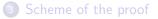
Splitting methods for the nonlinear Klein–Gordon equations in low regularity and conservation properties

Congrès d'Analyse Numérique Île de Ré, Mai 2024

Charbella Abou Khalil, Joackim Bernier

Laboratoire de Mathématiques Jean Leray, Nantes Université

Discretization and main result



Charbella Abou Khalil (Nantes)

æ

(日) (四) (日) (日) (日)

We consider the nonlinear Klein-Gordon equations on the circle

$$\left| \partial_t^2 q - \partial_x^2 q + mq + g(q) = 0 \right|$$
 (KG)

where $\begin{cases} (x,t) \in \mathbb{T} \times \mathbb{R} \\ q = q(x,t) \in \mathbb{R} \\ \text{the mass } m > 0 \\ g \text{ is a smooth real non-linearity with } g(0) = g'(0) = 0. \end{cases}$

・ 回 ト ・ ヨ ト ・ ヨ ト

We consider the nonlinear Klein-Gordon equations on the circle

$$\left| \partial_t^2 q - \partial_x^2 q + mq + g(q) = 0 \right|$$
 (KG)

where $\begin{cases} (x,t) \in \mathbb{T} \times \mathbb{R} \\ q = q(x,t) \in \mathbb{R} \\ \text{the mass } m > 0 \\ \varphi \text{ is a smooth real non-linearity with } g(0) = g'(0) = 0. \end{cases}$

We assume that the initial data

$$(q_{|t=0},\partial_t q_{|t=0}) = (q(0),\partial_t q(0))$$

is small in $H^s \times H^{s-1}$ for s > 1/2. In other words

 $\|q(0),\partial_t q(0)\|_{H^s \times H^{s-1}} \coloneqq \varepsilon \ll 1.$

We set $p := \partial_t q$ and introduce the operator $\Lambda := \sqrt{-\partial_x^2 + m}$ defined by

$$\wedge q = \sum_{j \in \mathbb{Z}} q_j \wedge e^{ijx} = \sum_{j \in \mathbb{Z}} q_j \omega_j e^{ijx}$$

with q_j Fourier coefficients and $\omega_j = \sqrt{j^2 + m}$ eigenvalues of operator A.

We set $p := \partial_t q$ and introduce the operator $\Lambda := \sqrt{-\partial_x^2 + m}$ defined by

$$\Lambda q = \sum_{j \in \mathbb{Z}} q_j \Lambda e^{ijx} = \sum_{j \in \mathbb{Z}} q_j \omega_j e^{ijx}$$

with q_j Fourier coefficients and $\omega_j = \sqrt{j^2 + m}$ eigenvalues of operator Λ .

Equation (KG) is written as the Hamiltonian system

$$\partial_t \begin{pmatrix} q \\ p \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\Lambda^2 & 0 \end{pmatrix} \begin{pmatrix} q \\ p \end{pmatrix} + \begin{pmatrix} 0 \\ -g(q) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \nabla H(q, p),$$
$$H(q, p) = \frac{1}{2} \int_{\mathbb{T}} \left(p^2 + (\Lambda^2 q)q \right) \, \mathrm{d}x + \int_{\mathbb{T}} G(q) \, \mathrm{d}x$$

where the potential G is such that G'(q) = g(q).

We set $p := \partial_t q$ and introduce the operator $\Lambda := \sqrt{-\partial_x^2 + m}$ defined by

$$\Lambda q = \sum_{j \in \mathbb{Z}} q_j \Lambda e^{ijx} = \sum_{j \in \mathbb{Z}} q_j \omega_j e^{ijx}$$

with q_j Fourier coefficients and $\omega_j = \sqrt{j^2 + m}$ eigenvalues of operator Λ .

