
Numerical control of the heat equation with
reinforcement learning

S. Kadri Harouna

Laboratoire de Mathématiques, Image et Applications (MIA)
Avenue Michel Crépeau 17042 La Rochelle

Joint work with K. Ammari (University of Monastir, Tunisia) & Ghazi Bel
Mufti (ESSAIT, University of Carthage, Tunisia).

S.Kadri Harouna (MIA) Reinforcement learning for control 1 / 28



Outline

1 Introduction

2 Wavelet-based Galerkin method

3 Reinforcement learning to control first order system

4 Numerical results

S.Kadri Harouna (MIA) Reinforcement learning for control 2 / 28



Outline

1 Introduction

2 Wavelet-based Galerkin method

3 Reinforcement learning to control first order system

4 Numerical results

S.Kadri Harouna (MIA) Reinforcement learning for control 2 / 28



Outline

1 Introduction

2 Wavelet-based Galerkin method

3 Reinforcement learning to control first order system

4 Numerical results

S.Kadri Harouna (MIA) Reinforcement learning for control 2 / 28



Outline

1 Introduction

2 Wavelet-based Galerkin method

3 Reinforcement learning to control first order system

4 Numerical results

S.Kadri Harouna (MIA) Reinforcement learning for control 2 / 28



Introduction

The initial-boundary value problem for the one-dimensional heat conduction that
we considered is: ∂tu(t, x) = ν∂2xu(t, x) + f (t, x), x ∈ [0, 1] and t ∈]0,T ],

u(0, x) = u0(x),
(1)

where ν > 0 is the diffusion coefficient, f is the source term and T > 0.
Homogeneous Dirichlet boundary conditions are assumed: u(t, 0) = u(t, 1) = 0.

Objective

Given a target uT ∈ L2(0, 1), find a source term f (t, .) ∈ L2(0, 1), such that:

∥u(T , .)− uT∥L2(0,1) ≤ ϵ for ϵ > 0.

−→ Numerical exact control remains elusive.

S.Kadri Harouna (MIA) Reinforcement learning for control 3 / 28



Introduction

Reinforcement Learning (RL) is a machine learning paradigm where an agent
learns the optimal action for a given task through its repeated interaction with a
dynamic environment that either rewards or punishes the agent action.

S.Kadri Harouna (MIA) Reinforcement learning for control 4 / 28



Introduction

Q-learning is a model-free, value-based, off-policy algorithm that will find the best
series of actions based on the agent’s current state. The Q stands for quality.
Quality represents how valuable the action is in maximizing future rewards.

Q-Table: the agent maintains the Q-table of sets of states and actions.

−→ Objective: to learn a Q-table of state and action.

S.Kadri Harouna (MIA) Reinforcement learning for control 5 / 28



Introduction
States: st , the current position of the agent in the environment.

st = u(t, .)

Action: at , a step taken by the agent in a particular state.

at = f (t, .)

Rewards: Rt , for every action, the agent receives a reward and penalty.

Rt =?

Episodes: the end of the stage, where agents can take new action. It
happens when the agent has achieved the goal or failed.

Qt(st+1, a): expected optimal Q-value of doing the action in a particular
state.

S.Kadri Harouna (MIA) Reinforcement learning for control 6 / 28



Introduction

Q-function uses the Bellman equation as a simple value iteration update, using
the weighted average of the current value and the new information:

with 0 < α ≤ 1 and 0 ≤ γ ≤ 1.

S.Kadri Harouna (MIA) Reinforcement learning for control 7 / 28



Introduction

−→ Is it possible to use this approach to solve the previous control problem?

−→ How accurate is the method that results from this?

−→ What kind of improvements can be made?

S.Kadri Harouna (MIA) Reinforcement learning for control 8 / 28



Introduction

[E. Hernandez, D.Kalise, E. Otárola, 09]: Numerical
approximation of the LQR problem in a strongly damped wave equation.

[M.A. Bucci, et al, 19]: Control of chaotic systems by deep
reinforcement learning.

