \\ \phi \end{pmatrix} \right\rangle = 0 , \qquad \text{(Orthogonality)}$$

 $\begin{array}{c} \overbrace{\text{SIMPLE MODEL: projected hyperbolic form}} \\ \partial_t \begin{pmatrix} u \\ w \end{pmatrix} + \begin{pmatrix} u & 0 \\ 0 & c \end{pmatrix} \partial_x \begin{pmatrix} u \\ w \end{pmatrix} = -\Psi(Q) , \qquad \qquad \partial_t \int_{\mathbb{R}} \left(u^2 + w^2 \right) dx = 0 \\ w + \alpha \partial_x u = 0 , \qquad \text{(Linear constraint)} \quad \mathbb{A} = \left\{ \begin{pmatrix} u \\ w \end{pmatrix} \in L^2 \mid w + \alpha \partial_x u = 0 \right\} \\ \left\langle \begin{pmatrix} u \\ w \end{pmatrix}, \begin{pmatrix} \psi \\ \phi \end{pmatrix} \right\rangle = 0 , \qquad \text{(Orthogonality)} \end{array}$

► Identification of the **dual space** \mathbb{A}^{\perp} $0 = \int_{\mathbb{R}} (u\psi + w\phi) \, dx = \int_{\mathbb{R}} (u\psi - \alpha\partial_x u \phi) \, dx = \int_{\mathbb{R}} u(\psi + \alpha\partial_x \phi) \, dx$ Hence $\mathbb{A}^{\perp} = \left\{ \Psi \in L^2 \mid R(\Psi) = 0 \right\}$ with $R(\Psi) = \psi + \alpha\partial_x \phi$. (act as a rotational)

SIMPLE MODEL: projected hyperbolic form

$$\begin{aligned} \partial_t \begin{pmatrix} u \\ w \end{pmatrix} + \begin{pmatrix} u & 0 \\ 0 & c \end{pmatrix} \partial_x \begin{pmatrix} u \\ w \end{pmatrix} &= -\Psi(Q) , & \partial_t \int_{\mathbb{R}} (u^2 + w^2) \, dx = 0 \\ & w + \alpha \partial_x u = 0 , & \text{(Linear constraint)} \ \mathbb{A} = \left\{ \begin{pmatrix} u \\ w \end{pmatrix} \in L^2 \mid w + \alpha \partial_x u = 0 \right\} \\ & \left\langle \begin{pmatrix} u \\ w \end{pmatrix}, \begin{pmatrix} \psi \\ \phi \end{pmatrix} \right\rangle &= 0 , & \text{(Orthogonality)} \end{aligned}$$

► Identification of the **dual space**
$$\mathbb{A}^{\perp}$$

 $0 = \int_{\mathbb{R}} (u\psi + w\phi) \, dx = \int_{\mathbb{R}} (u\psi - \alpha\partial_{x}u \, \phi) \, dx = \int_{\mathbb{R}} u(\psi + \alpha\partial_{x}\phi) \, dx$
Hence $\mathbb{A}^{\perp} = \left\{ \Psi \in L^{2} \mid R(\Psi) = 0 \right\}$ with $R(\Psi) = \psi + \alpha\partial_{x}\phi$. (act as a rotational)

▶ Write the **"rotational"** form by applying *R*

$$0 = \partial_t R \begin{pmatrix} u \\ w \end{pmatrix} + R \left(\begin{pmatrix} u & 0 \\ 0 & c \end{pmatrix} \partial_x \begin{pmatrix} u \\ w \end{pmatrix} \right)$$
$$= \partial_t u + a \partial_{tx} w + u \partial_x u + c a \partial_{xx} w$$
$$= \partial_t u - a^2 \partial_{txx} u + u \partial_x u - c a^2 \partial_{xxx} u$$

We recover the Korteweg-de Vries-Benjamin-Bona-Mahony (KdV-BBM) model.

