Remarks on boundary conditions for Projected Hyperbolic models

Martin Parisot - Cardamom Inria Bordeaux

Inría
Boundary conditions for water waves problems
Theoretical and numerical issues

Pratical (for the use)

- Source terms (PML,...)

- Hyperbolisation (relaxation)
[Favrie, Gavrilyuk'17]
[Escalante, Dumbser, Castro'19]
[...]
- Couplage dispersif/hyperbolique

[Lannes, Rigal]
[Galaz, Kazolea, Rousseau]
- [Parisot]

Theoretical (to understand the model)

- Basé sur un opérateur Dirichlet-to-Neumann [Besse, Ehrhardt, Lacroix-Violet'16]
- [Besse, Mésognon-Giraut, Noble'18]
[Kazakova, Noble'20]
[...]
- Basé sur une formulation en ODE

- Basé sur une structure de projection
[Noelle, Parisot, Tscherpel'22]
[...]

Consider an hyperbolic model:
L^{2}-stable, i.e. $G(U)$ such that $U^{T} \cdot A(U)=\nabla_{U} G$,
(hyperbolic)

The projected hyperbolic model $(P H)$: reads

$$
\begin{array}{rlrl}
\partial_{t} U+A(U) \partial_{x} U & =-\Psi(Q), & \\
L(U) & =0, \quad \text { (Linear constraint) } U \in \mathbb{A}=\left\{V \in L^{2} \mid L(V)=0\right\} \\
\langle V, \Psi(P)\rangle & =0, \quad \text { (Orthogonality) } \quad P \in \Psi^{-1}\left(\mathbb{A}^{\perp}\right)
\end{array}
$$

Consider an hyperbolic model: $\quad \partial_{t} U+A(U) \partial_{x} U=0 \quad$ (hyperbolic) L^{2}-stable, i.e. $G(U)$ such that $U^{T} \cdot A(U)=\nabla_{U} G, \quad \partial_{t}\langle U, U\rangle=0$. (Energy)

The projected hyperbolic model $(P H)$: reads

$$
\begin{array}{rlrl}
\partial_{t} U+A(U) \partial_{x} U & =-\Psi(Q), & \\
L(U) & =0, \quad & \text { (Linear constraint) } U \in \mathbb{A}=\left\{V \in L^{2} \mid L(V)=0\right\} \\
\langle V, \Psi(P)\rangle & =0, \quad \text { (Orthogonality) } P \in \Psi^{-1}\left(\mathbb{A}^{\perp}\right)
\end{array}
$$

- Similar to the incompressible fluids,
allows reuse of tools (analysis and numerical) from the literature.

$$
\begin{aligned}
\partial_{t} u+u \cdot \nabla u & =-\nabla p, \\
\nabla \cdot u & =0, \quad \text { (Linear constraint) } u \in H_{D i v}^{0}=\left\{v \in L^{2} \mid \nabla \cdot v=0\right\} \\
\langle v, \nabla q\rangle & =0, \quad \text { (Orthogonality) } \quad q \in L^{2}
\end{aligned}
$$

Consider an hyperbolic model: $\quad \partial_{t} U+A(U) \partial_{x} U=0 \quad$ (hyperbolic) L^{2}-stable, i.e. $G(U)$ such that $U^{T} \cdot A(U)=\nabla_{U} G, \quad \partial_{t}\langle U, U\rangle=0$. (Energy)

The projected hyperbolic model $(P H)$: reads

$$
\begin{array}{rlrl}
\partial_{t} U+A(U) \partial_{x} U & =-\Psi(Q), & \\
L(U) & =0, \quad \text { (Linear constraint) } U \in \mathbb{A}=\left\{V \in L^{2} \mid L(V)=0\right\} \\
\langle V, \Psi(P)\rangle & =0, \quad \text { (Orthogonality) } \quad P \in \Psi^{-1}\left(\mathbb{A}^{\perp}\right)
\end{array}
$$

- Similar to the incompressible fluids,
allows reuse of tools (analysis and numerical) from the literature.
$\partial_{t} u+u \cdot \nabla u=-\nabla p$,

$$
\begin{aligned}
\nabla \cdot u & =0, & \text { (Linear constraint) } u \in H_{D i v}^{0}=\left\{v \in L^{2} \mid \nabla \cdot v=0\right\} \\
\langle v, \nabla q\rangle & =0, & \text { (Orthogonality) } \quad q \in L^{2}
\end{aligned}
$$

- Many dispersive models of waves satisfy this mathematical structure,

Consider an hyperbolic model: $\quad \partial_{t} U+A(U) \partial_{x} U=0 \quad$ (hyperbolic) L^{2}-stable, i.e. $G(U)$ such that $U^{T} \cdot A(U)=\nabla_{U} G, \quad \partial_{t}\langle U, U\rangle=0$. (Energy)

The projected hyperbolic model $(P H)$: reads

$$
\begin{array}{rlrl}
\partial_{t} U+A(U) \partial_{x} U & =-\Psi(Q), & \\
L(U) & =0, \quad & \text { (Linear constraint) } U \in \mathbb{A}=\left\{V \in L^{2} \mid L(V)=0\right\} \\
\langle V, \Psi(P)\rangle & =0, \quad \text { (Orthogonality) } \quad P \in \Psi^{-1}\left(\mathbb{A}^{\perp}\right)
\end{array}
$$