[K. Ammari, G. Bel Mufti, 23]: Controlling a dynamic system
through reinforcement learning

[G. Novati, L. Mahadevan, P. Koumoutsakos, 19]: Controlled
gliding and perching through deep-reinforcement-learning.

−→ Wavelet approach satisfying physical boundary condition.

S.Kadri Harouna (MIA) Reinforcement learning for control 9 / 28



Biorthogonal wavelet basis

Multi-scale projection of f ∈ L2(0, 1):

Pj(f ) =
∑
k∈Z
⟨f , φ̃j,k⟩φj,k and Qj(f ) =

∑
k∈Z
⟨f , ψ̃j,k⟩ψj,k (2)

with:
Vj = span{φj,k} and Wj = span{ψj,k} = Vj+1 ∩ Ṽj

⊥
.

Multi-scale decomposition of f ∈ L2(0, 1) :

f = Pj(f ) +
∑
ℓ≥j

Qℓ(f ) with Qj(f ) = Pj+1(f )− Pj(f ).

Given f ∈ Hs(0, 1), we have the following Jackson and Bernstein inequalities:

∥Pj(f )−f ∥L2(0,1) ≤ C2−js∥f ∥Hs (0,1) and ∥Pj(f )∥Hs (0,1) ≤ C2js∥Pj(f )∥L2(0,1), s > 0.

S.Kadri Harouna (MIA) Reinforcement learning for control 10 / 28



Biorthogonal B-Spline wavelets (3 vanishing moments)
Primal scaling function (left) and associated wavelet (right):

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

φ
1,int

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

ψ
1,int

Dual scaling function (left) and associated wavelet (right):

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

−0.05

0

0.05

0.1

0.15

φ
1,int

 dual

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−15

−10

−5

0

5

10

15

ψ
1,int

 dual

S.Kadri Harouna (MIA) Reinforcement learning for control 11 / 28



Wavelet basis satisfying boundary conditions
Edge 0 scaling function of V 1

j : B-Spline 3.3

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

Edge 0 scaling function of Ṽ 1
j : B-Spline 3.3

0 1 2 3 4 5 6
−15

−10

−5

0

5

10

0 1 2 3 4 5 6
−30

−20

−10

0

10

20

30

0 1 2 3 4 5 6
−25

−20

−15

−10

−5

0

5

10

15

20

25

S.Kadri Harouna (MIA) Reinforcement learning for control 12 / 28



Wavelet basis satisfying boundary conditions
Edge 0 wavelets of W 1

j : B-Spline 3.3

0 1 2 3 4 5 6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0 1 2 3 4 5 6
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

Edge 0 wavelets of W̃ 1
j : B-Spline 3.3

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

0 1 2 3 4 5 6
−80

−60

−40

−20

0

20

40

60

80

S.Kadri Harouna (MIA) Reinforcement learning for control 13 / 28



Wavelet-based Galerkin method for the heat equation
The solution uj ∈ Vj of (1) is searched in the following discrete form:

uj(t, x) =

Nj∑
k=1

⟨u, ψ̃j,k⟩ψj,k(x) =

Nj∑
k=1

dj,k(t)ψj,k(x). (3)

For m = 1, . . . ,Nj , integration by part and the boundary conditions lead to:

Nj∑
k=1

[
d ′
j,k(t)⟨ψj,k , ψj,m⟩+ νdj,k(t)⟨ψ′

j,k , ψ
′
j,m⟩

]
= ⟨f (t, .), ψj,m⟩. (4)

Thus, the coefficients (dj,k) are solution of a differential system:

Aj

[
d ′
j,k(t)

]
+Rj [dj,k(t)] = Aj [fj,k(t)] , (5)

with

[Aj ]k,m =

∫ 1

0

ψj,k(x)ψj,m(x)dx and [Rj ]k,m = ν

∫ 1

0

ψ′
j,k(x)ψ

′
j,m(x)dx . (6)

−→ Symmetric and positive definite matrices with diagonal preconditioners.
S.Kadri Harouna (MIA) Reinforcement learning for control 14 / 28



Wavelet-based Galerkin method for the heat equation
Posteriori error estimate

Proposition

Let u and uj be solutions of (1) and (4), respectively. If the initial conditions
u0(x) and the wavelet basis are regular enough, then we have:

∥uj − u∥L2(0,1) ≤ C2−js , (7)

for all j ≥ jmin and s > 0.

