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Introduction

The initial-boundary value problem for the one-dimensional heat conduction that
we considered is: ∂tu(t, x) = ν∂2xu(t, x) + f (t, x), x ∈ [0, 1] and t ∈]0,T ],

u(0, x) = u0(x),
(1)

where ν > 0 is the diffusion coefficient, f is the source term and T > 0.
Homogeneous Dirichlet boundary conditions are assumed: u(t, 0) = u(t, 1) = 0.

Objective

Given a target uT ∈ L2(0, 1), find a source term f (t, .) ∈ L2(0, 1), such that:

∥u(T , .)− uT∥L2(0,1) ≤ ϵ for ϵ > 0.

−→ Numerical exact control remains elusive.
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Introduction

Reinforcement Learning (RL) is a machine learning paradigm where an agent
learns the optimal action for a given task through its repeated interaction with a
dynamic environment that either rewards or punishes the agent action.
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Introduction

Q-learning is a model-free, value-based, off-policy algorithm that will find the best
series of actions based on the agent’s current state. The Q stands for quality.
Quality represents how valuable the action is in maximizing future rewards.

Q-Table: the agent maintains the Q-table of sets of states and actions.

−→ Objective: to learn a Q-table of state and action.
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Introduction
States: st , the current position of the agent in the environment.

st = u(t, .)

Action: at , a step taken by the agent in a particular state.

at = f (t, .)

Rewards: Rt , for every action, the agent receives a reward and penalty.

Rt =?

Episodes: the end of the stage, where agents can take new action. It
happens when the agent has achieved the goal or failed.

Qt(st+1, a): expected optimal Q-value of doing the action in a particular
state.

S.Kadri Harouna (MIA) Reinforcement learning for control 6 / 28



Introduction

Q-function uses the Bellman equation as a simple value iteration update, using
the weighted average of the current value and the new information:

with 0 < α ≤ 1 and 0 ≤ γ ≤ 1.
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Introduction

−→ Is it possible to use this approach to solve the previous control problem?

−→ How accurate is the method that results from this?

−→ What kind of improvements can be made?
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Introduction

[E. Hernandez, D.Kalise, E. Otárola, 09]: Numerical
approximation of the LQR problem in a strongly damped wave equation.

[M.A. Bucci, et al, 19]: Control of chaotic systems by deep
reinforcement learning.

[K. Ammari, G. Bel Mufti, 23]: Controlling a dynamic system
through reinforcement learning

[G. Novati, L. Mahadevan, P. Koumoutsakos, 19]: Controlled
gliding and perching through deep-reinforcement-learning.

−→ Wavelet approach satisfying physical boundary condition.
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Biorthogonal wavelet basis

Multi-scale projection of f ∈ L2(0, 1):

Pj(f ) =
∑
k∈Z
⟨f , φ̃j,k⟩φj,k and Qj(f ) =

∑
k∈Z
⟨f , ψ̃j,k⟩ψj,k (2)

with:
Vj = span{φj,k} and Wj = span{ψj,k} = Vj+1 ∩ Ṽj

⊥
.

Multi-scale decomposition of f ∈ L2(0, 1) :

f = Pj(f ) +
∑
ℓ≥j

Qℓ(f ) with Qj(f ) = Pj+1(f )− Pj(f ).

Given f ∈ Hs(0, 1), we have the following Jackson and Bernstein inequalities:

∥Pj(f )−f ∥L2(0,1) ≤ C2−js∥f ∥Hs (0,1) and ∥Pj(f )∥Hs (0,1) ≤ C2js∥Pj(f )∥L2(0,1), s > 0.
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Biorthogonal B-Spline wavelets (3 vanishing moments)
Primal scaling function (left) and associated wavelet (right):
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Dual scaling function (left) and associated wavelet (right):
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Wavelet basis satisfying boundary conditions
Edge 0 scaling function of V 1

j : B-Spline 3.3
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Edge 0 scaling function of Ṽ 1
j : B-Spline 3.3
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Wavelet basis satisfying boundary conditions
Edge 0 wavelets of W 1

j : B-Spline 3.3
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Edge 0 wavelets of W̃ 1
j : B-Spline 3.3
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Wavelet-based Galerkin method for the heat equation
The solution uj ∈ Vj of (1) is searched in the following discrete form:

uj(t, x) =

Nj∑
k=1

⟨u, ψ̃j,k⟩ψj,k(x) =

Nj∑
k=1

dj,k(t)ψj,k(x). (3)