SIMPLE MODEL: projected hyperbolic form

$$\begin{aligned} \partial_t \begin{pmatrix} u \\ w \end{pmatrix} + \begin{pmatrix} u & 0 \\ 0 & c \end{pmatrix} \partial_x \begin{pmatrix} u \\ w \end{pmatrix} &= -\Psi(Q) , & \partial_t \int_{\mathbb{R}} (u^2 + w^2) \, \mathrm{d}x = 0 \\ & w + \alpha \partial_x u = 0 , & \text{(Linear constraint)} \ \mathbb{A} = \left\{ \begin{pmatrix} u \\ w \end{pmatrix} \in L^2 \mid w + \alpha \partial_x u = 0 \right\} \\ & \left\langle \begin{pmatrix} u \\ w \end{pmatrix}, \begin{pmatrix} \psi \\ \phi \end{pmatrix} \right\rangle &= 0 , & \text{(Orthogonality)} \end{aligned}$$

► Identification of the **dual space**
$$\mathbb{A}^{\perp}$$

 $0 = \int_{\mathbb{R}} (u\psi + w\phi) \, dx = \int_{\mathbb{R}} (u\psi - \alpha\partial_{x}u \, \phi) \, dx = \int_{\mathbb{R}} u(\psi + \alpha\partial_{x}\phi) \, dx$
Hence $\mathbb{A}^{\perp} = \left\{ \Psi \in L^{2} \mid R(\Psi) = 0 \right\}$ with $R(\Psi) = \psi + \alpha\partial_{x}\phi$. (act as a rotational)

▶ Write the **"rotational"** form by applying *R*

$$0 = \partial_t R \begin{pmatrix} u \\ w \end{pmatrix} + R \left(\begin{pmatrix} u & 0 \\ 0 & c \end{pmatrix} \partial_x \begin{pmatrix} u \\ w \end{pmatrix} \right)$$
$$= \partial_t u + a \partial_{tx} w + u \partial_x u + c a \partial_{xx} w$$
$$= \partial_t u - a^2 \partial_{txx} u + u \partial_x u - c a^2 \partial_{xxx} u$$

We recover the Korteweg-de Vries-Benjamin-Bona-Mahony (KdV-BBM) model.

Rmk: We can recover the Camassa-Holm, Green-Naghdi or Boussinesq models as well.

 $\begin{array}{l} & \textbf{KDV-BBM MODEL ON BOUNDED DOMAIN } \Omega = [0,1]; \text{ projected hyperbolic form} \\ & \partial_t \begin{pmatrix} u \\ w \end{pmatrix} + \begin{pmatrix} u & 0 \\ 0 & c \end{pmatrix} \partial_x \begin{pmatrix} u \\ w \end{pmatrix} = -\Psi(Q) , & \partial_t \int_0^1 \left(u^2 + w^2\right) dx = 0 \\ & w + \alpha \partial_x u = 0 , & \text{(Linear constraint) } A = \left\{ \begin{pmatrix} u \\ w \end{pmatrix} \in L^2([0,1]) \mid w + \alpha \partial_x u = 0 \right\} \\ & \left\langle \begin{pmatrix} u \\ w \end{pmatrix}, \begin{pmatrix} \psi \\ \phi \end{pmatrix} \right\rangle = 0 , & \text{(Orthogonality)} \end{array}$

 $\begin{array}{c} & \text{KDV-BBM MODEL ON BOUNDED DOMAIN } \Omega = [0,1]: \text{ projected hyperbolic form} \\ & \partial_t \begin{pmatrix} u \\ w \end{pmatrix} + \begin{pmatrix} u & 0 \\ 0 & c \end{pmatrix} \partial_x \begin{pmatrix} u \\ w \end{pmatrix} = -\Psi(Q) , & \partial_t \int_0^1 \left(u^2 + w^2\right) dx = 0 \\ & w + \alpha \partial_x u = 0 , & \text{(Linear constraint)} \ \mathbb{A} = \left\{ \begin{pmatrix} u \\ w \end{pmatrix} \in L^2\left([0,1]\right) \mid w + \alpha \partial_x u = 0 \right\} \\ & \left\langle \begin{pmatrix} u \\ w \end{pmatrix}, \begin{pmatrix} \psi \\ \phi \end{pmatrix} \right\rangle = 0 , & \text{(Orthogonality)} \end{array}$

► Identification of the **dual space**
$$\mathbb{A}^{\perp}$$

$$0 = \int_{0}^{1} (u\psi + w\phi) dx = \int_{0}^{1} (u\psi - \alpha\partial_{x}u \phi) dx = \int_{0}^{1} u(\psi + \alpha\partial_{x}\phi) dx$$

$$-\alpha (\phi(1) u(1) - \phi(0) u(0))$$
We have the **condition** $\phi u = 0$ on $\partial \Omega$. $(C_{\partial_{\Omega}})$

