

Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein Projection

Hugues Van Assel Cédric Vincent-Cuaz Rémi Flamary

Nicolas Courty

Pascal Frossard

Titouan Vayer

Motivation

Single-cell RNA-seq

Technical noise due to partial sampling of RNA molecules within cells.

Genome Biology

METHOD

MetaCell: analysis of single-cell RNA-seq data using *K*-nn graph partitions

Open Access

Yael Baran¹, Akhiad Bercovich¹, Arnau Sebe-Pedros¹, Yaniv Lubling¹, Amir Giladi², Elad Chomsky¹, Zohar Meir¹, Michael Hoichman¹, Aviezer Lifshitz¹ and Amos Tanay^{1*}

Problem : **impossible to resample** a cell

- integration of data from different cells
- need to separate the sampling effect from biological variance

Affinity Matrices

Symmetric matrix with non-negative coefficients. Coefficient (i, j) = similarity between x_i and x_j .

A general optimization problem

$$\min_{Z \in \mathbb{R}^{n \times d}} \sum_{i,j=1}^{n} L\left([C_X]_{ij}, [C_Z]_{ij} \right) \text{ for some loss } L : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

A general optimization problem

$$\min_{Z \in \mathbb{R}^{n \times d}} \sum_{i,j=1}^{n} L\left(\begin{bmatrix} C_X \end{bmatrix}_{ij}, \begin{bmatrix} C_Z \end{bmatrix}_{ij} \right) \text{ for some loss } L : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

A general optimization problem

$$\min_{Z \in \mathbb{R}^{n \times d}} \sum_{i,j=1}^{n} L\left([C_X]_{ij}, [C_Z]_{ij} \right) \text{ for some loss } L : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

Spectral methods

 $\min_{Z \in \mathbb{R}^{n \times d}} \sum_{i=1}^{n} \left([C_X]_{ij} - \langle \mathbf{z}_i, \mathbf{z}_j \rangle \right)^2$

Spectral methods

$$\min_{Z \in \mathbb{R}^{n \times d}} \sum_{i=1}^{n} \left([C_X]_{ij} - \langle \mathbf{z}_i, \mathbf{z}_j \rangle \right)^2 \xrightarrow{C_X \geq 0} Solution$$
(Eckart & Young, 1936)
$$C_X \geq 0$$

$$Z^* = (\sqrt{\lambda_1} \mathbf{v}_1, \dots, \sqrt{\lambda_d} \mathbf{v}_d)^T$$

$$\lambda_i \quad \text{i-th largest eigenvalue of } C_X$$
with eigenvector \mathbf{v}_i

 $[C_X]_{ij} = \langle \phi(X_i), \phi(X_j) \rangle_{\mathcal{H}}$

Spectral methods

$$\min_{Z \in \mathbb{R}^{n \times d}} \sum_{i=1}^{n} \left([C_X]_{ij} - \langle \mathbf{z}_i, \mathbf{z}_j \rangle \right)^2$$

$$C_X \ge 0$$
solution
(Eckart & Young, 1936)

$$Z^{\star} = (\sqrt{\lambda_1} \mathbf{v}_1, \cdots, \sqrt{\lambda_d} \mathbf{v}_d)^{\top}$$

$$\lambda_i \text{ i-th largest eigenvalue of } \mathbf{C}_X$$

with eigenvector \mathbf{v}_i

• Kernel PCA $C_X \ge 0$ $[C_X]_{ij} = \langle \phi(X_i), \phi(X_j) \rangle_{\mathcal{H}}$

(Schölkopf, 1997)