For m = 1, . . . ,Nj , integration by part and the boundary conditions lead to:

Nj∑
k=1

[
d ′
j,k(t)⟨ψj,k , ψj,m⟩+ νdj,k(t)⟨ψ′

j,k , ψ
′
j,m⟩

]
= ⟨f (t, .), ψj,m⟩. (4)

Thus, the coefficients (dj,k) are solution of a differential system:

Aj

[
d ′
j,k(t)

]
+Rj [dj,k(t)] = Aj [fj,k(t)] , (5)

with

[Aj ]k,m =

∫ 1

0

ψj,k(x)ψj,m(x)dx and [Rj ]k,m = ν

∫ 1

0

ψ′
j,k(x)ψ

′
j,m(x)dx . (6)

−→ Symmetric and positive definite matrices with diagonal preconditioners.
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Wavelet-based Galerkin method for the heat equation
Posteriori error estimate

Proposition

Let u and uj be solutions of (1) and (4), respectively. If the initial conditions
u0(x) and the wavelet basis are regular enough, then we have:

∥uj − u∥L2(0,1) ≤ C2−js , (7)

for all j ≥ jmin and s > 0.

Then, we have:

∥u(T )− uT∥L2(0,1) ≤ ∥u(T )− Pj(u(T ))∥L2(0,1) + ∥uT − Pj(uT )∥L2(0,1)

+ ∥uj − Pj(uT )∥L2(0,1) ≤ C2−js + ϵ.

−→ jmin the smallest resolution to avoid boundary functions support overlapping
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Wavelet coefficients control

Given dT
j,k ∼ Pj(u

T ), we aim to find [fj,k(t)] = Bj [vj,k(t)] , such that:

∥dj,k(T )− dT
j,k(t)∥ℓ2 ≤ ϵ,

with vj =
∑Nj

k=1 vj,k(t)ψj,k(x) and Bj a suitable real matrix of rank less than Nj .

System (5) rewrites:[
d ′
j,k(t)

]
+Mj [dj,k(t)] = Bj [vj,k(t)] with Mj = A−1

j Rj . (8)

−→ ODE system control: Kalman rank criterion forMj and Bj .
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Time discretization

For a time step δt > 0 and integer n ≥ 0, we search:

xtn ≈ dj,k(nδt) and vtn ≈ vj,k(nδt).

An explicit Euler scheme leads to:

xtn+1 = f (xtn , vtn) = Aδtxtn + Bδtvtn , (9)

where

Aδt = I + δtMj and Bδt = δtBj .

−→ Implicite numerical schemes can be used.
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ODE system control by reinforcement learning

Usually, to obtain control for (9), a linear feedback controller is designed

vtn = Ptnxtn .

The matrix Ptn is obtained from the solution of the algebraic Riccati equation,
when minimizing the following quadratic cost function

JN =
δt

2

N∑
n=0

[⟨Eδtxtn , xtn⟩+ ⟨Rδtvtn , vtn⟩] +
1

2
⟨ENxtN , xtN ⟩, TN = Nδt = T ,

under constraints defined by (9).

−→ LQR regularization.
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ODE system control by reinforcement learning

Linear feedback can also be used in improved policy Q-learning approach:

rtn = r(xtn , vtn) =< xtn ,Eδtxtn > + < vtn ,Rδtvtn > . (10)

The value of the total cost obtained for xtn under policy Ptn is:

VPtn
(xtn) =

N−1∑
i=0

γ i rtn+i =< xtn ,Ktnxtn >, 0 < γ < 1,

where Ktn denotes the cost matrix related to the policy defined by Ptn .