Then, we have:

∥u(T )− uT∥L2(0,1) ≤ ∥u(T )− Pj(u(T ))∥L2(0,1) + ∥uT − Pj(uT )∥L2(0,1)

+ ∥uj − Pj(uT )∥L2(0,1) ≤ C2−js + ϵ.

−→ jmin the smallest resolution to avoid boundary functions support overlapping

S.Kadri Harouna (MIA) Reinforcement learning for control 15 / 28



Wavelet coefficients control

Given dT
j,k ∼ Pj(u

T ), we aim to find [fj,k(t)] = Bj [vj,k(t)] , such that:

∥dj,k(T )− dT
j,k(t)∥ℓ2 ≤ ϵ,

with vj =
∑Nj

k=1 vj,k(t)ψj,k(x) and Bj a suitable real matrix of rank less than Nj .

System (5) rewrites:[
d ′
j,k(t)

]
+Mj [dj,k(t)] = Bj [vj,k(t)] with Mj = A−1

j Rj . (8)

−→ ODE system control: Kalman rank criterion forMj and Bj .

S.Kadri Harouna (MIA) Reinforcement learning for control 16 / 28



Time discretization

For a time step δt > 0 and integer n ≥ 0, we search:

xtn ≈ dj,k(nδt) and vtn ≈ vj,k(nδt).

An explicit Euler scheme leads to:

xtn+1 = f (xtn , vtn) = Aδtxtn + Bδtvtn , (9)

where

Aδt = I + δtMj and Bδt = δtBj .

−→ Implicite numerical schemes can be used.

S.Kadri Harouna (MIA) Reinforcement learning for control 17 / 28



ODE system control by reinforcement learning

Usually, to obtain control for (9), a linear feedback controller is designed

vtn = Ptnxtn .

The matrix Ptn is obtained from the solution of the algebraic Riccati equation,
when minimizing the following quadratic cost function

JN =
δt

2

N∑
n=0

[⟨Eδtxtn , xtn⟩+ ⟨Rδtvtn , vtn⟩] +
1

2
⟨ENxtN , xtN ⟩, TN = Nδt = T ,

under constraints defined by (9).

−→ LQR regularization.

S.Kadri Harouna (MIA) Reinforcement learning for control 18 / 28



ODE system control by reinforcement learning

Linear feedback can also be used in improved policy Q-learning approach:

rtn = r(xtn , vtn) =< xtn ,Eδtxtn > + < vtn ,Rδtvtn > . (10)

The value of the total cost obtained for xtn under policy Ptn is:

VPtn
(xtn) =

N−1∑
i=0

γ i rtn+i =< xtn ,Ktnxtn >, 0 < γ < 1,

where Ktn denotes the cost matrix related to the policy defined by Ptn .

The Q-function:
Qtn(x , v) = r(x , v) + γVPtn

(f (x , v)).

S.Kadri Harouna (MIA) Reinforcement learning for control 19 / 28



ODE system control by reinforcement learning

The Q-function’s value at the next time step is:

Qtn+1(xtn , vtn) = (1− α)Qtn(xtn , vtn) + α [r(xtn , vtn) + γQtn(xtn+1 , vtn+1)] ,

where
vtn+1 = Ptn+1xtn+1 .

The matrix Ptn+1 is the improved policy matrix computed from Ptn such that:

Ptn+1x = argmin
v

[r(x , v) + γVPtn
(f (x , v))]. (11)

Using forward calculations, we see that:

Ptn+1 = −γ(Rδt + γB∗
δtKtnBδt)

−1B∗
δtKtnAδt

−→ Ptn and Ktn are obtained by means of a dynamic programming procedure.