- Similar to the incompressible fluids,
allows reuse of tools (analysis and numerical) from the literature.
$\partial_{t} u+u \cdot \nabla u=-\nabla p$,

$$
\begin{aligned}
\nabla \cdot u & =0, & \text { (Linear constraint) } u \in H_{D i v}^{0}=\left\{v \in L^{2} \mid \nabla \cdot v=0\right\} \\
\langle v, \nabla q\rangle & =0, & \text { (Orthogonality) } \quad q \in L^{2}
\end{aligned}
$$

- Many dispersive models of waves satisfy this mathematical structure,
- The energy conservation law still holds for any $L(U)$.

Consider an hyperbolic model: $\quad \partial_{t} U+A(U) \partial_{x} U=0 \quad$ (hyperbolic) L^{2}-stable, i.e. $G(U)$ such that $U^{T} \cdot A(U)=\nabla_{U} G, \quad \partial_{t}\langle U, U\rangle=0$. (Energy)

The projected hyperbolic model (PH): reads

$$
\begin{aligned}
\partial_{t} U+A(U) \partial_{x} U & =-\Psi(Q), \\
L(U) & =0, \quad \text { (Linear constraint) } U \in \mathbb{A}=\left\{V \in L^{2} \mid L(V)=0\right\} \\
\langle V, \Psi(P)\rangle & =0, \quad \text { (Orthogonality) } P \in \Psi^{-1}\left(\mathbb{A}^{\perp}\right)
\end{aligned}
$$

- Similar to the incompressible fluids,
allows reuse of tools (analysis and numerical) from the literature.

$$
\begin{aligned}
\partial_{t} u+u \cdot \nabla u & =-\nabla p, \\
\nabla \cdot u & =0, \quad \text { (Linear constraint) } u \in H_{D i v}^{0}=\left\{v \in L^{2} \mid \nabla \cdot v=0\right\} \\
\langle v, \nabla q\rangle & =0, \quad \text { (Orthogonality) } \quad q \in L^{2}
\end{aligned}
$$

- Many dispersive models of waves satisfy this mathematical structure,
- The energy conservation law still holds for any $L(U)$.

- A-Element
[Raviart, Thomas'77]
- Pseudo-compressiblility methods (hyperbolisation)
[Chang, Kwak'84] \square [Favrie, Gavrilyuk'17]
\checkmark Projection methods (hyperbolic)+(projection)
[Chorin'68] [Parisot'19]

SIMPLE MODEL: projected hyperbolic form

$$
\begin{array}{rlrl}
\partial_{t}\binom{u}{w}+\left(\begin{array}{cc}
u & 0 \\
0 & c
\end{array}\right) \partial_{x}\binom{u}{w} & =-\Psi(Q), & & \partial_{t} \int_{\mathbb{R}}\left(u^{2}+w^{2}\right) \mathrm{d} x=0 \\
w+\alpha \partial_{x} u & =0, & \text { (Linear constraint) } A=\left\{\left.\binom{u}{w} \in L^{2} \right\rvert\, w+\alpha \partial_{x} u=0\right\} \\
\left\langle\binom{ u}{w},\binom{\psi}{\phi}\right\rangle & =0, \quad \text { (Orthogonality) } &
\end{array}
$$

SIMPLE MODEL: projected hyperbolic form

$$
\begin{aligned}
\partial_{t}\binom{u}{w}+\left(\begin{array}{cc}
u & 0 \\
0 & c
\end{array}\right) \partial_{x}\binom{u}{w} & =-\Psi(Q), & & \partial_{t} \int_{\mathbb{R}}\left(u^{2}+w^{2}\right) \mathrm{d} x=0 \\
w+\alpha \partial_{x} u & =0, & & \text { (Linear constraint) } \mathbb{A}=\left\{\left.\binom{u}{w} \in L^{2} \right\rvert\, w+\alpha \partial_{x} u=0\right\} \\
\left\langle\binom{ u}{w},\binom{\psi}{\phi}\right\rangle & =0, & & \text { (Orthogonality) }
\end{aligned}
$$

- Identification of the dual space A^{\perp}

$$
0=\int_{\mathbb{R}}(u \psi+w \phi) \mathrm{d} x=\int_{\mathbb{R}}\left(u \psi-\alpha \partial_{x} u \phi\right) \mathrm{d} x=\int_{\mathbb{R}} u\left(\psi+\alpha \partial_{\times} \phi\right) \mathrm{d} x
$$

Hence $\mathbb{A}^{\perp}=\left\{\Psi \in L^{2} \mid R(\Psi)=0\right\}$ with $R(\Psi)=\psi+\alpha \partial_{x} \phi$.