Equation (KG) is written as the Hamiltonian system

$$\partial_t \begin{pmatrix} q \\ p \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\Lambda^2 & 0 \end{pmatrix} \begin{pmatrix} q \\ p \end{pmatrix} + \begin{pmatrix} 0 \\ -g(q) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \nabla H(q, p),$$
$$H(q, p) = \frac{1}{2} \int_{\mathbb{T}} \left(p^2 + (\Lambda^2 q) q \right) \, \mathrm{dx} + \int_{\mathbb{T}} G(q) \, \mathrm{dx}$$

where the potential G is such that G'(q) = g(q).

• The Hamiltonian H is a constant of motion for this system

$$H(q(t),p(t))=H(q(0),p(0)) \quad \forall t \in \mathbb{R}.$$

э

イロト イポト イヨト イヨト

• We prove the almost preservation for very long times of the harmonic actions (also known as super-actions) given by

$$\mathcal{E}_j(q,p) = |q_j|^2 + \omega_j^{-2}|p_j|^2$$

where q_j and p_j are Fourier coefficients and $\omega_j = \sqrt{j^2 + m}$.

• We prove the almost preservation for very long times of the harmonic actions (also known as super-actions) given by

$$\mathcal{E}_j(q,p) = |q_j|^2 + \omega_j^{-2}|p_j|^2$$

where q_j and p_j are Fourier coefficients and $\omega_j = \sqrt{j^2 + m}$.

• As a corollary, we expect to obtain a control of the dynamics of (KG)

$$\sum_{j\in\mathbb{Z}} \langle j \rangle^{2s} \mathcal{E}_j \sim_{s,m} \|\cdot\|_{H^s \times H^{s-1}}^2.$$

• We prove the almost preservation for very long times of the harmonic actions (also known as super-actions) given by

$$\mathcal{E}_j(q,p) = |q_j|^2 + \omega_j^{-2}|p_j|^2$$

where q_j and p_j are Fourier coefficients and $\omega_j = \sqrt{j^2 + m}$.

• As a corollary, we expect to obtain a control of the dynamics of (KG)

$$\sum_{j\in\mathbb{Z}} \langle j \rangle^{2s} \mathcal{E}_j \sim_{s,m} \| \cdot \|_{H^s \times H^{s-1}}^2.$$

<u>Goal</u> : To prove the almost preservation of \mathcal{E}_j (at low regularity,) after applying the full discretizations considered by [Cohen-Hairer-Lubich08].



Figure: Numerical conservation properties for (KG). Adapted from *Conservation* of energy, momentum and actions in numerical discretizations of non-linear wave equations, 2008 by David Cohen, Ernst Hairer and Christian Lubich



Figure: Numerical conservation properties for (KG). Adapted from *Conservation* of energy, momentum and actions in numerical discretizations of non-linear wave equations, 2008 by David Cohen, Ernst Hairer and Christian Lubich

• They considered initial data living in $H^3 \times H^2$.



Figure: Numerical conservation properties for (KG). Adapted from *Conservation* of energy, momentum and actions in numerical discretizations of non-linear wave equations, 2008 by David Cohen, Ernst Hairer and Christian Lubich

- They considered initial data living in $H^3 \times H^2$.
- We prove this result for s = 1. i.e. for initial data in $H^1 \times L^2$.

2 Discretization and main result

3 Scheme of the proof

Charbella Abou Khalil (Nantes)

æ

イロト イヨト イヨト イヨト

Consider a standard pseudo-spectral **semi-discretization** with equidistant collocation points

$$x_{\ell} = \frac{2\ell\pi}{K}$$
 where $|\ell| < K/2$ and K is odd.

This yields an approximation of the form

$$q(x,t) = \sum_{|j| < K/2} q_j e^{ijx}$$
 and $p(x,t) = \sum_{|j| < K/2} p_j e^{ijx}$.

∃ ► < ∃ ►

Consider a standard pseudo-spectral **semi-discretization** with equidistant collocation points

$$x_{\ell} = \frac{2\ell\pi}{K}$$
 where $|\ell| < K/2$ and K is odd.