 $\begin{array}{l} & \textbf{KDV-BBM MODEL ON BOUNDED DOMAIN } \Omega = [0,1]: \text{ projected hyperbolic form} \\ & \partial_t \begin{pmatrix} u \\ w \end{pmatrix} + \begin{pmatrix} u & 0 \\ 0 & c \end{pmatrix} \partial_x \begin{pmatrix} u \\ w \end{pmatrix} = -\Psi(Q) , & \partial_t \int_0^1 \left(u^2 + w^2 \right) dx = 0 \\ & w + \alpha \partial_x u = 0 , & \text{(Linear constraint) } \mathbb{A} = \left\{ \begin{pmatrix} u \\ w \end{pmatrix} \in L^2([0,1]) \mid w + \alpha \partial_x u = 0 \right\} \\ & \left\langle \begin{pmatrix} u \\ w \end{pmatrix}, \begin{pmatrix} \psi \\ \phi \end{pmatrix} \right\rangle = 0 , & \text{(Orthogonality)} \end{array}$

► Identification of the **dual space**
$$\mathbb{A}^{\perp}$$

$$0 = \int_{0}^{1} (u\psi + w\phi) \, dx = \int_{0}^{1} (u\psi - \alpha\partial_{x}u \phi) \, dx = \int_{0}^{1} u(\psi + \alpha\partial_{x}\phi) \, dx$$

$$-\alpha \left(\phi(1) u(1) - \phi(0) u(0)\right)$$
We have the **condition** $\phi u = 0$ on $\partial \Omega$. $\left(C_{\partial \Omega}\right)$

▶ Not the only condition, we need w(0) if c > 0 and w(1) if c < 0. <u>Rmk:</u> More generally, we need to fixe the incoming Riemann-invariant in $\mathbb{A} + (C_{\partial_{\Omega_0}})$.

Innín_

NUMERICAL SCHEME FOR KDV-BBM:

Hyperbolic step (use your favorite scheme)

where
$$U_{\star}^* \in L^2_{\delta} = \left\{ U_{\star} \mid \langle U_{\star}, U_{\star} \rangle^{\delta} < \infty \right\}$$

$$\begin{aligned} U_k^* &= U_k^n - \frac{\sigma_t}{\delta_x} \left(\mathscr{F}_{k+1/2}^n - \mathscr{F}_{k-1/2}^n \right) \\ \langle U_\star, V_\star \rangle^\delta &= \sum_{k=1}^N U_k \cdot V_k \delta_x \end{aligned}$$

NUMERICAL SCHEME FOR KDV–BBM:

Hyperbolic step (use your favorite scheme)

where
$$U_{\star}^{*} \in L_{\delta}^{2} = \left\{ U_{\star} \mid \langle U_{\star}, U_{\star} \rangle^{\delta} < \infty \right\}$$

Projection step

$$U_{k}^{n+1} = U_{k}^{*} - \delta_{t} \Psi_{k}^{n+1}$$

$$L_{k}^{\delta} (U_{\star}^{n+1}) = 0$$

$$\left\langle U_{\star}^{n+1}, \Psi_{\star}^{n+1} \right\rangle^{\delta} = 0$$

$$U_{k}^{*} = U_{k}^{n} - \frac{o_{t}}{\delta_{x}} \left(\mathscr{F}_{k+1/2}^{n} - \mathscr{F}_{k-1/2}^{n} \right)$$
$$\langle U_{\star}, V_{\star} \rangle^{\delta} = \sum_{k=1}^{N} U_{k} \cdot V_{k} \delta_{x}$$

$$L_k^{\delta}(U_{\star}) = w_k + \alpha \frac{u_{k+1} - u_{k-1}}{2\delta_x}$$

Hyperbolic step (use your favorite scheme)

where
$$U_{\star}^* \in L^2_{\delta} = \left\{ U_{\star} \mid \langle U_{\star}, U_{\star} \rangle^{\delta} < \infty \right\}$$

$$U_k^{n+1} = U_k^* - \delta_t \Psi_k^{n+1}$$
$$L_k^{\delta} \left(U_{\star}^{n+1} \right) = 0$$
$$R_k^{\delta} \left(\Psi_{\star}^{n+1} \right) = 0$$

$$U_{k}^{*} = U_{k}^{n} - \frac{\delta_{t}}{\delta_{x}} \left(\mathscr{F}_{k+1/2}^{n} - \mathscr{F}_{k-1/2}^{n} \right)$$
$$\langle U_{\star}, V_{\star} \rangle^{\delta} = \sum_{k=1}^{N} U_{k} \cdot V_{k} \delta_{x}$$

