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CONTEXT: EVOLUTION OF ERODIBLE LANDSCAPES (IN NATURE)

FIGURE: A drainage pattern in the San Simon Valley in New Mexico 1.

1https://www.flickr.com/photos/balvarius/3662158543/
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CONTEXT: DISSOLUTION PATTERN IN NATURE AND EXPERIMENTS

FIGURE: Fig (a): Dissolution rills on limestone (Karst Plateau, Slovenia). Fig (b): Rills on
gypsum (Vaucluse, France), Fig (c-f): Experimental dissolution pattern on gypsum.

2

2A. Guérin et al, Phys Rev Letters 125 (2020)
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CONTEXT: EROSION PATTERN THROUGH NUMERICS

FIGURE: Numerical Simulation of an evolution landscape (Madeira). Top: Evolution of
channels. Bottom: Topographic renderings

3Lebrun et al, Image Proc Online 8 (2018)
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SOME (GENERAL) QUESTIONS

@ Physical mechanism of their formation: Influence of rainfalls? Dissolution ?
Sedimentation ?

© What does set the scale of the patterns? How does evolve drainage areas?

@ More: What does the morphology of the patterns tell about past history?
Erosion rate? Age of exposure ?
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MAIN INGREDIENTS OF LANDSCAPE EVOLUTION MODELS

@ Erosion (of rocks, soils, ): fluid (water, snow, air) strain on the landscape,
chemical reaction (dilution), extreme events (landslides, avalanches)

@ Transport of sediments (solid or diluted) with two types of regimes:

@ ‘“transport limited” regime (sediments easily transport like sand, muds in rivers),
@ ‘“detachment limited” regime (rivers in mountains do not carry much sediments

and water hollows rocks).

@ Sediments deposition, debris accumulation

@ Other effects: creeping, tectonic uplift, lava flow,...
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TOPOGRAPHY EVOLUTION: CREEP EFFECT

@ The creep effect: the soil is subject to a diffusion process, which tends to
smooth the surface.

o Creep is due to multiples processes, that act under the constraint of gravity:
Wind, rain, splash, Expansions and contractions of the soil due to freeze-thaw,
wet-dry and hot-cold cycles, Biological activity...

o This term plays a significant role in the formation of patterns.

FIGURE: Terracettes in WiltShire, England 4,

4Author: Derek Harper
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LANDSCAPE EVOLUTION MODEL: ANALYSIS

LEM
Och + div(hv) =7, Equation on fluid height
Ot (ch) + div(chv) = pseh™|v|" — pssc,  Equation on concentration (1)
Oz = KAz + sc — eh™|v|", Equation on surface height

where the water speed is given by v = —V,..;V(h + z2).

THEOREM (BINARD, DEGOND, N): LoCAL WELL-POSEDNESS

Let m >0, n>30orn=2, K >0, and Ty > 0. Let us fix two constants fluid
heights Ares > hmin > 0. Suppose that the initial data RO, 20, ¥ satisfy

B — hreyp, 2° € HF'(R?), ¢ € H*(R?), h°(x) > 2homin Vo € R®.

with k = 3. Suppose that 7 € L7, (H*), K hmin — ||h°||Z> > 0. Then there exists
0 < T < Tp such that System (1) admits a unique solution (h, z, ¢) with

b= hyes, 2 € LA(H* )N Cr(H*™), ¢ e Cr(HY).
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CHANNELIZATION ANS STABILITY

A SIMPLIFIED MODEL (BY BONETTI ET AL, PNAS 117 (2020) NO 3)
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FIGURE: Channelization Cascade in a simplified LEM (no sediment, uplift): the
channelization index Cz increases as K — 0
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STATIONARY SOLUTIONS

@ What about channelization in tilted plane? Transverse instabilities?

o Fluid is flowing down a tilted plane. Fluid height and velocity are constant.

o v(t,z,y) = —tanfei, c(t,x,y)= <h"|v|"
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SPECTRAL STABILITY: ANALYTICAL RESULTS

Q@ Case K >0

e There exists a constant v > 0 independent of n such that the system is
spectrally stable at all frequencies (¢,7) € R2 if and only if

sz@§ =K and n<n.
Proof by Routh-Hurwitz stability criterion.

o Creeping has a stabilising effect on the system.

Q Case K =0
o If K =0, the system is spectrally unstable. The wave associated to the
wavevector (&, 7) is stable if and only if
me<1 and 7°m < &2(n—m).

e High frequencies are unstable.
@ If n < m then the system is unstable at all frequencies.