SIMPLE MODEL: projected hyperbolic form

$$
\begin{array}{rlrl}
\partial_{t}\binom{u}{w}+\left(\begin{array}{cc}
u & 0 \\
0 & c
\end{array}\right) \partial_{x}\binom{u}{w} & =-\Psi(Q), & \quad \partial_{t} \int_{\mathbb{R}}\left(u^{2}+w^{2}\right) \mathrm{d} x=0 \\
w+\alpha \partial_{x} u & =0, \quad \text { (Linear constraint) } A=\left\{\left.\binom{u}{w} \in L^{2} \right\rvert\, w+\alpha \partial_{x} u=0\right\} \\
\left\langle\binom{ u}{w},\binom{\psi}{\psi}\right\rangle & =0, \quad \text { (Orthogonality) } &
\end{array}
$$

Δ Identification of the dual space A^{\perp}

$$
0=\int_{\mathbb{R}}(u \psi+w \phi) \mathrm{d} x=\int_{\mathbb{R}}\left(u \psi-\alpha \partial_{x} u \phi\right) \mathrm{d} x=\int_{\mathbb{R}} u\left(\psi+\alpha \partial_{\times} \phi\right) \mathrm{d} x
$$

Hence $\mathbb{A}^{\perp}=\left\{\Psi \in L^{2} \mid R(\Psi)=0\right\}$ with $R(\Psi)=\psi+\alpha \partial_{x} \phi$.
(act as a rotational)

- Write the "rotational" form by applying R

$$
\begin{aligned}
0 & =\partial_{t} R\binom{u}{w}+R\left(\left(\begin{array}{cc}
u & 0 \\
0 & c
\end{array}\right) \partial_{x}\binom{u}{w}\right) \\
& =\partial_{t} u+\alpha \partial_{t x} w+u \partial_{x} u+c \alpha \partial_{x x} w \\
& =\partial_{t} u-\alpha^{2} \partial_{t x x} u+u \partial_{x} u-c \alpha^{2} \partial_{x x x} u
\end{aligned}
$$

We recover the Korteweg-de Vries-Benjamin-Bona-Mahony (KdV-BBM) model.

SIMPLE MODEL: projected hyperbolic form

$$
\begin{array}{rlrl}
\partial_{t}\binom{u}{w}+\left(\begin{array}{cc}
u & 0 \\
0 & c
\end{array}\right) \partial_{x}\binom{u}{w} & =-\Psi(Q), & \quad \partial_{t} \int_{\mathbb{R}}\left(u^{2}+w^{2}\right) \mathrm{d} x=0 \\
w+\alpha \partial_{x} u & =0, \quad \text { (Linear constraint) } A=\left\{\left.\binom{u}{w} \in L^{2} \right\rvert\, w+\alpha \partial_{x} u=0\right\} \\
\left\langle\binom{ u}{w},\binom{\psi}{\psi}\right\rangle & =0, \quad \text { (Orthogonality) } &
\end{array}
$$

Δ Identification of the dual space A^{\perp}

$$
0=\int_{\mathbb{R}}(u \psi+w \phi) \mathrm{d} x=\int_{\mathbb{R}}\left(u \psi-\alpha \partial_{x} u \phi\right) \mathrm{d} x=\int_{\mathbb{R}} u\left(\psi+\alpha \partial_{\times} \phi\right) \mathrm{d} x
$$

Hence $\mathbb{A}^{\perp}=\left\{\Psi \in L^{2} \mid R(\Psi)=0\right\}$ with $R(\Psi)=\psi+\alpha \partial_{x} \phi$.
(act as a rotational)

- Write the "rotational" form by applying R

$$
\begin{aligned}
0 & =\partial_{t} R\binom{u}{w}+R\left(\left(\begin{array}{cc}
u & 0 \\
0 & c
\end{array}\right) \partial_{x}\binom{u}{w}\right) \\
& =\partial_{t} u+\alpha \partial_{t x} w+u \partial_{x} u+c \alpha \partial_{x x} w \\
& =\partial_{t} u-\alpha^{2} \partial_{t x x} u+u \partial_{x} u-c \alpha^{2} \partial_{x x x} u
\end{aligned}
$$

We recover the Korteweg-de Vries-Benjamin-Bona-Mahony (KdV-BBM) model.

Rmk: We can recover the Camassa-Holm, Green-Naghdi or Boussinesq models as well.

KdV-BBM model on bounded domain $\Omega=[0,1]$: projected hyperbolic form

$$
\begin{array}{rlrl}
\partial_{t}\binom{u}{w}+\left(\begin{array}{cc}
u & 0 \\
0 & c
\end{array}\right) \partial_{x}\binom{u}{w} & =-\Psi(Q), & & \partial_{t} \int_{0}^{1}\left(u^{2}+w^{2}\right) \mathrm{d} x=0 \\
w+\alpha \partial_{x} u & =0, & \text { (Linear constraint) } A=\left\{\left.\binom{u}{w} \in L^{2}([0,1]) \right\rvert\, w+\alpha \partial_{x}\right. \\
\left\langle\binom{ u}{w},\binom{\psi}{\phi}\right\rangle & =0, \quad \text { (Orthogonality) } &
\end{array}
$$

