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We consider the nonlinear Klein-Gordon equations on the circle

∂2t q − ∂
2
xq +mq + g(q) = 0 (KG)

where

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(x , t) ∈ T ×R
q = q(x , t) ∈ R
the mass m > 0
g is a smooth real non-linearity with g(0) = g ′(0) = 0.

We assume that the initial data

(q∣t=0, ∂tq∣t=0) = (q(0), ∂tq(0))

is small in Hs ×Hs−1 for s > 1/2. In other words

∥q(0), ∂tq(0)∥Hs×Hs−1 ∶= ε≪ 1.
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We set p ∶= ∂tq and introduce the operator Λ ∶=
√
−∂2x +m defined by

Λq = ∑
j∈Z

qjΛe
ijx
= ∑

j∈Z
qjωje

ijx

with qj Fourier coefficients and ωj =
√
j2 +m eigenvalues of operator Λ.

Equation (KG) is written as the Hamiltonian system

∂t (
q
p
) = (

0 1
−Λ2 0

)(
q
p
) + (

0
−g(q)

) = (
0 1
−1 0

)∇H(q,p),

H(q,p) =
1

2 ∫T
(p2 + (Λ2q)q) dx + ∫

T
G(q)dx

where the potential G is such that G ′(q) = g(q).

The Hamiltonian H is a constant of motion for this system

H(q(t),p(t)) = H(q(0),p(0)) ∀t ∈ R.

Charbella Abou Khalil (Nantes) Symplectic numerical integrators 4 / 14



We set p ∶= ∂tq and introduce the operator Λ ∶=
√
−∂2x +m defined by

Λq = ∑
j∈Z

qjΛe
ijx
= ∑

j∈Z
qjωje

ijx

with qj Fourier coefficients and ωj =
√
j2 +m eigenvalues of operator Λ.

Equation (KG) is written as the Hamiltonian system

∂t (
q
p
) = (

0 1
−Λ2 0

)(
q
p
) + (

0
−g(q)

) = (
0 1
−1 0

)∇H(q,p),

H(q,p) =
1

2 ∫T
(p2 + (Λ2q)q) dx + ∫

T
G(q)dx

where the potential G is such that G ′(q) = g(q).

The Hamiltonian H is a constant of motion for this system

H(q(t),p(t)) = H(q(0),p(0)) ∀t ∈ R.

Charbella Abou Khalil (Nantes) Symplectic numerical integrators 4 / 14



We set p ∶= ∂tq and introduce the operator Λ ∶=
√
−∂2x +m defined by

Λq = ∑
j∈Z

qjΛe
ijx
= ∑

j∈Z
qjωje

ijx

with qj Fourier coefficients and ωj =
√
j2 +m eigenvalues of operator Λ.

Equation (KG) is written as the Hamiltonian system

∂t (
q
p
) = (

0 1
−Λ2 0

)(
q
p
) + (

0
−g(q)

) = (
0 1
−1 0

)∇H(q,p),

H(q,p) =
1

2 ∫T
(p2 + (Λ2q)q) dx + ∫

T
G(q)dx

where the potential G is such that G ′(q) = g(q).

The Hamiltonian H is a constant of motion for this system

H(q(t),p(t)) = H(q(0),p(0)) ∀t ∈ R.

Charbella Abou Khalil (Nantes) Symplectic numerical integrators 4 / 14



We are interested in the dynamics for very long times ε−r , r very large:

We prove the almost preservation for very long times of the harmonic
actions (also known as super-actions) given by

Ej(q,p) = ∣qj ∣
2
+ ω−2j ∣pj ∣

2

where qj and pj are Fourier coefficients and ωj =
√
j2 +m.

As a corollary, we expect to obtain a control of the dynamics of (KG)

∑
j∈Z
⟨j⟩2sEj ∼s,m ∥ ⋅ ∥

2
Hs×Hs−1 .

Goal : To prove the almost preservation of Ej (at low regularity, ) after
applying the full discretizations considered by [Cohen–Hairer–Lubich08].
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Figure: Numerical conservation properties for (KG). Adapted from Conservation
of energy, momentum and actions in numerical discretizations of non-linear wave
equations, 2008 by David Cohen, Ernst Hairer and Christian Lubich

They considered initial data living in H3 ×H2.

