Numerical control of the heat equation with reinforcement learning

S. Kadri Harouna

Laboratoire de Mathématiques, Image et Applications (MIA) Avenue Michel Crépeau 17042 La Rochelle

Joint work with K. Ammari (University of Monastir, Tunisia) & Ghazi Bel Mufti (ESSAIT, University of Carthage, Tunisia).

(日) (同) (三) (三) (二)

æ

・ロト ・回 ト ・ ヨト ・ ヨト …

2 Wavelet-based Galerkin method

æ

イロト イボト イヨト イヨト

- 2 Wavelet-based Galerkin method
- 3 Reinforcement learning to control first order system

문에 세종에

< A ▶

- 2 Wavelet-based Galerkin method
- 3 Reinforcement learning to control first order system

4 Numerical results

A B M A B M

The initial-boundary value problem for the one-dimensional heat conduction that we considered is:

$$\begin{cases} \partial_t u(t,x) = \nu \partial_x^2 u(t,x) + f(t,x), \ x \in [0,1] \text{ and } t \in]0, T], \\ u(0,x) = u_0(x), \end{cases}$$
(1)

where $\nu > 0$ is the diffusion coefficient, f is the source term and T > 0. Homogeneous Dirichlet boundary conditions are assumed: u(t,0) = u(t,1) = 0.

Objective

• Given a target $u_T \in L^2(0,1)$, find a source term $f(t,.) \in L^2(0,1)$, such that:

$$\|u(T,.)-u_T\|_{L^2(0,1)} \leq \epsilon \quad \text{for} \quad \epsilon > 0.$$

> Numerical exact control remains elusive.

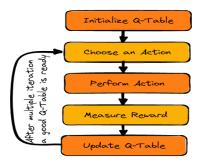
くロ とく 御 とく ヨ とく ヨ とう

Reinforcement Learning (RL) is a machine learning paradigm where an agent learns the optimal action for a given task through its repeated interaction with a dynamic environment that either rewards or punishes the agent action.



Q-learning is a model-free, value-based, off-policy algorithm that will find the best series of actions based on the agent's current state. The Q stands for quality. Quality represents how valuable the action is in maximizing future rewards.

Q-Table: the agent maintains the Q-table of sets of states and actions.



 \rightarrow **Objective:** to learn a Q-table of state and action.

• States: s_t , the current position of the agent in the environment.

 $s_t = u(t, .)$

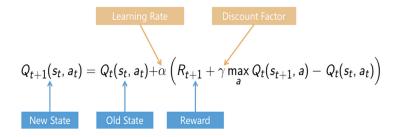
• Action: a_t , a step taken by the agent in a particular state.

 $a_t = f(t, .)$

- Rewards: R_t , for every action, the agent receives a reward and penalty. $R_t = ?$
- Episodes: the end of the stage, where agents can take new action. It happens when the agent has achieved the goal or failed.
- $Q_t(s_{t+1}, a)$: expected optimal Q-value of doing the action in a particular state.

・ロト ・ 一下 ・ ト ・ ト ・ ト

Q-function uses the Bellman equation as a simple value iteration update, using the weighted average of the current value and the new information:



with $0 < \alpha \leq 1$ and $0 \leq \gamma \leq 1$.

- \longrightarrow Is it possible to use this approach to solve the previous control problem?
- \longrightarrow How accurate is the method that results from this?
- \longrightarrow What kind of improvements can be made?

э

くロ とく 御 とく ヨ とく ヨ とう

[E. Hernandez, D.Kalise, E. Otárola, 09]: Numerical approximation of the LQR problem in a strongly damped wave equation.

[M.A. Bucci, et al, 19]: Control of chaotic systems by deep reinforcement learning.

[K. Ammari, G. Bel Mufti, 23]: Controlling a dynamic system through reinforcement learning

[G. Novati, L. Mahadevan, P. Koumoutsakos, 19]: Controlled gliding and perching through deep-reinforcement-learning.

 \longrightarrow Wavelet approach satisfying physical boundary condition.