This yields an approximation of the form

$$q(x,t) = \sum_{|j| < K/2} q_j e^{ijx}$$
 and $p(x,t) = \sum_{|j| < K/2} p_j e^{ijx}$.

Taking the discrete Fourier transform $(\mathcal{F}^{\mathcal{K}}\psi)_j = \frac{1}{\mathcal{K}}\sum_{|\ell| < \mathcal{K}/2} \psi_{\ell} e^{-ijx_{\ell}}$, the semi

discretized (KG) equation can be written as a Hamiltonian system

$$\mathcal{\partial}_{t} \begin{pmatrix} q \\ p \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \nabla \mathcal{H}^{K}(q, p),$$
$$\mathcal{H}^{K}(q, p) = \underbrace{\frac{1}{2} \sum_{|j| < K/2} \omega_{j}^{2} |q_{j}|^{2} + |p_{j}|^{2}}_{Z_{2}^{K}(q, p)} + \underbrace{\frac{1}{K} \sum_{|\ell| < K/2} G(q(x_{\ell}, t))}_{P^{K}(q, p)}.$$

Fully discrete Splitting method

We split the equation into two systems

$$\partial_t \begin{pmatrix} q \\ p \end{pmatrix} = L \begin{pmatrix} q \\ p \end{pmatrix} \text{ and } \partial_t \begin{pmatrix} q \\ p \end{pmatrix} = \begin{pmatrix} 0 \\ -g(q) \end{pmatrix}.$$

э

(日) (四) (日) (日) (日)

Fully discrete Splitting method

We split the equation into two systems

$$\partial_t \begin{pmatrix} q \\ p \end{pmatrix} = L \begin{pmatrix} q \\ p \end{pmatrix}$$
 and $\partial_t \begin{pmatrix} q \\ p \end{pmatrix} = \begin{pmatrix} 0 \\ -g(q) \end{pmatrix}$.

Solving them, we get

$$\Phi_{Z_2^{\kappa}}^t(q,p) = e^{tL} \begin{pmatrix} q \\ p \end{pmatrix}$$
 and $\Phi_{P^{\kappa}}^t(q,p) = \begin{pmatrix} q \\ p - tg(q) \end{pmatrix}$.

Fully discrete Splitting method

We split the equation into two systems

$$\partial_t \begin{pmatrix} q \\ p \end{pmatrix} = L \begin{pmatrix} q \\ p \end{pmatrix}$$
 and $\partial_t \begin{pmatrix} q \\ p \end{pmatrix} = \begin{pmatrix} 0 \\ -g(q) \end{pmatrix}$.

Solving them, we get

$$\Phi_{Z_2^{\kappa}}^t(q,p) = e^{tL} \begin{pmatrix} q \\ p \end{pmatrix}$$
 and $\Phi_{P^{\kappa}}^t(q,p) = \begin{pmatrix} q \\ p - tg(q) \end{pmatrix}$.

In our work, we consider the Strang splitting method

$$\Phi^h_{Z_2^K+P^K}\simeq \Phi^h_{\mathrm{num}}:=\Phi^{h/2}_{P^K}\circ \Phi^h_{Z_2^K}\circ \Phi^{h/2}_{P^K}.$$

Remark. We can prove that it is one of the *symplectic mollified impulse* methods considered in [Cohen-Hairer-Lubich08].

We let

$(q^n, p^n) = (\Phi^h_{\text{num}})^n(q(0), p(0)) \text{ for } n \ge 0.$

æ

イロト イヨト イヨト イヨト

We let

$$(q^n, p^n) = (\Phi^h_{\text{num}})^n(q(0), p(0)) \text{ for } n \ge 0.$$

Theorem [Cohen–Hairer–Lubich08]

Let $\delta \in (0, 2\pi)$ and $r \ge 1$ arbitrarily large. For almost all m > 0, provided that $s \ge r^2$ and under *CFL condition*

