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Context: evolution of erodible landscapes (in nature)

Figure: A drainage pattern in the San Simon Valley in New Mexico 1.

1https://www.flickr.com/photos/balvarius/3662158543/
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Context: dissolution pattern in nature and experiments

Figure: Fig (a): Dissolution rills on limestone (Karst Plateau, Slovenia). Fig (b): Rills on
gypsum (Vaucluse, France), Fig (c-f): Experimental dissolution pattern on gypsum.

2

2A. Guérin et al, Phys Rev Letters 125 (2020)

2024/05/28 – Ile de Ré



Context: erosion pattern through numerics

Figure: Numerical Simulation of an evolution landscape (Madeira). Top: Evolution of
channels. Bottom: Topographic renderings

3

3Lebrun et al, Image Proc Online 8 (2018)
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Some (general) questions

1 Physical mechanism of their formation: Influence of rainfalls? Dissolution ?
Sedimentation ?

2 What does set the scale of the patterns? How does evolve drainage areas?

3 More: What does the morphology of the patterns tell about past history?
Erosion rate? Age of exposure ?
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Main ingredients of landscape evolution models

1 Erosion (of rocks, soils, ): fluid (water, snow, air) strain on the landscape,
chemical reaction (dilution), extreme events (landslides, avalanches)

2 Transport of sediments (solid or diluted) with two types of regimes:

(a) “transport limited” regime (sediments easily transport like sand, muds in rivers),

(b) “detachment limited” regime (rivers in mountains do not carry much sediments
and water hollows rocks).

3 Sediments deposition, debris accumulation

4 Other effects: creeping, tectonic uplift, lava flow,...
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Topography evolution: Creep effect

The creep effect: the soil is subject to a diffusion process, which tends to
smooth the surface.

Creep is due to multiples processes, that act under the constraint of gravity:
Wind, rain, splash, Expansions and contractions of the soil due to freeze-thaw,
wet-dry and hot-cold cycles, Biological activity...

This term plays a significant role in the formation of patterns.

Figure: Terracettes in WiltShire, England 4.

4Author: Derek Harper
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Landscape Evolution Model: analysis

LEM


∂th+ div(hv) = r,

∂t(ch) + div(chv) = ρseh
m|v|n − ρssc,

∂tz = K∆z + sc− ehm|v|n,

Equation on fluid height

Equation on concentration

Equation on surface height

(1)

where the water speed is given by v = −Vref∇(h+ z).

Theorem (Binard, Degond, N): Local Well-Posedness

Let m > 0, n > 3 or n = 2, K > 0, and T0 > 0. Let us fix two constants fluid
heights href > hmin > 0. Suppose that the initial data h0, z0, c0 satisfy

h0 − href , z0 ∈ Hk+1(R2), c0 ∈ Hk(R2), h0(x) ≥ 2hmin ∀x ∈ R2.

with k = 3. Suppose that r ∈ L2
T0

(Hk), K hmin − ||h0||2L∞ ≥ 0. Then there exists
0 < T < T0 such that System (1) admits a unique solution (h, z, c) with

h− href , z ∈ L2
T (Hk+2) ∩ CT (Hk+1), c ∈ CT (Hk).
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Channelization ans Stability

A simplified model (by Bonetti et al, PNAS 117 (2020) no 3)

−div

(
hV0

∇z
|∇z|

)
= R, ∂tz = K∆z − ehm|∇z|n + U

Figure: Channelization Cascade in a simplified LEM (no sediment, uplift): the
channelization index CI increases as K → 0
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Stationary solutions

What about channelization in tilted plane? Transverse instabilities?

Fluid is flowing down a tilted plane. Fluid height and velocity are constant.

v(t, x, y) = − tan θ e1, c(t, x, y) = e
s
hm|v|n.
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Spectral stability: analytical results

1 Case K > 0

There exists a constant γ > 0 independent of n such that the system is
spectrally stable at all frequencies (ξ, η) ∈ R2

∗ if and only if

K ≥ mhc
e

V
:= K̄ and n < γ.

Proof by Routh-Hurwitz stability criterion.

Creeping has a stabilising effect on the system.

2 Case K = 0

If K = 0, the system is spectrally unstable. The wave associated to the
wavevector (ξ, η) is stable if and only if

mc < 1 and η2m < ξ2(n−m).

High frequencies are unstable.
(a) If n ≤ m then the system is unstable at all frequencies.

(b) If n ≥ m, the system is unstable in the transverse direction (ξ = 0). This may lead to
the formation of rills in the direction of the water flux.
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Stability diagram in the case K > 0

In the unstable regime 0 < K < K̄, we can precise the instability scenarii. The
unstable domain is always bounded.