$$\begin{bmatrix}
\phi_{0}^{n+1}u_{1}^{n+1} + \phi_{1}^{n+1}u_{0}^{n+1} = 0 \\
L_{k}^{\delta}(U_{\star}) = w_{k} + \alpha \frac{u_{k+1} - u_{k-1}}{2\delta_{\chi}} \\
R_{k}^{\delta}(\Psi_{\star}) = \psi_{k} + \alpha \frac{\phi_{k+1} - \phi_{k-1}}{2\delta_{\chi}}$$

Hyperbolic step (use your favorite scheme)

where
$$U_{\star}^* \in L^2_{\delta} = \left\{ U_{\star} \mid \langle U_{\star}, U_{\star} \rangle^{\delta} < \infty \right\}$$

$$U_{k}^{n+1} = U_{k}^{*} - \delta_{t} \Psi_{k}^{n+1}$$
$$L_{k}^{\delta} \left(U_{\star}^{n+1} \right) = 0$$
$$R_{k}^{\delta} \left(\Psi_{\star}^{n+1} \right) = 0$$

Applying
$$\mathcal{R}_{k}^{*}$$
 to the first equation we get

$$u_{k}^{n+1} - \alpha^{2} \frac{u_{k+2}^{n+1} - 2u_{k}^{n+1} + u_{k-2}^{n+1}}{4\delta_{x}^{2}} = u_{k}^{*} + \alpha \frac{w_{k+1}^{*} - w_{k-1}^{*}}{2\delta_{x}}$$

$$U_{k}^{*} = U_{k}^{n} - \frac{\delta_{t}}{\delta_{x}} \left(\mathscr{F}_{k+1/2}^{n} - \mathscr{F}_{k-1/2}^{n} \right)$$
$$\langle U_{\star}, V_{\star} \rangle^{\delta} = \sum_{k=1}^{N} U_{k} \cdot V_{k} \delta_{x}$$

1

$$\begin{bmatrix} \phi_0^{n+1} u_1^{n+1} + \phi_1^{n+1} u_0^{n+1} = 0 \\ L_k^{\delta}(U_{\star}) = w_k + \alpha \frac{u_{k+1} - u_{k-1}}{2\delta_{\star}} \\ R_k^{\delta}(\Psi_{\star}) = \psi_k + \alpha \frac{\phi_{k+1} - \phi_{k-1}}{2\delta_{\star}}$$

for $k \neq \{1, N\}$

First order boundary condition:

$$\phi_0^{n+1} u_1^{n+1} + \phi_1^{n+1} u_0^{n+1} = 0$$
 fixe $u_0^{n+1} = \tilde{u}$ then $\phi_0^{n+1} = 0$ or (fixe $\phi_0^{n+1} = \tilde{\phi}$ then $u_0^{n+1} = 0$)

$$u_{k}^{n+1} - \alpha^{2} \frac{u_{k+2}^{n+1} - 2u_{k}^{n+1} + u_{k-2}^{n+1}}{4\delta_{x}^{2}} = u_{k}^{*} + \alpha \frac{w_{k+1}^{*} - w_{k-1}^{*}}{2\delta_{x}} \qquad k \ge 3 \quad \checkmark$$
$$u_{2}^{n+1} - \alpha^{2} \frac{u_{4}^{n+1} - 2u_{2}^{n+1} + u_{0}^{n+1}}{4\delta_{x}^{2}} = u_{2}^{*} + \alpha \frac{w_{3}^{*} - w_{2}^{*}}{2\delta_{x}} \qquad \qquad \bigstar$$
$$u_{1}^{n+1} - \alpha\delta_{t} \frac{\phi_{2}^{n+1} - \phi_{0}^{n+1}}{2\delta_{x}} = u_{1}^{*} \qquad \qquad \bigstar$$