→ PCA:
$$C_X = XX^{\top} (Z \leftarrow \text{SVD}(X))$$

Spectral methods

$$\min_{Z \in \mathbb{R}^{n \times d}} \sum_{i=1}^{n} \left([C_X]_{ij} - \langle \mathbf{z}_i, \mathbf{z}_j \rangle \right)^2 \xrightarrow{C_X \geq 0} Solution \qquad Z^* = (\sqrt{\lambda_1} \mathbf{v}_1, \cdots, \sqrt{\lambda_d} \mathbf{v}_d)^\top \\ \xrightarrow{(\text{Eckart & Young, 1936)}} \text{(Eckart & Young, 1936)} \xrightarrow{With eigenvector } \mathbf{v}_i$$

• Kernel PCA $C_X \ge 0$ $[C_X]_{ij} = \langle \phi(X_i), \phi(X_j) \rangle_{\mathcal{H}}$

(Schölkopf, 1997)

→ PCA:
$$C_X = XX^{\top}$$
 ($Z \leftarrow SVD(X)$)
→ (classical) Multidimensional scaling: $C_X = -\frac{1}{2}HD_XH$

Spectral methods

$$Z^{\star} = (\sqrt{\lambda_1} \mathbf{v}_1, \cdots, \sqrt{\lambda_d} \mathbf{v}_d)^{\top}$$

$$\lambda_i \quad \text{i-th largest eigenvalue of } \mathbf{C}_X$$

with eigenvector \mathbf{v}_i

• Kernel PCA $C_X \ge 0$ $[C_X]_{ij} = \langle \phi(X_i), \phi(X_j) \rangle_{\mathcal{H}}$

(Schölkopf, 1997)

→ PCA: $C_X = XX^T$ ($Z \leftarrow SVD(X)$) → (classical) Multidimensional scaling: $C_X = -\frac{1}{2}HD_XH$ → Laplacian Eigenmap (spectral embedding): $C_X = L_X^{\dagger}$ (Belkin & Niyogi, 2003) → Locally Linear Embedding, Diffusion Map ... (Roweis & Saul, 2000) (Coifman & Lafon, 2006)

embedding

Total citations Cited by 36223

Neighbor embedding methods

$$\min_{Z \in \mathbb{R}^{n \times d}} \sum_{i,j=1}^{n} \mathrm{KL}\left([C_X]_{ij}, [C_Z]_{ij} \right)$$

Total citations Cited by 36223

Neighbor embedding methods

$$\min_{Z \in \mathbb{R}^{n \times d}} \sum_{i,j=1}^{n} \mathrm{KL}\left([C_X]_{ij}, [C_Z]_{ij} \right)$$

Kullback-Leiber divergence

 $KL(a, b) = a \log(a/b) - a + b = D_{\phi}(a, b)$ Shannon-Boltzman entropy $\phi(x) = x \log(x) - x + 1$

- Some kind of normalization
- Robustness to noise, varying density
- Similar for both high and low dim

◆ SNE (Hinton & Roweis, 2002)

Embedding space

$$[\mathbf{C}_{\mathbf{Z}}]_{ij} = \frac{\exp(-\|\mathbf{z}_i - \mathbf{z}_j\|_2^2)}{\sum_k \exp(-\|\mathbf{z}_i - \mathbf{z}_k\|_2^2)} (=\mathbb{P}(j \mid i))$$

◆ SNE (Hinton & Roweis, 2002)

Input space

$$[C_X]_{ij} = \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|_2^2 / 2\sigma_i^2)}{\sum_k \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|_2^2 / 2\sigma_i^2)}$$

Embedding space

$$[\mathbf{C}_{\mathbf{Z}}]_{ij} = \frac{\exp(-\|\mathbf{z}_i - \mathbf{z}_j\|_2^2)}{\sum_k \exp(-\|\mathbf{z}_i - \mathbf{z}_k\|_2^2)} (=\mathbb{P}(j \mid i))$$

◆ SNE (Hinton & Roweis, 2002)

$$[C_X]_{ij} = \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|_2^2 / 2\sigma_i^2)}{\sum_k \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|_2^2 / 2\sigma_i^2)}$$