(a) (b) (c)

Figure: (a) K = 0.6mhce/V , (b) K = 0.75mhce/V , (c) K = 0.9mhce/V .

The black curves are boundary between stable and unstable areas, calculated at low
frequencies.
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Numerical results: a two time scale problem

Framework: we considered the characteristic velocities in the experiment by
Derr et al: erosion rate 0.1mm/h, fluid velocity 0.1m/s, fluid height, variation
of topography: 0.1mm, 2− 5mm

Write the LEM with non dimensional variables:
ε∂th+ div(hv) = r,
ε∂t(ch) + div(chv) = hm|v|n − σc,
∂tz = κ∆z − hm|v|n + σc,

where ε =
e

V
� 1, κ =

K

eZ
, σ =

s

e
Numerical simulations of the full system introduces very restrictive CFL.

We consider the asymptotic model:
div(hv) = r,
div(chv) = ehm|v|n − σc,
∂tz = κ∆z − ehm|v|n + σc.

We can choose bigger time steps for the numerical simulations, and solve the
two first equations at each time step of the last equation.

In practice, simulations of the non stationary system, and of the stationary
system give the same results.
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The numerical scheme

Equation on hk+1 ≈ h(tk+1, .) is solved by a finite volume scheme.

−div(hk∇hk+1)− div(hk+1∇zk+1) = rk+1.

Equation on ck+1 is solved by a finite volume scheme, seeing x as a time
variable.

∂xc
k+1 +

∂y(hk+1 + zk+1)

∂x(hk+1 + zk+1)
∂yc

k+1 = − (hk+1)m|vk+1|n − σck+1 − rk+1

hk+1∂x(hk+1 + zk + 1)
.

Equation on z is solved with an explicit Euler scheme.

zk+1 = zk + dt
(
κ∆zk − e(hk)m|vk|n + σck

)
Boundary conditions:

1 periodic in the transverse variable y,
2 At x = 0, prescribed water height h0, concentration c0
3 At x = L, Neumann boundary conditions, no flux
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Numerical results

(a) (b)

(c) (d)

Figure: From top left to bottom right: (a) initial surface; final surface for: (b) K = Ke;
(c) K = Ke/20; (d) K = Ke/50
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Conclusion and Perspectives

Conclusions

1 Local well-posedness for LEM under the restriction that the fluid height does
not vanish

2 Spectral stability results show that the creep effect plays a significant role:
small creep (large channelization index) promotes instabilities in particular
transverse instabilities

3 Numerical simulations with finite volume methods confirm the instability
scenarii

Limitations

1 Dry areas appear on large time simulations and numerical instabilities occur

2 Existence of solutions on (arbitrary) large time: dealing also with dry areas (no
control on the minimum fluid height)

3 Understanding of channelization: introduction of randomness
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Perspectives: Modeling with random terms

Idea: we introduce randomness in the process of (micro)-channel creation through
a Poisson process with parameter µ(x, t)

The probability of creating k canals during the time interval [t, t+ δt] and in a
domain B is(∫

B

∫ t+δt
t

µ(s, y)dsdy
)k

k!
exp

(
−
∫
B

∫ t+δt

t

µ(s, y)dsdy

)
,

µ(t, x) = e

(
h(t, x)

H

)m( |v(t, x)|
V

)n
.

Probability that one channel is created: 1− exp

(
−
∫
B

∫ t+δt

t

µ(s, y)dsdy

)
.

We denote Γi(x) the shape of the i-th channel et ti the time it is created

∂tz = K∆z −
n(T )∑
i=1

Γi(x)δti(t).

Shape of the channel Γi(x) = f (〈x− xi, ω〉, 〈x− xi, ω〉) with ω ∈ S1 chosen
with the Van Mises law

1

Z(κ)
e
−κ〈ω, v

|v| 〉, Z(κ) =

∫ 2π

0

e−κ cos(θ)dθ.
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Perspective: random modelling and pattern formation

Figure: Emergence of blood capillary networks in tissue5

5Aceves-Sanchez et al, arXiv 2018
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Perspectives: Dealing with vanishing fluid height

Dealing with dry areas is hardly treated with finite volume schemes, in
particular with degenerate viscosity.

SPH (Smoothed Particle Hydrodynamics) are well suited for dry areas: the
solution is approximated by a sum of (smoothed) Dirac.

Main issue: equations on (h, c) are stationnary and SPH methods need an
adaptation to this framework.

(a) (b)

Figure: (a) Water height, on the domain Ω (b)Particle positions, on the domain Ω.
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