First order boundary condition:

$$\phi_0^{n+1} u_1^{n+1} + \phi_1^{n+1} u_0^{n+1} = 0$$
 fixe $u_0^{n+1} = \tilde{u}$ then $\phi_0^{n+1} = 0$ or (fixe $\phi_0^{n+1} = \tilde{\phi}$ then $u_0^{n+1} = 0$)

$$u_{k}^{n+1} - \alpha^{2} \frac{u_{k+2}^{n+1} - 2u_{k}^{n+1} + u_{k-2}^{n+1}}{4\delta_{x}^{2}} = u_{k}^{*} + \alpha \frac{w_{k+1}^{*} - w_{k-1}^{*}}{2\delta_{x}} \qquad k \ge 3 \quad \checkmark$$
$$u_{2}^{n+1} - \alpha^{2} \frac{u_{4}^{n+1} - 2u_{2}^{n+1}}{4\delta_{x}^{2}} = u_{2}^{*} + \alpha \frac{w_{3}^{*} - w_{2}^{*}}{2\delta_{x}} - \frac{\tilde{u}}{4\delta_{x}^{2}} \qquad \checkmark$$
$$u_{1}^{n+1} - \alpha\delta_{t} \frac{\phi_{2}^{n+1}}{2\delta_{x}} = u_{1}^{*} - \alpha \frac{\delta_{t} \tilde{\phi}}{2\delta_{x}} \qquad \checkmark$$

First order boundary condition:

$$\phi_0^{n+1} u_1^{n+1} + \phi_1^{n+1} u_0^{n+1} = 0$$
 fixe $u_0^{n+1} = \tilde{u}$ then $\phi_0^{n+1} = 0$ or (fixe $\phi_0^{n+1} = \tilde{\phi}$ then $u_0^{n+1} = 0$)

$$u_{k}^{n+1} - \alpha^{2} \frac{u_{k+2}^{n+1} - 2u_{k}^{n+1} + u_{k-2}^{n+1}}{4\delta_{x}^{2}} = u_{k}^{*} + \alpha \frac{w_{k+1}^{*} - w_{k-1}^{*}}{2\delta_{x}} \qquad k \ge 3 \quad \checkmark$$
$$u_{2}^{n+1} - \alpha^{2} \frac{u_{4}^{n+1} - 2u_{2}^{n+1}}{4\delta_{x}^{2}} = u_{2}^{*} + \alpha \frac{w_{3}^{*} - w_{2}^{*}}{2\delta_{x}} - \frac{\tilde{u}}{4\delta_{x}^{2}} \qquad \checkmark$$
$$u_{1}^{n+1} + \alpha \frac{w_{2}^{n+1}}{2\delta_{x}} = u_{1}^{*} - \alpha \frac{\delta_{t}\tilde{\varphi} - w_{2}^{*}}{2\delta_{x}} \qquad \checkmark$$

Ínnía-

FIRST ORDER BOUNDARY CONDITION:

$$\phi_0^{n+1}u_1^{n+1} + \phi_1^{n+1}u_0^{n+1} = 0 \qquad \text{fixe } u_0^{n+1} = \widetilde{u} \text{ then } \phi_0^{n+1} = 0 \text{ or (fixe } \phi_0^{n+1} = \widetilde{\phi} \text{ then } u_0^{n+1} = 0)$$

$$\begin{split} u_{k}^{n+1} - \alpha^{2} \frac{u_{k+2}^{n+1} - 2u_{k}^{n+1} + u_{k-2}^{n+1}}{4\delta_{x}^{2}} &= u_{k}^{*} + \alpha \frac{w_{k+1}^{*} - w_{k-1}^{*}}{2\delta_{x}} \qquad k \geq 3 \quad \checkmark \\ u_{2}^{n+1} - \alpha^{2} \frac{u_{4}^{n+1} - 2u_{2}^{n+1}}{4\delta_{x}^{2}} &= u_{2}^{*} + \alpha \frac{w_{3}^{*} - w_{2}^{*}}{2\delta_{x}} - \frac{\widetilde{u}}{4\delta_{x}^{2}} \qquad \checkmark \\ u_{1}^{n+1} - \alpha^{2} \frac{u_{4}^{n+1} - u_{1}^{n+1}}{4\delta_{x}^{2}} &= u_{1}^{*} - \alpha \frac{\delta_{t} \widetilde{\phi} - w_{2}^{*}}{2\delta_{x}} \qquad \checkmark \end{split}$$