Local bandwidths optimized s.t.
 ∀*i*, entropy([C_X]_{*i*,:}) = log(perplexity)
 Perplexity = effective number of neighbors
 Account for varying density

Ź

Embedding space

$$[\mathbf{C}_{\mathbf{Z}}]_{ij} = \frac{\exp(-\|\mathbf{z}_i - \mathbf{z}_j\|_2^2)}{\sum_k \exp(-\|\mathbf{z}_i - \mathbf{z}_k\|_2^2)} (=\mathbb{P}(j \mid i))$$

SNE (Hinton & Roweis, 2002)

$$[C_X]_{ij} = \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|_2^2 / 2\sigma_i^2)}{\sum_k \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|_2^2 / 2\sigma_i^2)}$$

★ Local bandwidths optimized s.t.
 ∀*i*, entropy([C_X]_{*i*,:}) = log(perplexity)
 ★ Perplexity = effective number of neighbors
 ★ Account for varying density

Embedding space $\begin{bmatrix} \mathbf{C}_{\mathbf{Z}} \end{bmatrix}_{ij} = \frac{\exp(-\|\mathbf{z}_i - \mathbf{z}_j\|_2^2)}{\sum_k \exp(-\|\mathbf{z}_i - \mathbf{z}_k\|_2^2)} (=\mathbb{P}(j \mid i))$

(t)-SNE (Van der Maaten & Hinton, 2008)

◆ Joint distributions: $[C_Z]_{ij} = \frac{\exp(-\|\mathbf{z}_i - \mathbf{z}_j\|_2^2)}{\sum_{k\ell} \exp(-\|\mathbf{z}_{\ell} - \mathbf{z}_k\|_2^2)} (= \mathbb{P}(i, j))$

$$\begin{bmatrix} C_X \end{bmatrix}_{ij} \leftarrow \frac{\begin{bmatrix} C_X \end{bmatrix}_{ij} + \begin{bmatrix} C_X \end{bmatrix}_{ji}}{2n}$$
Crowding effect: Student t-distribution

instead of Gaussian in Z

SNE (Hinton & Roweis, 2002)

$$[C_X]_{ij} = \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|_2^2 / 2\sigma_i^2)}{\sum_k \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|_2^2 / 2\sigma_i^2)}$$

★ Local bandwidths optimized s.t.
 ∀*i*, entropy([C_X]_{*i*,:}) = log(perplexity)
 ★ Perplexity = effective number of neighbors
 ★ Account for varying density

Embedding space

$$\begin{bmatrix} \mathbf{C}_{\mathbf{Z}} \end{bmatrix}_{ij} = \frac{\exp(-\|\mathbf{z}_i - \mathbf{z}_j\|_2^2)}{\sum_k \exp(-\|\mathbf{z}_i - \mathbf{z}_k\|_2^2)} (=\mathbb{P}(j \mid i))$$

(t)-SNE (Van der Maaten & Hinton, 2008)

Joint distributions: $[C_{Z}]_{ij} = \frac{\exp(-\|\mathbf{z}_{i} - \mathbf{z}_{j}\|_{2}^{2})}{\sum_{k \in \mathbb{Z}} \exp(-\|\mathbf{z}_{\ell} - \mathbf{z}_{k}\|_{2}^{2})} (=\mathbb{P}(i, j))$ $[C_X]_{ij} \leftarrow \frac{[C_X]_{ij} + [C_X]_{ji}}{2\pi}$ Crowding effect: Student t-distribution instead of Gaussian in Z

(Shekhar et al., 2016)

From linear Optimal Transport to Gromov-Wasserstein

Classical optimal transport (in a nutshell)

(Sturm, 2012) (Mémoli, 2011)

Classical optimal transport (in a nutshell)

Quadratic OT: find the plan

 $\min_{T \in \Pi(\boldsymbol{a}, \boldsymbol{b})} \sum_{i=1}^{\infty} L\left([C_1]_{ik} , [C_2]_{jl} \right) T_{ij} T_{kl}$