Biorthogonal wavelet basis

Multi-scale projection of $f \in L^2(0, 1)$:

$$\mathcal{P}_{j}(f) = \sum_{k \in \mathbb{Z}} \langle f, \tilde{\varphi}_{j,k} \rangle \varphi_{j,k}$$
 and $\mathcal{Q}_{j}(f) = \sum_{k \in \mathbb{Z}} \langle f, \tilde{\psi}_{j,k} \rangle \psi_{j,k}$ (2)

with:

$$V_j = span\{arphi_{j,k}\}$$
 and $W_j = span\{\psi_{j,k}\} = V_{j+1} \cap ilde{V_j}^{\perp}.$

Multi-scale decomposition of $f \in L^2(0, 1)$:

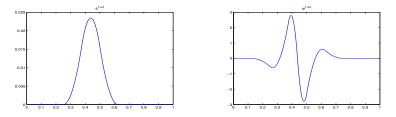
$$f = \mathcal{P}_j(f) + \sum_{\ell \ge j} \mathcal{Q}_\ell(f)$$
 with $\mathcal{Q}_j(f) = \mathcal{P}_{j+1}(f) - \mathcal{P}_j(f).$

Given $f \in H^{s}(0,1)$, we have the following Jackson and Bernstein inequalities:

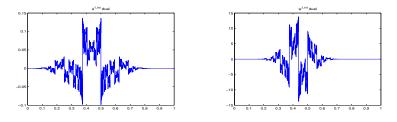
 $\|\mathcal{P}_{j}(f) - f\|_{L^{2}(0,1)} \leq C2^{-js} \|f\|_{H^{s}(0,1)} \text{ and } \|\mathcal{P}_{j}(f)\|_{H^{s}(0,1)} \leq C2^{js} \|\mathcal{P}_{j}(f)\|_{L^{2}(0,1)}, \ s > 0.$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

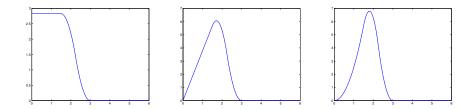
Biorthogonal B-Spline wavelets (3 vanishing moments) Primal scaling function (left) and associated wavelet (right):



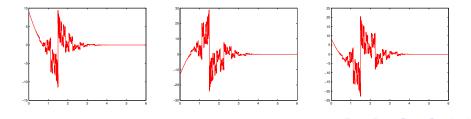
Dual scaling function (left) and associated wavelet (right):



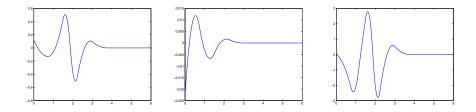
Wavelet basis satisfying boundary conditions Edge 0 scaling function of V_i^1 : B-Spline 3.3



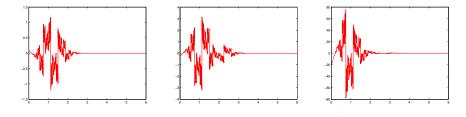
Edge 0 scaling function of \tilde{V}_i^1 : B-Spline 3.3



Wavelet basis satisfying boundary conditions Edge 0 wavelets of W_i^1 : B-Spline 3.3



Edge 0 wavelets of \tilde{W}_i^1 : B-Spline 3.3



Wavelet-based Galerkin method for the heat equation The solution $u_i \in V_i$ of (1) is searched in the following discrete form:

$$u_{j}(t,x) = \sum_{k=1}^{N_{j}} \langle u, \tilde{\psi}_{j,k} \rangle \psi_{j,k}(x) = \sum_{k=1}^{N_{j}} d_{j,k}(t) \psi_{j,k}(x).$$
(3)

For $m = 1, ..., N_j$, integration by part and the boundary conditions lead to:

$$\sum_{k=1}^{N_j} \left[d'_{j,k}(t) \langle \psi_{j,k}, \psi_{j,m} \rangle + \nu d_{j,k}(t) \langle \psi'_{j,k}, \psi'_{j,m} \rangle \right] = \langle f(t,.), \psi_{j,m} \rangle.$$
(4)

Thus, the coefficients $(d_{j,k})$ are solution of a differential system:

$$\mathcal{A}_{j}\left[d_{j,k}'(t)\right] + \mathcal{R}_{j}\left[d_{j,k}(t)\right] = \mathcal{A}_{j}\left[f_{j,k}(t)\right], \qquad (5)$$

with

$$[\mathcal{A}_{j}]_{k,m} = \int_{0}^{1} \psi_{j,k}(x)\psi_{j,m}(x)dx \text{ and } [\mathcal{R}_{j}]_{k,m} = \nu \int_{0}^{1} \psi_{j,k}'(x)\psi_{j,m}'(x)dx.$$
 (6)

ightarrow Symmetric and positive definite matrices with diagonal preconditioners.

S.Kadri Harouna (MIA)

Wavelet-based Galerkin method for the heat equation

Posteriori error estimate

Proposition

Let u and u_j be solutions of (1) and (4), respectively. If the initial conditions $u_0(x)$ and the wavelet basis are *regular enough*, then we have:

$$\|u_j-u\|_{L^2(0,1)}\leq C2^{-js},$$

for all $j \ge j_{min}$ and s > 0.