 $r\,h\,\omega_{(K-1)/2} \le 2\pi - \delta,$

there exists $\varepsilon_0 > 0$, if $||q^0, p^0||_{H^s \times H^{s-1}} := \varepsilon < \varepsilon_0$, we have

$$nh < \varepsilon^{-r} \implies \sum_{|j| < K/2} \langle j \rangle^{2s+1} \frac{|\mathcal{E}_j(q^n, p^n) - \mathcal{E}_j(q^0, p^0)|}{\varepsilon^2} \lesssim_{s,r,m} \varepsilon.$$

We let

$$(q^n, p^n) = (\Phi_{\text{num}}^h)^n(q(0), p(0)) \text{ for } n \ge 0.$$

Theorem [Cohen–Hairer–Lubich08]

Let $\delta \in (0, 2\pi)$ and $r \ge 1$ arbitrarily large. For almost all m > 0, provided that $s \ge r^2$ and under *CFL condition*

 $r\,h\,\omega_{(K-1)/2} \le 2\pi - \delta,$

there exists $\varepsilon_0 > 0$, if $||q^0, p^0||_{H^s \times H^{s-1}} := \varepsilon < \varepsilon_0$, we have

$$nh < \varepsilon^{-r} \implies \sum_{|j| < K/2} \langle j \rangle^{2s+1} \frac{|\mathcal{E}_j(q^n, p^n) - \mathcal{E}_j(q^0, p^0)|}{\varepsilon^2} \lesssim_{s,r,m} \varepsilon.$$

Main flow: high regularity constraint $s \gtrsim r^2$

Theorem [Abou-Khalil–Bernier24]

Let $\delta \in (0, 2\pi)$ and $r \ge 1$ arbitrarily large. For almost all m > 0, provided that s = 1 and under *CFL condition*

$$r\,h\,\omega_{(K-1)/2} \le 2\pi - \delta,$$

there exists $\varepsilon_0 > 0$, if $||q^0, p^0||_{H^1 \times L^2} := \varepsilon < \varepsilon_0$, we have

$$nh < \varepsilon^{-r} \implies \sum_{|j| < K/2} \langle j \rangle^{-2\beta_r} \frac{|\mathcal{E}_j(q^n, p^n) - \mathcal{E}_j(q^0, p^0)|}{\varepsilon^2} \lesssim_{r,m,\delta} \varepsilon.$$

Theorem [Abou-Khalil–Bernier24]

Let $\delta \in (0, 2\pi)$ and $r \ge 1$ arbitrarily large. For almost all m > 0, provided that s = 1 and under *CFL condition*

$$r\,h\,\omega_{(K-1)/2} \le 2\pi - \delta,$$

there exists $\varepsilon_0 > 0$, if $||q^0, p^0||_{H^1 \times L^2} := \varepsilon < \varepsilon_0$, we have

$$nh < \varepsilon^{-r} \implies \sum_{|j| < K/2} \langle j \rangle^{-2\beta_r} \frac{|\mathcal{E}_j(q^n, p^n) - \mathcal{E}_j(q^0, p^0)|}{\varepsilon^2} \lesssim_{r,m,\delta} \varepsilon.$$

• We got rid of the smoothness constraint 🙂

Theorem [Abou-Khalil–Bernier24]

Let $\delta \in (0, 2\pi)$ and $r \ge 1$ arbitrarily large. For almost all m > 0, provided that s = 1 and under *CFL condition*

$$r\,h\,\omega_{(K-1)/2} \le 2\pi - \delta,$$

there exists $\varepsilon_0 > 0$, if $||q^0, p^0||_{H^1 \times L^2} := \varepsilon < \varepsilon_0$, we have

$$nh < \varepsilon^{-r} \implies \sum_{|j| < K/2} \langle j \rangle^{-2\beta_r} \frac{|\mathcal{E}_j(q^n, p^n) - \mathcal{E}_j(q^0, p^0)|}{\varepsilon^2} \lesssim_{r,m,\delta} \varepsilon.$$