KdV-BBM model on bounded domain $\Omega=[0,1]$: projected hyperbolic form

$$
\begin{array}{rlrl}
\partial_{t}\binom{u}{w}+\left(\begin{array}{cc}
u & 0 \\
0 & c
\end{array}\right) \partial_{x}\binom{u}{w} & =-\Psi(Q), \quad & \partial_{t} \int_{0}^{1}\left(u^{2}+w^{2}\right) \mathrm{d} x=0 \\
w+\alpha \partial_{x} u & =0, \quad \text { (Linear constraint) } A=\left\{\left.\binom{u}{w} \in L^{2}([0,1]) \right\rvert\, w+\alpha \partial_{x} u=0\right\} \\
\left\langle\binom{ u}{w},\binom{\psi}{\phi}\right\rangle & =0, \quad \text { (Orthogonality) } &
\end{array}
$$

- Identification of the dual space A^{\perp}

$$
0=\int_{0}^{1}(u \psi+w \phi) \mathrm{d} x=\int_{0}^{1}\left(u \psi-\alpha \partial_{x} u \phi\right) \mathrm{d} x=\int_{0}^{1} u\left(\psi+\alpha \partial_{x} \phi\right) \mathrm{d} x .
$$

We have the condition $\phi u=0$ on $\partial \Omega . \quad\left(C_{\partial_{\Omega}}\right)$

KdV-BBM model on bounded domain $\Omega=[0,1]$: projected hyperbolic form

$$
\begin{array}{rlrl}
\partial_{t}\binom{u}{w}+\left(\begin{array}{cc}
u & 0 \\
0 & c
\end{array}\right) \partial_{x}\binom{u}{w} & =-\Psi(Q), & \quad \partial_{t} \int_{0}^{1}\left(u^{2}+w^{2}\right) \mathrm{d} x=0 \\
w+\alpha \partial_{x} u & =0, \quad \text { (Linear constraint) } A=\left\{\left.\binom{u}{w} \in L^{2}([0,1]) \right\rvert\, w+\alpha \partial_{x} u=0\right\} \\
\left\langle\binom{ u}{w},\binom{\psi}{\phi}\right\rangle & =0, \quad \text { (Orthogonality) }
\end{array}
$$

- Identification of the dual space A^{\perp}

$$
0=\int_{0}^{1}(u \psi+w \phi) \mathrm{d} x=\int_{0}^{1}\left(u \psi-\alpha \partial_{x} u \phi\right) \mathrm{d} x=\int_{0}^{1} \begin{array}{r}
u\left(\psi+\alpha \partial_{x} \phi\right) \mathrm{d} x \\
-\alpha(\phi(1) u(1)-\phi(0) u(0))
\end{array}
$$

We have the condition $\phi u=0$ on $\partial \Omega . \quad\left(C_{\partial_{\Omega}}\right)$
Δ Not the only condition, we need $w(0)$ if $c>0$ and $w(1)$ if $c<0$.
Rmk: More generally, we need to fixe the incoming Riemann-invariant in $\mathbb{A}+\left(C_{\partial_{\Omega}}\right)$.

Numerical scheme for KdV-BBM:
(1) Hyperbolic step (use your favorite scheme)
where $U_{\star}^{*} \in L_{\delta}^{2}=\left\{U_{\star} \mid\left\langle U_{\star}, U_{\star}\right\rangle^{\delta}<\infty\right\}$

$$
\begin{array}{r}
U_{k}^{*}=U_{k}^{n}-\frac{\delta_{t}}{\delta_{x}}\left(\mathscr{F}_{k+1 / 2}^{n}-\mathscr{F}_{k-1 / 2}^{n}\right) \\
\left\langle U_{\star}, V_{\star}\right\rangle^{\delta}=\sum_{k=1}^{N} U_{k} \cdot V_{k} \delta_{x}
\end{array}
$$

Numerical scheme for KdV-BBM:

(1) Hyperbolic step (use your favorite scheme)

$$
\begin{array}{r}
U_{k}^{*}=U_{k}^{n}-\frac{\delta_{t}}{\delta_{x}}\left(\mathscr{F}_{k+1 / 2}^{n}-\mathscr{F}_{k-1 / 2}^{n}\right) \\
\left\langle U_{\star}, V_{\star}\right\rangle^{\delta}=\sum_{k=1}^{N} U_{k} \cdot V_{k} \delta_{x}
\end{array}
$$

(2) Projection step
$U_{k}^{n+1}=U_{k}^{*}-\delta_{t} \Psi_{k}^{n+1}$
$L_{k}^{\delta}\left(U_{\star}^{n+1}\right)=0$

$$
L_{k}^{\delta}\left(U_{\star}\right)=w_{k}+\alpha \frac{u_{k+1}-u_{k-1}}{2 \delta_{x}}
$$

$$
\left\langle U_{\star}^{n+1}, \Psi_{\star}^{n+1}\right\rangle^{\delta}=0
$$

3 Numerical scheme for KdV-BBM:

(1) Hyperbolic step (use your favorite scheme)

$$
U_{k}^{*}=U_{k}^{n}-\frac{\delta_{t}}{\delta_{x}}\left(\mathscr{F}_{k+1 / 2}^{n}-\mathscr{F}_{k-1 / 2}^{n}\right)
$$