Then, we have:

$$\begin{aligned} \|u(T) - u_T\|_{L^2(0,1)} &\leq \|u(T) - \mathcal{P}_j(u(T))\|_{L^2(0,1)} + \|u_T - \mathcal{P}_j(u_T)\|_{L^2(0,1)} \\ &+ \|u_j - \mathcal{P}_j(u_T)\|_{L^2(0,1)} \leq C2^{-js} + \epsilon. \end{aligned}$$

 $\rightarrow j_{min}$ the smallest resolution to avoid boundary functions support overlapping

(7)

Wavelet coefficients control

Given $d_{j,k}^{T} \sim \mathcal{P}_{j}(u^{T})$, we aim to find $[f_{j,k}(t)] = \mathcal{B}_{j}[v_{j,k}(t)]$, such that: $\|d_{j,k}(T) - d_{j,k}^{T}(t)\|_{\ell^{2}} \leq \epsilon$,

with $v_j = \sum_{k=1}^{N_j} v_{j,k}(t) \psi_{j,k}(x)$ and \mathcal{B}_j a suitable real matrix of rank less than N_j . System (5) rewrites:

$$\left[d'_{j,k}(t)\right] + \mathcal{M}_j\left[d_{j,k}(t)\right] = \mathcal{B}_j\left[v_{j,k}(t)\right] \quad \text{with} \quad \mathcal{M}_j = \mathcal{A}_j^{-1}\mathcal{R}_j. \tag{8}$$

 \longrightarrow ODE system control: Kalman rank criterion for \mathcal{M}_j and \mathcal{B}_j .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくつ

Time discretization

For a time step $\delta t > 0$ and integer $n \ge 0$, we search:

$$x_{t_n} \approx d_{j,k}(n\delta t)$$
 and $v_{t_n} \approx v_{j,k}(n\delta t)$.

An explicit Euler scheme leads to:

$$x_{t_{n+1}} = f(x_{t_n}, v_{t_n}) = A_{\delta t} x_{t_n} + B_{\delta t} v_{t_n},$$
(9)

where

$$A_{\delta t} = I + \delta t \mathcal{M}_i$$
 and $B_{\delta t} = \delta t \mathcal{B}_i$.

 \longrightarrow Implicite numerical schemes can be used.

イロト 不得 トイヨト イヨト 三日

Usually, to obtain control for (9), a linear feedback controller is designed

 $v_{t_n}=P_{t_n}x_{t_n}.$

The matrix P_{t_n} is obtained from the solution of the algebraic Riccati equation, when minimizing the following quadratic cost function

$$J_{N} = \frac{\delta t}{2} \sum_{n=0}^{N} \left[\langle E_{\delta t} x_{t_{n}}, x_{t_{n}} \rangle + \langle R_{\delta t} v_{t_{n}}, v_{t_{n}} \rangle \right] + \frac{1}{2} \langle E_{N} x_{t_{N}}, x_{t_{N}} \rangle, \quad T_{N} = N \delta t = T,$$

under constraints defined by (9).

 \rightarrow LQR regularization.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Linear feedback can also be used in improved policy Q-learning approach:

$$r_{t_n} = r(x_{t_n}, v_{t_n}) = < x_{t_n}, E_{\delta t} x_{t_n} > + < v_{t_n}, R_{\delta t} v_{t_n} > .$$
(10)

The value of the total cost obtained for x_{t_n} under policy P_{t_n} is:

$$V_{P_{t_n}}(x_{t_n}) = \sum_{i=0}^{N-1} \gamma^i r_{t_n+i} = < x_{t_n}, K_{t_n} x_{t_n} >, \ 0 < \gamma < 1,$$

where K_{t_n} denotes the cost matrix related to the policy defined by P_{t_n} .

The Q-function:

$$Q_{t_n}(x, v) = r(x, v) + \gamma V_{P_{t_n}}(f(x, v)).$$

イロト 不得 トイヨト イヨト 三日

The Q-function's value at the next time step is:

 $Q_{t_{n+1}}(x_{t_n}, v_{t_n}) = (1 - \alpha)Q_{t_n}(x_{t_n}, v_{t_n}) + \alpha \left[r(x_{t_n}, v_{t_n}) + \gamma Q_{t_n}(x_{t_{n+1}}, v_{t_{n+1}})\right],$

where

$$v_{t_{n+1}} = P_{t_{n+1}} x_{t_{n+1}}.$$

The matrix $P_{t_{n+1}}$ is the improved policy matrix computed from P_{t_n} such that:

$$P_{t_{n+1}}x = \arg\min_{v} [r(x,v) + \gamma V_{P_{t_n}}(f(x,v))].$$
(11)

Using forward calculations, we see that:

$$P_{t_{n+1}} = -\gamma (R_{\delta t} + \gamma B^*_{\delta t} K_{t_n} B_{\delta t})^{-1} B^*_{\delta t} K_{t_n} A_{\delta t}$$

 $\longrightarrow P_{t_n}$ and K_{t_n} are obtained by means of a dynamic programming procedure.