- We got rid of the smoothness constraint 🙂
- We can only control the low harmonic actions ⁽²⁾

Discretization and main result

Image: Image:

æ

Backward error analysis [Faou-Grébert11] and [Faou's book]

Backward error analysis [Faou-Grébert11] and [Faou's book]

Almost preservation of the energy and control of the numerical flow in the energy space [Faou-Grébert11] and [Gauckler17]

Backward error analysis [Faou-Grébert11] and [Faou's book]

Almost preservation of the energy and control of the numerical flow in the energy space [Faou–Grébert11] and [Gauckler17]

Birkhoff normal form in low regularity [Bernier-Grébert21]

Backward error analysis [Faou-Grébert11] and [Faou's book]

Almost preservation of the energy and control of the numerical flow in the energy space [Faou–Grébert11] and [Gauckler17]

Birkhoff normal form in low regularity [Bernier-Grébert21]

Thank you for your attention!

References

- Bambusi, D. Birkhoff Normal Form for Some Nonlinear PDEs. Commun. Math. Phys. 234, 253–285 (2003).
- [2] Bernier, J. & Grébert, B. Birkhoff normal forms for Hamiltonian PDEs in their energy space, Journal de l'Ecole polytechnique, Tome 9 (2022), pp. 681-745.
- [3] Cohen, D., Hairer, E. & Lubich, C. Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations. *Numer. Math.*. 110, 113-143 (2008).
- [4] Faou, E. & Grébert, B. Hamiltonian interpolation of splitting approximations for nonlinear PDEs. *Found. Comput. Math.*. 11, 381-415 (2011).
- [5] Gauckler, L. Numerical long-time energy conservation for the nonlinear Schrödinger equation. *IMA J. Numer. Anal.*. 37, 2067-2090 (2017).

Equation (KG) can be seen as a perturbation of the linear equation

$$\partial_{tt}u-\partial_{xx}u+mu=0$$

written also as

$$\partial_t \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\Lambda^2 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \coloneqq L \begin{pmatrix} u \\ v \end{pmatrix}$$

Equation (KG) can be seen as a perturbation of the linear equation

$$\partial_{tt}u-\partial_{xx}u+mu=0$$

written also as

$$\partial_t \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\Lambda^2 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \coloneqq L \begin{pmatrix} u \\ v \end{pmatrix}$$

 Due to local well-posedness in H^s × H^{s-1} for s > 1/2, the dynamics of (KG) remain close to the dynamics of the linearized equation for times of order ε⁻¹

$$|t| \ll \varepsilon^{-1} \implies \left\| \begin{pmatrix} u(t) \\ v(t) \end{pmatrix} - e^{Lt} \begin{pmatrix} u(0) \\ v(0) \end{pmatrix} \right\|_{H^{s} \times H^{s-1}} \ll \varepsilon.$$

Theorem (Bambusi03, Bambusi–Grébert06, Cohen–Hairer–Lubich08)

Let $r \ge 1$ arbitrarily large. For almost all m > 0, provided that $s \ge r^2$, there exists $\varepsilon_0 > 0$, if $||u(0), v(0)||_{H^s \times H^{s-1}} := \varepsilon < \varepsilon_0$, the solution of (KG) satisfies for $|t| < \varepsilon^{-r}$

$$\sum_{j\in\mathbb{Z}} \frac{\langle j \rangle^{2s+1}}{\varepsilon^2} \frac{|\mathcal{E}_j(u(t),v(t)) - \mathcal{E}_j(u(0),v(0))|}{\varepsilon^2} \lesssim_{s,r,m} \varepsilon$$
$$\|u(t),v(t)\|_{H^s \times H^{s-1}} \lesssim \|u(0),v(0)\|_{H^s \times H^{s-1}}.$$

Theorem (Bambusi03, Bambusi–Grébert06, Cohen–Hairer–Lubich08)