S.Kadri Harouna (MIA) Reinforcement learning for control 20 / 28



ODE system control by reinforcement learning

Classical Q-learning algorithm

Input: S, A, α, γ
Output: Q−table
for each episode do

Initialize the first state
for each step do

Given current state s, select action a with an ϵ-greedy policy
Observe r and s ′ from the environment
Update the Q-table:
Q(s, a)← Q(s, a) + α[r(s, a) + γmaxa′ Q(s ′, a′)− Q(s, a)]

Update s
until end of the episode

end

end

Special case:
−→ Qtn+1(xtn , vtn) = Qtn(xtn , vtn) + α [r(xtn , vtn) + γQtn(xtn+1 , vtn+1)− Qtn(xtn , vtn)]

S.Kadri Harouna (MIA) Reinforcement learning for control 21 / 28



Numerical results

To evaluate our method, we compared it to the HUM approach [Lions 88,

Glowinski-Lions 90]. As analytical solution, we used:

u(t, x) = exp(1− t) sin3(2πx) + 8x(1− x)2, x ∈ [0, 1], (12)

with δt = 1/100 and diffusion coefficient ν = 1/4π2.

First we study the discretization error:

ej =
∥Pj [u(., t)]− uj(., t)∥

∥Pju(., t)∥
.

S.Kadri Harouna (MIA) Reinforcement learning for control 22 / 28



Numerical results

Galerkin discretization error

6 6.5 7 7.5 8 8.5 9
10

-6

10
-5

10
-4

10
-3

10
-2

Proposed

HUM

Slope = -4

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

1.5

2

2.5

(b)

Figure: Error ∥uj(T )− Pj(uT )∥ℓ2 according to the resolution j in loglog scale
(left) and plot of the obtained end states (right) for the spatial resolution j = 7.

S.Kadri Harouna (MIA) Reinforcement learning for control 23 / 28



Numerical results

The performance indicators considered are ℓ2 error:

er j =
∥dj,k(T )− dT

j,k∥ℓ2(Z)

∥dT
j,k∥ℓ2(Z)

.

and the convergence ratio with respect to the change of the policy:

rt j(n) =
∥dj,k(tn)∥ℓ2(Z)

∥dT
j,k∥ℓ2(Z)

, 0 ≤ n ≤ N.

S.Kadri Harouna (MIA) Reinforcement learning for control 24 / 28



Numerical results

Error at grid points

10
0

10
1

10
2

Iteration

10
-6

10
-5

10
-4

10
-3

10
-2

(a)

0 10 20 30 40 50 60 70 80 90 100

Iteration

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(b)

Figure: Comparison of the ℓ2-error between the HUM method and the proposed
one. Relative error er j (left ) and the convergence ratio rt j (right), according to
the number of iterations.

S.Kadri Harouna (MIA) Reinforcement learning for control 25 / 28



Numerical results

Evolution of the error on the target state and the convergence ratio

(a) (b)

Figure: Plot of the time evolution of the solution uj(tn) at grid points:
0 ≤ tn ≤ 1. Proposed method (left) and the HUM method (right).

S.Kadri Harouna (MIA) Reinforcement learning for control 26 / 28



Numerical results

Two-dimensional space
j 6 7 8 Order
erj 9.5593× 10−4 5.4462× 10−4 3.1054× 10−4 3.9825
rtj 0.9916161 0.9916162 0.9916028
CPU(s) 0.0700 0.1900 0.4800

Three-dimensional space
j 6 7 8 Order
erj 8.1188× 10−4 4.5918× 10−4 2.5971× 10−4 3.9552
rtj 0.99157743 0.9915775 0.99157754
CPU(s) 1.8300 22.0200 243.3400

Table: Heat equation results obtained with the proposed method in higher
dimension.

S.Kadri Harouna (MIA) Reinforcement learning for control 27 / 28



Thank you for your attention

K. Ammari, G. Bel Mufti, S. Kadri Harouna, Reinforcement learning
for the control of parabolic and hyperbolic differential equations, in
the pipeline.

S.Kadri Harouna (MIA) Reinforcement learning for control 28 / 28


	Introduction
	Wavelet-based Galerkin method 
	Reinforcement learning to control first order system
	Numerical results