where $U_{\star}^{*} \in L_{\delta}^{2}=\left\{U_{\star} \mid\left\langle U_{\star}, U_{\star}\right\rangle^{\delta}<\infty\right\}$ $\left\langle U_{\star}, V_{\star}\right\rangle^{\delta}=\sum_{k=1}^{N} U_{k} \cdot V_{k} \delta_{x}$
(2) Projection step
$U_{k}^{n+1}=U_{k}^{*}-\delta_{t} \Psi_{k}^{n+1}$
$L_{k}^{\delta}\left(U_{\star}^{n+1}\right)=0$

$$
L_{k}^{\delta}\left(U_{\star}\right)=w_{k}+\alpha \frac{u_{k+1}-u_{k-1}}{2 \delta_{x}}
$$

$$
\begin{aligned}
\left\langle U_{\star}^{n+1}, \Psi_{\star}^{n+1}\right\rangle^{\delta}=0= & \sum_{k=1}^{N} U_{k}^{n+1} \cdot \Psi_{k}^{n+1} \delta_{x} \\
= & \sum_{k=1}^{N}\left(u_{k}^{n+1} \psi_{k}^{n+1}-\alpha \frac{u_{k+1}^{n+1}-u_{k-1}^{n+1}}{2 \delta_{x}} \phi_{k}^{n+1}\right) \delta_{x} \\
= & \sum_{k=1}^{N} u_{k}^{n+1}\left(\psi_{k}^{n+1}+\alpha \frac{\phi_{k+1}^{n+1}-\phi_{k-1}^{n+1}}{2 \delta_{x}}\right) \delta_{x} \\
& -\frac{\phi_{N}^{n+1} u_{N+1}^{n+1}+\phi_{N+1}^{n+1} u_{N}^{n+1}}{2}+\frac{\phi_{0}^{n+1} u_{1}^{n+1}+\phi_{1}^{n+1} u_{0}^{n+1}}{2}
\end{aligned}
$$

Numerical scheme for KdV-BBM:

(1) Hyperbolic step (use your favorite scheme)

$$
\begin{array}{r}
U_{k}^{*}=U_{k}^{n}-\frac{\delta_{t}}{\delta_{x}}\left(\mathscr{F}_{k+1 / 2}^{n}-\mathscr{F}_{k-1 / 2}^{n}\right) \\
\left\langle U_{\star}, V_{\star}\right\rangle^{\delta}=\sum_{k=1}^{N} U_{k} \cdot V_{k} \delta_{x}
\end{array}
$$

where $U_{\star}^{*} \in L_{\delta}^{2}=\left\{U_{\star} \mid\left\langle U_{\star}, U_{\star}\right\rangle^{\delta}<\infty\right\}$
(2) Projection step

$$
\begin{aligned}
& U_{k}^{n+1}=U_{k}^{*}-\delta_{t} \Psi_{k}^{n+1} \\
& L_{k}^{\delta}\left(U_{\star}^{n+1}\right)=0 \\
& R_{k}^{\delta}\left(\Psi_{\star}^{n+1}\right)=0
\end{aligned}
$$

$$
\begin{array}{r}
\phi_{0}^{n+1} u_{1}^{n+1}+\phi_{1}^{n+1} u_{0}^{n+1}=0 \\
L_{k}^{\delta}\left(U_{\star}\right)=w_{k}+\alpha \frac{u_{k+1}-u_{k-1}}{2 \delta_{x}} \\
R_{k}^{\delta}\left(\Psi_{\star}\right)=\psi_{k}+\alpha \frac{\phi_{k+1}-\phi_{k-1}}{2 \delta_{x}}
\end{array}
$$

Numerical scheme for KdV-BBM:

(1) Hyperbolic step (use your favorite scheme)

$$
\begin{array}{r}
U_{k}^{*}=U_{k}^{n}-\frac{\delta_{t}}{\delta_{x}}\left(\mathscr{F}_{k+1 / 2}^{n}-\mathscr{F}_{k-1 / 2}^{n}\right) \\
\left\langle U_{\star}, V_{\star}\right\rangle^{\delta}=\sum_{k=1}^{N} U_{k} \cdot V_{k} \delta_{x}
\end{array}
$$

(2) Projection step

$$
\begin{aligned}
& U_{k}^{n+1}=U_{k}^{*}-\delta_{t} \Psi_{k}^{n+1} \\
& L_{k}^{\delta}\left(U_{\star}^{n+1}\right)=0 \\
& R_{k}^{\delta}\left(\Psi_{\star}^{n+1}\right)=0
\end{aligned}
$$

$$
\begin{array}{r}
\phi_{0}^{n+1} u_{1}^{n+1}+\phi_{1}^{n+1} u_{0}^{n+1}=0 \\
L_{k}^{\delta}\left(U_{\star}\right)=w_{k}+\alpha \frac{u_{k+1}-u_{k-1}}{2 \delta_{x}} \\
R_{k}^{\delta}\left(\Psi_{\star}\right)=\psi_{k}+\alpha \frac{\phi_{k+1}-\phi_{k-1}}{2 \delta_{x}}
\end{array}
$$

- Applying R_{k}^{δ} to the first equation we get
$u_{k}^{n+1}-\alpha^{2} \frac{u_{k+2}^{n+1}-2 u_{k}^{n+1}+u_{k-2}^{n+1}}{4 \delta_{x}^{2}}=u_{k}^{*}+\alpha \frac{w_{k+1}^{*}-w_{k-1}^{*}}{2 \delta_{x}}$