Let $r \ge 1$ arbitrarily large. For almost all m > 0, provided that $s \ge r^2$, there exists $\varepsilon_0 > 0$, if $||u(0), v(0)||_{H^s \times H^{s-1}} := \varepsilon < \varepsilon_0$, the solution of (KG) satisfies for $|t| < \varepsilon^{-r}$

$$\sum_{j\in\mathbb{Z}} \langle j \rangle^{2s+1} \frac{|\mathcal{E}_j(u(t),v(t)) - \mathcal{E}_j(u(0),v(0))|}{\varepsilon^2} \leq_{s,r,m} \varepsilon$$
$$\|u(t),v(t)\|_{H^s \times H^{s-1}} \leq \|u(0),v(0)\|_{H^s \times H^{s-1}}.$$

• No significant exchange of energy is possible before a very long time.

Theorem (Bambusi03,Bambusi–Grébert06,Cohen–Hairer–Lubich08)

$$\sum_{j\in\mathbb{Z}} (j)^{2s+1} \frac{|\mathcal{E}_j(u(t),v(t)) - \mathcal{E}_j(u(0),v(0))|}{\varepsilon^2} \lesssim_{s,r,m} \varepsilon$$
$$\|u(t),v(t)\|_{H^s \times H^{s-1}} \lesssim \|u(0),v(0)\|_{H^s \times H^{s-1}}.$$

- No significant exchange of energy is possible before a very long time.
- "For almost all m" means that we require a Diophantine condition on the frequencies ω_j.

Theorem (Bambusi03,Bambusi–Grébert06,Cohen–Hairer–Lubich08)

$$\sum_{j\in\mathbb{Z}} (j)^{2s+1} \frac{|\mathcal{E}_j(u(t),v(t)) - \mathcal{E}_j(u(0),v(0))|}{\varepsilon^2} \lesssim_{s,r,m} \varepsilon$$
$$\|u(t),v(t)\|_{H^s \times H^{s-1}} \lesssim \|u(0),v(0)\|_{H^s \times H^{s-1}}.$$

- No significant exchange of energy is possible before a very long time.
- "For almost all m" means that we require a Diophantine condition on the frequencies ω_j.
- Similar stability results of this kind: quantum harmonic oscillators [Grébert–Imekraz–Paturel09], NLS on flat tori [Bambusi–Feola–Montalto22], capillary-gravity periodic water waves [Berti–Delort17] ...

Theorem (Bernier–Grébert21)

$$\sum_{j\in\mathbb{Z}} \langle j \rangle^{-2\beta_r} \frac{|\mathcal{E}_j(u(t),v(t)) - \mathcal{E}_j(u(0),v(0))|}{\varepsilon^2} \lesssim_{r,m} \varepsilon.$$

Theorem (Bernier–Grébert21)

Let $r \ge 1$ arbitrarily large. For almost all m > 0, provided that s = 1, there exists $\varepsilon_0 > 0$, if $||u(0), v(0)||_{H^1 \times L^2} := \varepsilon < \varepsilon_0$, the solution of (KG) satisfies for $|t| < \varepsilon^{-r}$

$$\sum_{j\in\mathbb{Z}} \langle j \rangle^{-2\beta_r} \frac{|\mathcal{E}_j(u(t),v(t)) - \mathcal{E}_j(u(0),v(0))|}{\varepsilon^2} \lesssim_{r,m} \varepsilon.$$

• $\beta_r \gg 1$ is a constant depending only on r (very large).

Theorem (Bernier–Grébert21)

$$\sum_{j\in\mathbb{Z}} \langle j \rangle^{-2\beta_r} \frac{|\mathcal{E}_j(u(t),v(t)) - \mathcal{E}_j(u(0),v(0))|}{\varepsilon^2} \lesssim_{r,m} \varepsilon.$$

- $\beta_r \gg 1$ is a constant depending only on r (very large).
- Initial data live in the energy space (s = 1).