DR as OT in disguise

Dimension reduction

$$\min_{Z \in \mathbb{R}^{n \times d}} \sum_{i,j=1}^{n} L\left([C_X]_{ij}, [C_Z]_{ij} \right)$$

DR as OT in disguise

Dimension reduction

 C_{Z}

DR as OT in disguise

Dimension reduction

 C_{Z}

 $X \in \mathbb{R}^{n \times p}$.0. $d\ll p$

 C_{Z}

DR as OT in disguise Dimension reduction $\min_{Z \in \mathbb{R}^{n \times d}} \sum_{i,j=1}^{n} L\left(\begin{bmatrix} C_X \end{bmatrix}_{ij}, \begin{bmatrix} C_Z \end{bmatrix}_{ij} \right)$ **Permutation equivariance** $\forall P, C_{PZ} = PC_Z P^\top$ equiv $\min_{Z \in \mathbb{R}^{n \times d}} \min_{\sigma \in S_n} \sum_{i, i=1}^{n} L\left([C_X]_{ij}, [C_Z]_{\sigma(i)\sigma(j)} \right)$ equiv $\min_{Z \in \mathbb{R}^{n \times d}} \min_{P} \sum_{i=1}^{n} L\left(\begin{bmatrix} C_X \end{bmatrix}_{ik}, \begin{bmatrix} C_Z \end{bmatrix}_{jl} \right) P_{ij} P_{kl}$ *i*,*j*,*k*,*l*=1 Gromov-Wasserstein projection $\min_{Z \in \mathbb{R}^{n \times d}} \min_{T \in \Pi(\frac{1_n}{n}, \frac{1_n}{n})} \sum_{iikl} L\left([C_X]_{ik}, [C_Z]_{jl} \right) T_{ij} T_{kl}$

Equivalence holds for

Spectral methods

 \bullet C_X any matrix, $L = |\cdot|^2$, $C_Z = ZZ^{\top}$

$$\min_{Z \in \mathbb{R}^{n \times d}} \min_{T \in \Pi(\frac{1_n}{n}, \frac{1_n}{n})} \sum_{ijkl} L\left([C_X]_{ik}, [C_Z]_{jl} \right) T_{ij} T_{kl}$$

DR as OT in disguise Dimension reduction $\min_{Z \in \mathbb{R}^{n \times d}} \sum_{i,j=1}^{n} L\left(\begin{bmatrix} C_X \\ i,j \end{bmatrix}_{ij}, \begin{bmatrix} C_Z \end{bmatrix}_{ij} \right)$ Permutation equivariance $\forall P, C_{PZ} = PC_Z P^\top$ equiv $\min_{Z \in \mathbb{R}^{n \times d}} \min_{\sigma \in S_n} \sum_{i \ i = 1}^{\infty} L\left([C_X]_{ij}, [C_Z]_{\sigma(i)\sigma(j)} \right)$

$$\min_{Z \in \mathbb{R}^{n \times d}} \min_{P} \sum_{i,j,k,l=1}^{n} L\left([C_X]_{ik}, [C_Z]_{jl} \right) P_{ij} P_k$$

Gromov-Wasserstein projection

 $\min_{Z \in \mathbb{R}^{n \times d}} \min_{T \in \Pi(\frac{1_n}{n}, \frac{1_n}{n})} \sum_{ijkl} L\left([C_X]_{ik}, [C_Z]_{jl} \right) T_{ij} T_{kl}$

• BCD: alternates optim in Z, in T • With low-rank structures $O(nkr + n^2)$

★ Single-cell dataset (Chen et al., 2019) Only solve $\min_{b \in \Sigma_k} GW_L(C_X, C_Z, \frac{1_n}{n}, b)$

dataset as an image

Image datasets

Comparison with DR then clustering or clustering then DR

Comparison with DR then clustering or clustering then DR