First order boundary condition:

$$
\phi_{0}^{n+1} u_{1}^{n+1}+\phi_{1}^{n+1} u_{0}^{n+1}=0 \quad \text { fixe } u_{0}^{n+1}=\widetilde{u} \text { then } \phi_{0}^{n+1}=0 \text { or }\left(\text { fixe } \phi_{0}^{n+1}=\widetilde{\phi} \text { then } u_{0}^{n+1}=0\right)
$$

$$
\begin{aligned}
u_{k}^{n+1}-\alpha^{2} \frac{u_{k+2}^{n+1}-2 u_{k}^{n+1}+u_{k-2}^{n+1}}{4 \delta_{x}^{2}} & =u_{k}^{*}+\alpha \frac{w_{k+1}^{*}-w_{k-1}^{*}}{2 \delta_{x}} \quad k \geq 3 \\
u_{2}^{n+1}-\alpha^{2} \frac{u_{4}^{n+1}-2 u_{2}^{n+1}+u_{0}^{n+1}}{4 \delta_{x}^{2}} & =u_{2}^{*}+\alpha \frac{w_{3}^{*}-w_{2}^{*}}{2 \delta_{x}} \\
u_{1}^{n+1}-\alpha \delta_{t} \frac{\phi_{2}^{n+1}-\phi_{0}^{n+1}}{2 \delta_{x}} & =u_{1}^{*}
\end{aligned}
$$

First order boundary condition:

$$
\phi_{0}^{n+1} u_{1}^{n+1}+\phi_{1}^{n+1} u_{0}^{n+1}=0 \quad \text { fixe } u_{0}^{n+1}=\widetilde{u} \text { then } \phi_{0}^{n+1}=0 \text { or }\left(\text { fixe } \phi_{0}^{n+1}=\widetilde{\phi} \text { then } u_{0}^{n+1}=0\right)
$$

$$
\begin{aligned}
u_{k}^{n+1}-\alpha^{2} \frac{u_{k+2}^{n+1}-2 u_{k}^{n+1}+u_{k-2}^{n+1}}{4 \delta_{x}^{2}} & =u_{k}^{*}+\alpha \frac{w_{k+1}^{*}-w_{k-1}^{*}}{2 \delta_{x}} \\
u_{2}^{n+1}-\alpha^{2} \frac{u_{4}^{n+1}-2 u_{2}^{n+1}}{4 \delta_{x}^{2}} & =u_{2}^{*}+\alpha \frac{w_{3}^{*}-w_{2}^{*}}{2 \delta_{x}}-\frac{\widetilde{u}}{4 \delta_{x}^{2}} \\
u_{1}^{n+1}-\alpha \delta_{t} \frac{\phi_{2}^{n+1}}{2 \delta_{x}} & =u_{1}^{*}-\alpha \frac{\delta_{t} \widetilde{\phi}}{2 \delta_{x}}
\end{aligned}
$$

First order boundary condition:

$$
\phi_{0}^{n+1} u_{1}^{n+1}+\phi_{1}^{n+1} u_{0}^{n+1}=0 \quad \text { fixe } u_{0}^{n+1}=\widetilde{u} \text { then } \phi_{0}^{n+1}=0 \text { or }\left(\text { fixe } \phi_{0}^{n+1}=\widetilde{\phi} \text { then } u_{0}^{n+1}=0\right)
$$

$$
\begin{aligned}
u_{k}^{n+1}-\alpha^{2} \frac{u_{k+2}^{n+1}-2 u_{k}^{n+1}+u_{k-2}^{n+1}}{4 \delta_{x}^{2}} & =u_{k}^{*}+\alpha \frac{w_{k+1}^{*}-w_{k-1}^{*}}{2 \delta_{x}} \\
u_{2}^{n+1}-\alpha^{2} \frac{u_{4}^{n+1}-2 u_{2}^{n+1}}{4 \delta_{x}^{2}} & =u_{2}^{*}+\alpha \frac{w_{3}^{*}-w_{2}^{*}}{2 \delta_{x}}-\frac{\widetilde{u}}{4 \delta_{x}^{2}} \\
u_{1}^{n+1}+\alpha \frac{w_{2}^{n+1}}{2 \delta_{x}} & =u_{1}^{*}-\alpha \frac{\delta_{t} \widetilde{\phi}-w_{2}^{*}}{2 \delta_{x}}
\end{aligned}
$$

