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Goal: Establishing a bridge between multilayer and continuously
stratified hydrostatic flows.

Considered systems:
® The continuously stratified hydrostatic system (CSHS).
® The multi-layer shallow water system (MSWS).
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(CSHS+GM)

Oth + Ox((h+ h)(u + u)) = kOZh
(?tu—i-(g—i—u—/@;zrh)& u+ ///8 h) =0

Where
Pbott
A (2eh(t,%))(0) = f min(p, #)oxh(t,x, &)dd.
Psurf
(MSWS+GM)

OeH; + 0x((H; + H)(U; + U;)) = kd? H,, Vie{l,---, N}
ol + (Us + Ui — gl )au+gzlm'“”"pf)aH_o
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(MSWS+GM)
OtH; + 0x((H; + H;)(U; + U;)) = m&zH,, Vie{l,--- N}
0 + (Us + Uy — nigd )6U+g21mm5”pf)é’H—0

Where
e t>0,xeR
* ﬂia gia Pi € R.

® H;, U; are the deviation of the equilibrium H;, U;.
® g denotes the acceleration of gravity.

® The densities satisfy p; = psurr + i_Tl(pbott — Psurf)
Vie {1, cee ,N}, with Pbott > Psurf > 0, Ppott — Psurf = 1.
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Remarks

® Euler.eq+0d,P + gp = 0+lsopycnal coordinates = (CSHS)
-

Hyd.app
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Remarks

® Euler.eq+0d,P + gp = 0+lsopycnal coordinates = (CSHS)
|

Hyd.app
® The x terms are motivated by the work of the oceanographers
on isopycnal mixing and eddy diffusivity
(in the 90's), and which could be interpreted as turbulence
terms. Moreover the adding of this diffusive x term in the first
equation has a regularizing effect.
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Remarks

® Euler.eq+0d,P + gp = 0+lsopycnal coordinates = (CSHS)
|

Hyd.app
® The x terms are motivated by the work of the oceanographers
on isopycnal mixing and eddy diffusivity

(in the 90's), and which could be interpreted as turbulence
terms. Moreover the adding of this diffusive x term in the first
equation has a regularizing effect.

® The system (CSHS+GM) is well-posed in Sobolev spaces on
the time interval [0, T] with T~ = C(1 + s~ 1(|u'|%, + M})),
where My is the size of the initial data, and C depenés only on
Mo and the size of the equilibrium (p, u). [Duchéne &
Bianchini '22]. B
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The continuous case The discrete case

0 p:(plv"'7pN)t
h (H:>1—17 N = (h(pl))l—l, N
u (Ul)l—l7 N = (u(pl))l—17 N

Pbott
f dd (SF)i=>(p; = pj-1) Fi1

0 J=i

0,f (DpF)i = p=pr (Fi = Fiz1)

. B Phott NE(o min(p;,p;)
AMF(o) = § min(o,p)f(d)do > —n = F
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Main result
(MSWS+GM)
OtH; + 0x((H; + H))(U; + U))) = kd2H ,, Vie{l,---,N}

0cU; + (U + Ui — gty ) oxU +gz 1’“'”;’””J)9 H; = 0.

[MA '23]

Let s € N be such that s > 2 + % there exists C > 0 such that for
any N € N* and any x > 0, for any initial data (Hp, Up) € H?2,
satisfying natural assumptions and with My := |||(Ho, Uo)|||s, the
following holds. Denoting

L O (CTIR) )

there exists a unique strong solution (H, U) to (MSWS+GM)
with initial data (H, U)|¢+=0 = (Ho, Up). and one has, for any
t € [0, T] the estimate |||(H, U)(t,")|||s < CMp.



Introduction  Correspondence Long time well-posedness  Quantification of the error and convergence Conclusion
000 o] o]

Remarks
® \We have

1 2
[(H, U)l[]s = D IDLH [ pes + D I DESH [ 1ems
j=0 Jj=0

2
+ DDLU e + [ TSH [ s -
j=0

¢ The time of existence is independent of the number of layers
N.

® There is an obvious similarity between the time
T t=¢C <1 + k71 (H D, U [% —I—Mg)) obtained in the
previous Theorem and the one of the WP of (CSHS+GM).
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(MSWS+GM)

OtH; + 0x((H; + H,-)(U +U;)) = K@zH,, Vie{l,---,N}
atu,-+(u + U — )au+gz Lmnene) o Hy = 0.

Tools of the proof

® The small time existence and uniqueness part of the proof
relies on existence and uniqueness theorems of transport and
transport diffusion equations with their corresponding
estimates.

¢ The long time existence and uniqueness is based on the energy
method. Using our correspondence (Dictionary) the estimates
derive naturally from the the estimates found in the
continuous case [Duchéne & Bianchini '22].
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Question: What happens when the number of layers N tends to
infinity?



Quantification of the error and convergence

[MA '23]

Let s € N such that s > 2 + % and k > 0. Moreover, consider
regular and controlled (h, u) on (psurf, Pbott), and (h, u) a strong
sufficiently regular solution to (CSHS+GM) on a time interval
[0, T] with T > 0, satisfying natural assumptions.

Then there exists No(T, k) € N* such that for all N > Ny and any
initial data (Ho, Up) = (Pn(ho), Pn(uo)) € H*(R)2N the solution to
(MSWS+GM) with H = Py(h), U = Py(u) and satisfying

(H, U)t=0 = (Ho, Up) defined in the previous Theorem is
well-defined on the time interval [0, T] and satisfies for any

tel0, T]

1
11 = Pk, U = Pulls(®) = O (77 )

'DN : Cg[psurﬁpbott] = RN

h
where f — Pn(f) = (f(p;))1<i<n-
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Tools of the proof:
¢ Consistency
® A careful and precise analysis is done to obtain the rate %
® The same result can be obtained for other choices of the
operator Py for instance (Py(f)); = ;——- """ f(p)dp but
we may loose will lose the following property
Pn(fg) = Pn(f)Pn(g)-
e Stability estimates

® When we consider the system of the difference between the
solutions we obtain the same structure of equations as in the
continuous case.

® The estimates of this difference derive naturally from the
estimates found in the continuous case [Duchéne & Bianchini
'22].
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Conclusion:

We rigorously justified the (MSWS+GM) as an approximation of
the (CSHS+GM) when the number of layers N tends to infinity.

The "inverse" limit:

The convergence of (CSHS+GM) to (MSWS+GM) when we
consider a continuous density that converges to a piecewise
continuous density [Duchéne, Bianchini, Adim](2024)(ArXiv
preprint).

Thank you for your attention
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