FIRST ORDER BOUNDARY CONDITION:

$$\phi_0^{n+1}u_1^{n+1} + \phi_1^{n+1}u_0^{n+1} = 0 \qquad \text{fixe } u_0^{n+1} = \widetilde{u} \text{ then } \phi_0^{n+1} = 0 \text{ or (fixe } \phi_0^{n+1} = \widetilde{\phi} \text{ then } u_0^{n+1} = 0)$$

$$u_{k}^{n+1} - \alpha^{2} \frac{u_{k+2}^{n+1} - 2u_{k}^{n+1} + u_{k-2}^{n+1}}{4\delta_{x}^{2}} = u_{k}^{*} + \alpha \frac{w_{k+1}^{*} - w_{k-1}^{*}}{2\delta_{x}} \qquad k \ge 3 \quad \checkmark$$
$$u_{2}^{n+1} - \alpha^{2} \frac{u_{4}^{n+1} - 2u_{2}^{n+1}}{4\delta_{x}^{2}} = u_{2}^{*} + \alpha \frac{w_{3}^{*} - w_{2}^{*}}{2\delta_{x}} - \frac{\tilde{u}}{4\delta_{x}^{2}} \qquad \checkmark$$
$$u_{1}^{n+1} - \alpha^{2} \frac{u_{4}^{n+1} - u_{1}^{n+1}}{4\delta_{x}^{2}} = u_{1}^{*} - \alpha \frac{\delta_{t} \tilde{\phi} - w_{2}^{*}}{2\delta_{x}} \qquad \checkmark$$

SECOND ORDER BOUNDARY CONDITION:

▶ fixe
$$u_0^{n+1} = -u_1^{n+1} + 2\tilde{u}$$
 then $\phi_0^{n+1} = \phi_1^{n+1}$
▶ fixe $\phi_0^{n+1} = -\phi_1^{n+1} + 2\tilde{\phi}$ then $u_0^{n+1} = u_1^{n+1}$

THE GREEN-NAGHDI MODEL: projected hyperbolic form

$$\partial_t \begin{pmatrix} h\\ hu\\ hw \end{pmatrix} + \nabla \cdot \begin{pmatrix} hu\\ hu^2 + \frac{g}{2}h^2\\ hw u \end{pmatrix} = -\begin{pmatrix} 0\\ \nabla(hq)\\ -\sqrt{3}q \end{pmatrix}, \qquad E(W) = \frac{g}{2}h^2 + \frac{h}{2}\left(u^2 + w^2\right)$$

THE GREEN-NAGHDI MODEL: projected hyperbolic form

$$\partial_t \begin{pmatrix} h\\ hu\\ hw \end{pmatrix} + \nabla \cdot \begin{pmatrix} hu\\ hu^2 + \frac{g}{2}h^2\\ hw u \end{pmatrix} = - \begin{pmatrix} 0\\ \nabla(hq)\\ -\sqrt{3}q \end{pmatrix}, \qquad E(W) = \frac{g}{2}h^2 + \frac{h}{2}\left(u^2 + w^2\right)$$

Split the unknowns in two groups:

▶ the "Potential": H = h (seen as parameters in the projection) ▶ the "Kinetics": $U = (u, w)^{\perp}$ (unknown of the projection)

$$\begin{split} \mathbb{A}_{h} &= \left\{ \begin{pmatrix} u \\ w \end{pmatrix} \in L^{2}(h) \mid L_{h}(U) = 0 \right\} \quad \text{with } \langle U, V \rangle_{h} = \int_{\Omega} U \cdot V \ h \, dx \quad \text{and } L_{h}(U) = w + \frac{h}{\sqrt{3}} \nabla \cdot u \end{split}$$

For any $V \in \mathbb{A}_{h}$ and any $q \in H_{h}^{1} = \left\{ q \in L_{h}^{2} \ and \ \nabla(hq) \in L_{h}^{2} \right\},$
we have $\left\langle V, \begin{pmatrix} \nabla(hq) \\ -\sqrt{3}q \end{pmatrix} \right\rangle_{h} = 0$ in \mathbb{R}^{d} .

<u>Rmk</u>: Also possible with time- and space-dependent **bathymetry**.