FIRST ORDER BOUNDARY CONDITION:

$$
\phi_{0}^{n+1} u_{1}^{n+1}+\phi_{1}^{n+1} u_{0}^{n+1}=0 \quad \text { fixe } u_{0}^{n+1}=\widetilde{u} \text { then } \phi_{0}^{n+1}=0 \text { or }\left(\text { fixe } \phi_{0}^{n+1}=\widetilde{\phi} \text { then } u_{0}^{n+1}=0\right)
$$

$$
\begin{aligned}
u_{k}^{n+1}-\alpha^{2} \frac{u_{k+2}^{n+1}-2 u_{k}^{n+1}+u_{k-2}^{n+1}}{4 \delta_{x}^{2}} & =u_{k}^{*}+\alpha \frac{w_{k+1}^{*}-w_{k-1}^{*}}{2 \delta_{x}} \\
u_{2}^{n+1}-\alpha^{2} \frac{u_{4}^{n+1}-2 u_{2}^{n+1}}{4 \delta_{x}^{2}} & =u_{2}^{*}+\alpha \frac{w_{3}^{*}-w_{2}^{*}}{2 \delta_{x}}-\frac{\widetilde{u}}{4 \delta_{x}^{2}} \\
u_{1}^{n+1}-\alpha^{2} \frac{u_{3}^{n+1}-u_{1}^{n+1}}{4 \delta_{x}^{2}} & =u_{1}^{*}-\alpha \frac{\delta_{t} \widetilde{\phi}-w_{2}^{*}}{2 \delta_{x}}
\end{aligned}
$$

FIRST ORDER BOUNDARY CONDITION:

$\phi_{0}^{n+1} u_{1}^{n+1}+\phi_{1}^{n+1} u_{0}^{n+1}=0 \quad$ fixe $u_{0}^{n+1}=\widetilde{u}$ then $\phi_{0}^{n+1}=0$ or $\left(\right.$ fixe $\phi_{0}^{n+1}=\widetilde{\phi}$ then $\left.u_{0}^{n+1}=0\right)$

$$
\begin{aligned}
u_{k}^{n+1}-\alpha^{2} \frac{u_{k+2}^{n+1}-2 u_{k}^{n+1}+u_{k-2}^{n+1}}{4 \delta_{x}^{2}} & =u_{k}^{*}+\alpha \frac{w_{k+1}^{*}-w_{k-1}^{*}}{2 \delta_{x}} \\
u_{2}^{n+1}-\alpha^{2} \frac{u_{4}^{n+1}-2 u_{2}^{n+1}}{4 \delta_{x}^{2}} & =u_{2}^{*}+\alpha \frac{w_{3}^{*}-w_{2}^{*}}{2 \delta_{x}}-\frac{\widetilde{u}}{4 \delta_{x}^{2}} \\
u_{1}^{n+1}-\alpha^{2} \frac{u_{3}^{n+1}-u_{1}^{n+1}}{4 \delta_{x}^{2}} & =u_{1}^{*}-\alpha \frac{\delta_{t} \widetilde{\phi}-w_{2}^{*}}{2 \delta_{x}}
\end{aligned}
$$

SECOND ORDER BOUNDARY CONDITION:

- fixe $u_{0}^{n+1}=-u_{1}^{n+1}+2 \widetilde{u}$ then $\phi_{0}^{n+1}=\phi_{1}^{n+1}$
- fixe $\phi_{0}^{n+1}=-\phi_{1}^{n+1}+2 \widetilde{\phi}$ then $u_{0}^{n+1}=u_{1}^{n+1}$

The Green-Naghdi model: projected hyperbolic form

$$
\partial_{t}\left(\begin{array}{c}
h \\
h u \\
h w
\end{array}\right)+\nabla \cdot\left(\begin{array}{c}
h u \\
h u^{2}+\frac{g}{2} h^{2} \\
h w u
\end{array}\right)=-\left(\begin{array}{c}
0 \\
\nabla(h q) \\
-\sqrt{3} q
\end{array}\right), \quad E(W)=\frac{g}{2} h^{2}+\frac{h}{2}\left(u^{2}+w^{2}\right)
$$

The Green-Naghdi model: projected hyperbolic form

$$
\partial_{t}\left(\begin{array}{c}
h \\
h u \\
h w
\end{array}\right)+\nabla \cdot\left(\begin{array}{c}
h u \\
h u^{2}+\frac{g}{2} h^{2} \\
h w u
\end{array}\right)=-\left(\begin{array}{c}
0 \\
\nabla(h q) \\
-\sqrt{3} q
\end{array}\right), \quad E(W)=\frac{g}{2} h^{2}+\frac{h}{2}\left(u^{2}+w^{2}\right)
$$

Split the unknowns in two groups:

- the "Potential": $H=h$
(seen as parameters in the projection)
- the "Kinetics": $U=(u, w)^{\perp}$ (unknown of the projection)
$\mathbb{A}_{h}=\left\{\left.\binom{u}{w} \in L^{2}(h) \right\rvert\, L_{h}(U)=0\right\}$ with $\langle U, V\rangle_{h}=\int_{\Omega} U \cdot V h \mathrm{~d} x$ and $L_{h}(U)=w+\frac{h}{\sqrt{3}} \nabla \cdot u$
For any $V \in \mathbb{A}_{h}$ and any $q \in H_{h}^{1}=\left\{q \in L_{h}^{2}\right.$ and $\left.\nabla(h q) \in L_{h}^{2}\right\}$,
we have $\left\langle V,\binom{\nabla(h q)}{-\sqrt{3} q}\right\rangle_{h}=0$ in \mathbb{R}^{d}.