Theorem (Bernier–Grébert21)

$$\sum_{j\in\mathbb{Z}} \langle j \rangle^{-2\beta_r} \frac{|\mathcal{E}_j(u(t),v(t)) - \mathcal{E}_j(u(0),v(0))|}{\varepsilon^2} \lesssim_{r,m} \varepsilon$$

- $\beta_r \gg 1$ is a constant depending only on r (very large).
- Initial data live in the energy space (s = 1).
- We cannot control all the super-actions.

Theorem (Bernier–Grébert21)

$$\sum_{j\in\mathbb{Z}} \langle j \rangle^{-2\beta_r} \frac{|\mathcal{E}_j(u(t),v(t)) - \mathcal{E}_j(u(0),v(0))|}{\varepsilon^2} \lesssim_{r,m} \varepsilon$$

- $\beta_r \gg 1$ is a constant depending only on r (very large).
- Initial data live in the energy space (s = 1).
- We cannot control all the super-actions.
- Similar results can be obtained for many Hamiltonians; For instance [Abou-Khalil22] on the quantum harmonic oscillators on $\mathbb R$

$$i\partial_t u = \big(-\partial_{xx} + x^2 + V\big) u \pm \big|u\big|^{2p} u.$$

We start with backward error analysis in the spirit of [Faou–Grébert11] and [Faou's book] :

Propostion

Let $r \ge 1$ be arbitrarily large and $\varepsilon_0 > 0$ be fixed. Provided that the CFL condition is satisfied, there exists a real modified Hamiltonian H_h^K such that for all $\varepsilon < \varepsilon_0$ and $||u, v||_{H^1 \times L^2} := \varepsilon < \varepsilon_0$, we have

$$\|(\phi_{\operatorname{num}}^{h}-\phi_{H_{h}^{K}}^{h})(u,v)\|_{H^{1}\times L^{2}}\lesssim_{r,\varepsilon_{0},\delta}h^{2}\varepsilon^{r+1}$$

and

$$|H_h^K(u,v)-H^K(u,v)|\lesssim_{\delta,m}h\varepsilon^3.$$

We start with backward error analysis in the spirit of [Faou–Grébert11] and [Faou's book] :

Propostion

Let $r \ge 1$ be arbitrarily large and $\varepsilon_0 > 0$ be fixed. Provided that the CFL condition is satisfied, there exists a real modified Hamiltonian H_h^K such that for all $\varepsilon < \varepsilon_0$ and $||u, v||_{H^1 \times L^2} := \varepsilon < \varepsilon_0$, we have

$$\|(\phi_{\operatorname{num}}^{h}-\phi_{H_{h}^{K}}^{h})(u,v)\|_{H^{1}\times L^{2}}\lesssim_{r,\varepsilon_{0},\delta}h^{2}\varepsilon^{r+1}$$

and

$$|H_h^K(u,v)-H^K(u,v)|\lesssim_{\delta,m}h\varepsilon^3.$$

• The modified Hamiltonian is constructed and is of the form

$$H_{h}^{K} = Z_{2}^{K} + Z_{3,h}^{K} + \dots + Z_{r,h}^{K}.$$

Then, we prove the almost preservation of the energy and deduce a control of the numerical flow in the energy space in the spirit of [Faou–Grébert11] and [Gauckler17]:

Corollary

Provided that $||u^0, v^0||_{H^1 \times L^2} \coloneqq \varepsilon < \varepsilon_0$, we have for $nh \le \varepsilon^{-r}$

$$|H^{K}(u^{n},v^{n})-H^{K}(u^{0},v^{0})|\lesssim_{\delta,r,m,\varepsilon_{0}}h\varepsilon^{3}$$

and

$$||u^n,v^n||_{H^1\times L^2}\lesssim_m \varepsilon.$$

Finally, we apply the Birkhoff normal form procedure in low regularity in the spirit of [Bernier–Grébert21]:

Theorem

Let $r \ge 1$ be arbitrarily large. There exists $\beta_r \gg 1$, for almost all m > 0, provided that CFL is satisfied, we can find $\varepsilon_1 \gtrsim \langle j \rangle^{-\beta_r}$ and a symplectic transformation τ defined on $B(0, \varepsilon_1)$ such that

$$H_h^K \circ \tau = Q + R$$

where Q commutes with the low super-actions \mathcal{E}_i and R satisfies

$$|R(u,v)| \lesssim_{r,\delta,m} \langle j \rangle^{\beta_r} ||u,v||_{H^1 \times L^2}^{r+2}.$$

Table of Comparisons

	[CHL08]	[A-KB24]
$H^s \times H^{s-1}$	$s \gg 1$	Energy space $H^1 \times L^2$
Super-actions	Low and high	Low
NR condition	Standard	Strong
CFL	$rh\omega_{(K-1)/2} \le 2\pi - \delta$	$rh\omega_{(K-1)/2} \le 2\pi - \delta$
Mass m	For almost all $m > 0$	For almost all $m > 0$

æ

イロト イヨト イヨト イヨト

On the strong non resonance condition:

Let $q \ge 3$, $j_1 > \cdots > j_q \ge 0$, $\ell_1, \cdots, \ell_q \in \mathbb{Z}^*$ and set

$$\Omega_{\ell,j} = \ell_1 \omega_{j_1} + \dots + \ell_q \omega_{j_q}$$

Consider the following non resonance conditions

- Weak $|\Omega_{\ell,j}| \gtrsim_{\ell} \langle j_1 \rangle^{-\beta_q}$
- Classical $|\Omega_{\ell,j}| \gtrsim_{\ell} \langle j_3 \rangle^{-\beta_q}$ [Bambusi03]
- Strong $|\Omega_{\ell,j}| \gtrsim_{\ell} \langle j_q \rangle^{-\beta_q}$ [Bernier–Grébert21]

On the strong non resonance condition:

Let $q\geq 3,\, j_1>\cdots>j_q\geq 0,\, \ell_1,\cdots,\ell_q\in \mathbb{Z}^*$ and set

$$\Omega_{\ell,j} = \ell_1 \omega_{j_1} + \dots + \ell_q \omega_{j_q}$$

Consider the following non resonance conditions

- Weak $|\Omega_{\ell,j}| \gtrsim_{\ell} \langle j_1 \rangle^{-\beta_q}$
- Classical $|\Omega_{\ell,j}| \gtrsim_{\ell} \langle j_3 \rangle^{-\beta_q}$ [Bambusi03]
- Strong $|\Omega_{\ell,j}| \gtrsim_{\ell} \langle j_q \rangle^{-\beta_q}$ [Bernier–Grébert21]

Theorem (Bernier–Grébert21)

For almost all m > 0, the strong non resonance condition is satisfied

Proof: Weak NR +
$$\lim_{j \to 0} d(\omega_j, \mathbb{Z}) = 0.$$

On the strong non resonance condition:

Let $q\geq 3,\, j_1>\cdots>j_q\geq 0,\, \ell_1,\cdots,\ell_q\in \mathbb{Z}^*$ and set

$$\Omega_{\ell,j} = \ell_1 \omega_{j_1} + \dots + \ell_q \omega_{j_q}$$

Consider the following non resonance conditions

- Weak $|\Omega_{\ell,j}| \gtrsim_{\ell} \langle j_1 \rangle^{-\beta_q}$
- Classical $|\Omega_{\ell,j}| \gtrsim_{\ell} \langle j_3 \rangle^{-\beta_q}$ [Bambusi03]
- Strong $|\Omega_{\ell,j}| \gtrsim_{\ell} \langle j_q \rangle^{-\beta_q}$ [Bernier–Grébert21]

Theorem (Bernier–Grébert21)

For almost all m > 0, the strong non resonance condition is satisfied

Proof: Weak NR +
$$\lim_{j \to 0} d(\omega_j, \mathbb{Z}) = 0.$$

Thank you for your attention!