 \bigwedge The L_h^2 -scalar product is only be defined on the wet domain,

$$\Omega_W = \{ x \in \Omega \mid h > 0 \}.$$

 \bigwedge The L_h^2 -scalar product is only be defined on the **wet domain**,

$$\Omega_W = \{ x \in \Omega \mid h > 0 \}.$$

▶ For any $U \in \mathbb{A}_h$ and $\Psi \in \mathbb{A}_h^{\perp}$, we have

$$\langle U, \Psi \rangle_h = \int_{\partial \Omega_W} hq \ u \cdot \mathfrak{n} \, d\chi = \int_{\Gamma_h} hq \ u \cdot \mathfrak{n} \, d\chi + \int_{\Gamma_u} hq \ u \cdot \mathfrak{n} \, d\chi + \int_{\Gamma_q} hq \ u \cdot \mathfrak{n} \, d\chi$$

with $\Gamma_h = \{\chi \in \partial \Omega_w \mid h = 0\}$, and we want to impose for given functions $\widetilde{u}(\Gamma_u)$ and $\widetilde{hq}(\Gamma_q)$. We define $\mathbb{A}_{h,\Gamma}(\widetilde{u}) = \{V \in \mathbb{A}_h \mid u_{|_{\Gamma}} \cdot n = \widetilde{u}\}$ and $H^1_{h,\Gamma}(\widetilde{hq}) = \{q \in H^1_h \mid hq_{|_{\Gamma}} = \widetilde{hq}\}$ \bigwedge The L_h^2 -scalar product is only be defined on the **wet domain**,

$$\Omega_W = \{ x \in \Omega \mid h > 0 \}.$$

For any $U \in \mathbb{A}_h$ and $\Psi \in \mathbb{A}_h^{\perp}$, we have

$$\langle U, \Psi \rangle_h = \int_{\partial \Omega_W} hq \ u \cdot \mathfrak{n} \, \mathrm{d}\chi = \int_{\Gamma_h} hq \ u \cdot \mathfrak{n} \, \mathrm{d}\chi + \int_{\Gamma_u} hq \ u \cdot \mathfrak{n} \, \mathrm{d}\chi + \int_{\Gamma_q} hq \ u \cdot \mathfrak{n} \, \mathrm{d}\chi$$

with $\Gamma_h = \{\chi \in \partial \Omega_w \mid h = 0\}$, and we want to impose for given functions $\widetilde{u}(\Gamma_u)$ and $\widetilde{hq}(\Gamma_q)$. We define $\mathbb{A}_{h,\Gamma}(\widetilde{u}) = \{V \in \mathbb{A}_h \mid u_{|_{\Gamma}} \cdot \mathfrak{n} = \widetilde{u}\}$ and $H^1_{h,\Gamma}(\widetilde{hq}) = \{q \in H^1_h \mid hq_{|_{\Gamma}} = \widetilde{hq}\}$

 $\begin{array}{c} \hline \textbf{Proprosition:} The "projection" structure on a bounded domain \\ \hline \textbf{For any } \Gamma_q \subset \partial\Omega - \Gamma_h \text{ with finitely many connected components} \\ \hline \textbf{For any } \Gamma_q \subset \partial\Omega - \Gamma_h \text{ with finitely many connected components} \\ \text{any } U^* \left(t, \bullet \right) \in L_h^2, \text{ any } \widetilde{u} \in H^{-1/2} \left(\partial\Omega \right) \text{ and any } \widetilde{hq} \in H^{1/2} \left(\Gamma_q \right), \\ \text{there exist a unique } U \in \mathbb{A}_{h,\Gamma_u} \left(\widetilde{u} \right), \ q \in H^1_{h,\Gamma_q} \left(\widetilde{hq} \right) \text{ and } q_B \in L_h^2 \text{ sol. of } (CS) \text{ defined by} \\ U = U^r + \Pi_h \left[\mathbb{A}_{h,\Gamma_u} \left(0 \right) \right] \left(U^* - U^r - \delta_t \Psi_h \left(q^r, 0 \right) \right) \\ \text{for any reference functions } U^r \in \mathbb{A}_{h,\Gamma_u} \left(\widetilde{u} \right) \text{ and } q^r \in H^1_{h,\Gamma_q} \left(\widetilde{hq} \right). \end{array}$

Dry front + Wall	Fixed state	► Inlet	► Transparent
$\partial_x h = 0, \ u = 0$	$h = H, \ u = U$	hu = M, hq = HQ	$\partial_x h = 0, \ u = u^*$

Innín-

Martin PARISOT

CANUM'24

The advantage of using the "projection" formulation

- From a numerical point of view, it produces schemes in bounded domains: robust: entropy-satisfying or well-balanced efficient: cheaps high order and adaptive.
- From a modeling point of view, it opens the way to improved models coupling: waves breaking, boundary condition, discontinuous bathymetry dispersion: fully dispersive model usable in the context of applications.

The need of the "projection" formulation

Establish a fully continuous justification.

THANK YOU