Rmk: Also possible with time- and space-dependent bathymetry.
\triangle The L_{h}^{2}-scalar product is only be defined on the wet domain,

$$
\Omega_{w}=\{x \in \Omega \mid h>0\} .
$$

\triangle The L_{h}^{2}-scalar product is only be defined on the wet domain,

$$
\Omega_{w}=\{x \in \Omega \mid h>0\} .
$$

- For any $U \in \mathbb{A}_{h}$ and $\Psi \in \mathbb{A} \frac{\perp}{h}$, we have

$$
\langle U, \Psi\rangle_{h}=\int_{\partial \Omega_{w}} h q u \cdot \mathfrak{n d} \chi=\int_{\Gamma_{h}} h q u \cdot \mathfrak{n d} \chi+\int_{\Gamma_{u}} h q u \cdot \mathfrak{n d} \chi+\int_{\Gamma_{q}} h q u \cdot \mathfrak{n d} \chi
$$

with $\Gamma_{h}=\left\{\chi \in \partial \Omega_{w} \mid h=0\right\}$, and we want to impose for given functions $\widetilde{u}\left(\Gamma_{u}\right)$ and $\widetilde{h q}\left(\Gamma_{q}\right)$. We define

$$
\mathbb{A}_{h, \Gamma}(\widetilde{u})=\left\{V \in \mathbb{A}_{h} \mid u_{\left.\right|_{\Gamma}} \cdot \mathfrak{n}=\widetilde{u}\right\} \quad \text { and } \quad H_{h, \Gamma}^{1}(\widetilde{h q})=\left\{q \in H_{h}^{1} \mid h q_{\left.\right|_{\Gamma}}=\widetilde{h q}\right\}
$$

The L_{h}^{2}-scalar product is only be defined on the wet domain,

$$
\Omega_{w}=\{x \in \Omega \mid h>0\} .
$$

- For any $U \in \mathbb{A}_{h}$ and $\Psi \in \mathbb{A} \frac{\perp}{h}$, we have

$$
\langle U, \Psi\rangle_{h}=\int_{\partial \Omega_{w}} h q u \cdot \mathfrak{n d} \chi=\int_{\Gamma_{h}} h q u \cdot \mathfrak{n d} \chi+\int_{\Gamma_{u}} h q u \cdot \mathfrak{n d} \chi+\int_{\Gamma_{q}} h q u \cdot \mathfrak{n d} \chi
$$

with $\Gamma_{h}=\left\{\chi \in \partial \Omega_{w} \mid h=0\right\}$, and we want to impose for given functions $\widetilde{u}\left(\Gamma_{u}\right)$ and $\widetilde{h q}\left(\Gamma_{q}\right)$.
We define

$$
\mathbb{A}_{h, \Gamma}(\widetilde{u})=\left\{V \in \mathbb{A}_{h} \mid u_{\left.\right|_{\Gamma}} \cdot \mathfrak{n}=\widetilde{u}\right\} \quad \text { and }
$$

$$
H_{h, \Gamma}^{1}(\widetilde{h q})=\left\{q \in H_{h}^{1} \mid h q_{\left.\right|_{\Gamma}}=\widetilde{h q}\right\}
$$

Proprosition: The "projection" structure on a bounded domain
For any $\Gamma_{q} \subset \partial \Omega-\Gamma_{h}$ with finitely many connected components $\quad\left(\Gamma_{u}:=\partial \Omega-\Gamma_{h}-\Gamma_{q}\right)$, any $U^{*}(t, \bullet) \in L_{h}^{2}$, any $\widetilde{u} \in H^{-1 / 2}(\partial \Omega)$ and any $\widetilde{h q} \in H^{1 / 2}\left(\Gamma_{q}\right)$, there exist a unique $U \in \mathbb{A}_{h, \Gamma_{u}}(\widetilde{u}), q \in H_{h, \Gamma_{q}}^{1}(\widetilde{h q})$ and $q_{B} \in L_{h}^{2}$ sol. of $(C S)$ defined by

$$
U=U^{r}+\Pi_{h}\left[\mathbb{A}_{h, \Gamma_{u}}(0)\right]\left(U^{*}-U^{r}-\delta_{t} \Psi_{h}\left(q^{r}, 0\right)\right) \quad \text { and } \quad q=\Psi_{h}^{-1}\left(\frac{U^{*}-U}{\delta_{t}}\right)
$$

for any reference functions $U^{r} \in \mathbb{A}_{h, \Gamma_{u}}(\widetilde{u})$ and $q^{r} \in H_{h, \Gamma_{q}}^{1}(\widetilde{h q})$.
$\partial_{x} h=0, u=0$

- Fixed state
$h=H, u=U$
- Inlet

$$
h u=M, h q=H Q
$$

$$
\partial_{x} h=0, u=u^{*}
$$

Inlet
$h u(t, 0)=A \sin (\omega t)$
$h q(t, 0)=0$

Shallow Water
Green-Naghdi
Coupling SW/GN

Transparent
$\partial_{x} h=0$
$u=u *$

The advantage of using the "Projection" formulation

- From a numerical point of view, it produces schemes in bounded domains: robust: entropy-satisfying or well-balanced efficient: cheaps high order and adaptive.
- From a modeling point of view, it opens the way to improved models coupling: waves breaking, boundary condition, discontinuous bathymetry dispersion: fully dispersive model usable in the context of applications.

The need of the "projection" Formulation

- Establish a fully continuous justification.

> Thank You