@ If n > m, the system is unstable in the transverse direction (§ = 0). This may lead to
the formation of rills in the direction of the water flux.
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STABILITY DIAGRAM IN THE CASE K > 0

In the unstable regime 0 < K < K, we can precise the instability scenarii. The
unstable domain is always bounded.

635 55 75 100 [ E—
(a) i (b) i

FIGURE: (a) K = 0.6mhce/V, (b) K = 0.75mhce/V , (c) K = 0.9mhce/V .

The black curves are boundary between stable and unstable areas, calculated at low
frequencies.
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NUMERICAL RESULTS: A TWO TIME SCALE PROBLEM

o Framework: we considered the characteristic velocities in the experiment by
Derr et al: erosion rate 0.1mm/h, fluid velocity 0.1m/s, fluid height, variation
of topography: 0.1mm, 2 — 5mm

o Write the LEM with non dimensional variables:

ed¢h + div(hv) =,
ed¢(ch) + div(chv) = K" |v|" — oc,
Oz = KAz — ™ |v|" + oc,
e S
h =S <l k=— =2
where € v <1 K o7’ o .
@ Numerical simulations of the full system introduces very restrictive CF'L.

o We consider the asymptotic model:

div(hv) = r,
div(chv) = eh™|v|™ — oc,
Oz = KAz — eh™|v|" + oc.

@ We can choose bigger time steps for the numerical simulations, and solve the
two first equations at each time step of the last equation.

@ In practice, simulations of the non stationary system, and of the stationary
system give the same results.
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THE NUMERICAL SCHEME

o Equation on h**! ~ h(t411,.) is solved by a finite volume scheme.

—div(R"VR*Y) — div(h* V) = o

o Equation on ¢®*1 is solved by a finite volume scheme, seeing z as a time
variable.
9., (hF+1 k+1 pEFLym | GRHL R okl ke
8.t 4 y ( +z )Gyck“:—( )PVt —oc T
Oz (PPt + 24 41) W19, (hF+1 + 2k + 1)

o Equation on z is solved with an explicit Euler scheme.
2Tl =2F Lt (IiAZk —e(h®)™ VR + ack)

e Boundary conditions:

@ periodic in the transverse variable y,
@ At z = 0, prescribed water height hg, concentration cg
@ At z = L, Neumann boundary conditions, no flux
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NUMERICAL RESULTS
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FIGURE: From top left to bottom right: (a) initial surface; final surface for: (b) K = Ke;
(c) K = K./20; (d) K = K./50
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CONCLUSION AND PERSPECTIVES

Conclusions

@ Local well-posedness for LEM under the restriction that the fluid height does
not vanish

@ Spectral stability results show that the creep effect plays a significant role:
small creep (large channelization index) promotes instabilities in particular
transverse instabilities

© Numerical simulations with finite volume methods confirm the instability
scenarii

Limitations
@ Dry areas appear on large time simulations and numerical instabilities occur

@ Existence of solutions on (arbitrary) large time: dealing also with dry areas (no
control on the minimum fluid height)

@ Understanding of channelization: introduction of randomness

=] = = 2024/05/28 — ILE DE RE



PERSPECTIVES: MODELING WITH RANDOM TERMS

Idea: we introduce randomness in the process of (micro)-channel creation through
a Poisson process with parameter p(z,t)
@ The probability of creating k canals during the time interval [¢,¢ + dt] and in a
domain B is

(AP (] [ ).

) = (MZQE))*” <|v<;x)|)

t+ot
o Probability that one channel is created: 1 — exp <—/ / u(s, y)dsdy) .
BJt

o We denote I';(x) the shape of the i-th channel et t; the time it is created

n(T)
Oz = KAz — Y Ti(x)ds, (2).

=1

o Shape of the channel T;(z) = f ((x — 24, w), (x — z;,w)) with w € S* chosen
with the Van Mises law

1 o) o —reos(®)
e T Z(n):/ e " do.
0
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PERSPECTIVE: RANDOM MODELLING AND PATTERN FORMATION

5

F1GURE: Emergence of blood capillary networks in tissue

5Aceves-Sanchez et al, arXiv 2018
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PERSPECTIVES: DEALING WITH VANISHING FLUID HEIGHT

o Dealing with dry areas is hardly treated with finite volume schemes, in
particular with degenerate viscosity.

e SPH (Smoothed Particle Hydrodynamics) are well suited for dry areas: the
solution is approximated by a sum of (smoothed) Dirac.

e Main issue: equations on (h,c) are stationnary and SPH methods need an
adaptation to this framework.
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FIGURE: (a) Water height, on the domain © (b)Particle positions, on the domain €.
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