The Q-function:
Qtn(x , v) = r(x , v) + γVPtn

(f (x , v)).
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ODE system control by reinforcement learning

The Q-function’s value at the next time step is:

Qtn+1(xtn , vtn) = (1− α)Qtn(xtn , vtn) + α [r(xtn , vtn) + γQtn(xtn+1 , vtn+1)] ,

where
vtn+1 = Ptn+1xtn+1 .

The matrix Ptn+1 is the improved policy matrix computed from Ptn such that:

Ptn+1x = argmin
v

[r(x , v) + γVPtn
(f (x , v))]. (11)

Using forward calculations, we see that:

Ptn+1 = −γ(Rδt + γB∗
δtKtnBδt)

−1B∗
δtKtnAδt

−→ Ptn and Ktn are obtained by means of a dynamic programming procedure.

S.Kadri Harouna (MIA) Reinforcement learning for control 20 / 28



ODE system control by reinforcement learning

Classical Q-learning algorithm

Input: S, A, α, γ
Output: Q−table
for each episode do

Initialize the first state
for each step do

Given current state s, select action a with an ϵ-greedy policy
Observe r and s ′ from the environment
Update the Q-table:
Q(s, a)← Q(s, a) + α[r(s, a) + γmaxa′ Q(s ′, a′)− Q(s, a)]

Update s
until end of the episode

end

end

Special case:
−→ Qtn+1(xtn , vtn) = Qtn(xtn , vtn) + α [r(xtn , vtn) + γQtn(xtn+1 , vtn+1)− Qtn(xtn , vtn)]
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Numerical results

To evaluate our method, we compared it to the HUM approach [Lions 88,

Glowinski-Lions 90]. As analytical solution, we used:

u(t, x) = exp(1− t) sin3(2πx) + 8x(1− x)2, x ∈ [0, 1], (12)

with δt = 1/100 and diffusion coefficient ν = 1/4π2.

First we study the discretization error:

ej =
∥Pj [u(., t)]− uj(., t)∥

∥Pju(., t)∥
.
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Numerical results

Galerkin discretization error
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Figure: Error ∥uj(T )− Pj(uT )∥ℓ2 according to the resolution j in loglog scale
(left) and plot of the obtained end states (right) for the spatial resolution j = 7.
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Numerical results

The performance indicators considered are ℓ2 error:

er j =
∥dj,k(T )− dT

j,k∥ℓ2(Z)

∥dT
j,k∥ℓ2(Z)

.

and the convergence ratio with respect to the change of the policy:

rt j(n) =
∥dj,k(tn)∥ℓ2(Z)

∥dT
j,k∥ℓ2(Z)

, 0 ≤ n ≤ N.
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Numerical results

Error at grid points

10
0

10
1

10
2

Iteration

10
-6

10
-5

10
-4

10
-3

10
-2

(a)

0 10 20 30 40 50 60 70 80 90 100

Iteration

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(b)

Figure: Comparison of the ℓ2-error between the HUM method and the proposed
one. Relative error er j (left ) and the convergence ratio rt j (right), according to
the number of iterations.
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Numerical results

Evolution of the error on the target state and the convergence ratio

(a) (b)

Figure: Plot of the time evolution of the solution uj(tn) at grid points:
0 ≤ tn ≤ 1. Proposed method (left) and the HUM method (right).
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Numerical results

Two-dimensional space
j 6 7 8 Order
erj 9.5593× 10−4 5.4462× 10−4 3.1054× 10−4 3.9825
rtj 0.9916161 0.9916162 0.9916028
CPU(s) 0.0700 0.1900 0.4800

Three-dimensional space
j 6 7 8 Order
erj 8.1188× 10−4 4.5918× 10−4 2.5971× 10−4 3.9552
rtj 0.99157743 0.9915775 0.99157754
CPU(s) 1.8300 22.0200 243.3400

Table: Heat equation results obtained with the proposed method in higher
dimension.
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Thank you for your attention

K. Ammari, G. Bel Mufti, S. Kadri Harouna, Reinforcement learning
for the control of parabolic and hyperbolic differential equations, in
the pipeline.
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