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

Classical Q-learning algorithm Input: S, A, α, γ **Output:** *Q*-table for each episode do Initialize the first state for each step do Given current state s, select action a with an ϵ -greedy policy Observe r and s' from the environment Update the *Q*-table: $Q(s,a) \leftarrow Q(s,a) + \alpha [r(s,a) + \gamma \max_{a'} Q(s',a') - Q(s,a)]$ Update s until end of the episode end

end

Special case:

 $\longrightarrow Q_{t_{n+1}}(x_{t_n}, v_{t_n}) = Q_{t_n}(x_{t_n}, v_{t_n}) + \alpha \left[r(x_{t_n}, v_{t_n}) + \gamma Q_{t_n}(x_{t_{n+1}}, v_{t_{n+1}}) - Q_{t_n}(x_{t_n}, v_{t_n}) \right]$

・ロット 御 とう きょう く 目 とう 目

To evaluate our method, we compared it to the HUM approach [Lions 88, Glowinski-Lions 90]. As analytical solution, we used:

$$u(t,x) = \exp(1-t)\sin^3(2\pi x) + 8x(1-x)^2, \ x \in [0,1],$$
(12)

with $\delta t = 1/100$ and diffusion coefficient $\nu = 1/4\pi^2$.

First we study the discretization error:

$$\mathbf{e}_{j} = \frac{\|\mathcal{P}_{j}[u(.,t)] - u_{j}(.,t)\|}{\|\mathcal{P}_{j}u(.,t)\|}.$$

・ロト ・四ト ・ヨト ・ヨト

Galerkin discretization error

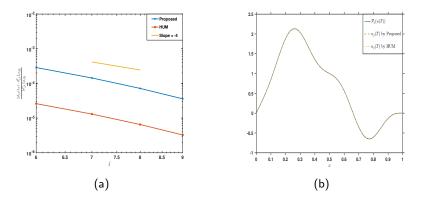


Figure: Error $||u_j(T) - \mathcal{P}_j(u_T)||_{\ell^2}$ according to the resolution j in loglog scale (left) and plot of the obtained end states (right) for the spatial resolution j = 7.

< ロ > < 同 > < 回 > < 回 >

The performance indicators considered are ℓ^2 error:

$$er_j = rac{\|d_{j,k}(T) - d_{j,k}^T\|_{\ell^2(\mathbb{Z})}}{\|d_{j,k}^T\|_{\ell^2(\mathbb{Z})}}.$$

and the convergence ratio with respect to the change of the policy:

$$rt_j(n) = rac{\|d_{j,k}(t_n)\|_{\ell^2(\mathbb{Z})}}{\|d_{j,k}^T\|_{\ell^2(\mathbb{Z})}}, \ \ 0 \le n \le N.$$

э

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Error at grid points



Figure: Comparison of the ℓ_2 -error between the HUM method and the proposed one. Relative error er_j (left) and the convergence ratio rt_j (right), according to the number of iterations.

Image: A marked black

∃ ► < ∃ ►</p>

Evolution of the error on the target state and the convergence ratio

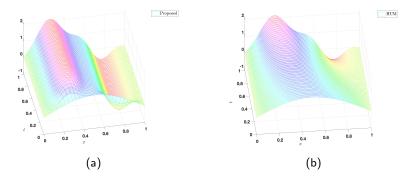


Figure: Plot of the time evolution of the solution $u_j(t_n)$ at grid points: $0 \le t_n \le 1$. Proposed method (left) and the HUM method (right).

< A > <

Two-dimensional space							
j	6	7	8	Order			
erj	$9.5593 imes 10^{-4}$	$5.4462 imes 10^{-4}$	$3.1054 imes 10^{-4}$	3.9825			
rtj	0.9916161	0.9916162	0.9916028				
CPU(s)	0.0700	0.1900	0.4800				

Three-dimensional space							
j	6	7	8	Order			
erj	$8.1188 imes 10^{-4}$	$4.5918 imes 10^{-4}$	$2.5971 imes 10^{-4}$	3.9552			
rtj	0.99157743	0.9915775	0.99157754				
CPU(s)	1.8300	22.0200	243.3400				

Table: Heat equation results obtained with the proposed method in higher dimension.

э

Thank you for your attention

• K. Ammari, G. Bel Mufti, S. Kadri Harouna, *Reinforcement learning for the control of parabolic and hyperbolic differential equations*, in the pipeline.