We prove this result for s = 1. i.e. for initial data in H1 × L2.
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Consider a standard pseudo-spectral semi-discretization with equidistant
collocation points

xℓ =
2ℓπ

K
where ∣ℓ∣ < K/2 and K is odd.

This yields an approximation of the form

q(x , t) = ∑
∣j ∣<K/2

qje
ijx and p(x , t) = ∑

∣j ∣<K/2

pje
ijx .

Taking the discrete Fourier transform (FKψ)j =
1
K ∑
∣ℓ∣<K/2

ψℓe
−ijxℓ , the semi

discretized (KG) equation can be written as a Hamiltonian system

∂t (
q
p
) = (

0 1
−1 0

)∇HK
(q,p),

HK
(q,p) =

1

2
∑
∣j ∣<K/2

ω2
j ∣qj ∣

2
+ ∣pj ∣

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ZK
2 (q,p)

+
1

K
∑
∣ℓ∣<K/2

G (q(xℓ, t))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
PK (q,p)

.
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Fully discrete Splitting method

We split the equation into two systems

∂t (
q
p
) = L(

q
p
) and ∂t (

q
p
) = (

0
−g(q)

) .

Solving them, we get

Φt
ZK
2
(q,p) = etL (

q
p
) and Φt

PK (q,p) = (
q

p − tg(q)
) .

In our work, we consider the Strang splitting method

Φh
ZK
2 +P

K ≃ Φ
h
num ∶= Φ

h/2

PK ○Φ
h
ZK
2
○Φ

h/2

PK .

Remark. We can prove that it is one of the symplectic mollified impulse
methods considered in [Cohen–Hairer–Lubich08].
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We let
(qn,pn) = (Φh

num)
n
(q(0),p(0)) for n ≥ 0.

Theorem [Cohen–Hairer–Lubich08]

Let δ ∈ (0,2π) and r ≥ 1 arbitrarily large. For almost all m > 0, provided
that s ≳ r2 and under CFL condition

r hω(K−1)/2 ≤ 2π − δ,

there exists ε0 > 0, if ∣∣q
0,p0∣∣Hs×Hs−1 ∶= ε < ε0, we have

nh < ε−r Ô⇒ ∑
∣j ∣<K/2

⟨j⟩2s+1
∣Ej(q

n,pn) − Ej(q
0,p0)∣

ε2
≲s,r ,m ε.

Main flow: high regularity constraint s ≳ r2
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Theorem [Abou-Khalil–Bernier24]

Let δ ∈ (0,2π) and r ≥ 1 arbitrarily large. For almost all m > 0, provided
that s = 1 and under CFL condition

r hω(K−1)/2 ≤ 2π − δ,

there exists ε0 > 0, if ∣∣q
0,p0∣∣H1×L2 ∶= ε < ε0, we have

nh < ε−r Ô⇒ ∑
∣j ∣<K/2

⟨j⟩−2βr
∣Ej(q

n,pn) − Ej(q
0,p0)∣

ε2
≲r ,m,δ ε.

We got rid of the smoothness constraint ,
We can only control the low harmonic actions /
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Scheme of the proof

Backward error analysis [Faou–Grébert11] and [Faou’s book]

Almost preservation of the energy and control of the numerical
flow in the energy space [Faou–Grébert11] and [Gauckler17]

Birkhoff normal form in low regularity [Bernier–Grébert21]

Thank you for your attention!
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Equation (KG) can be seen as a perturbation of the linear equation

∂ttu − ∂xxu +mu = 0

written also as

∂t (
u
v
) = (

0 1
−Λ2 0

)(
u
v
) ∶= L(

u
v
)

Due to local well-posedness in Hs ×Hs−1 for s > 1/2, the dynamics of
(KG) remain close to the dynamics of the linearized equation for
times of order ε−1

∣t ∣ ≪ ε−1 Ô⇒ ∥(
u(t)
v(t)
) − eLt (

u(0)
v(0)
)∥

Hs×Hs−1

≪ ε.
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Theorem (Bambusi03,Bambusi–Grébert06,Cohen–Hairer–Lubich08)

Let r ≥ 1 arbitrarily large. For almost all m > 0, provided that s ≳ r2, there
exists ε0 > 0, if ∣∣u(0), v(0)∣∣Hs×Hs−1 ∶= ε < ε0, the solution of (KG) satisfies
for ∣t ∣ < ε−r

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∑
j∈Z
⟨j⟩2s+1

∣Ej(u(t), v(t)) − Ej(u(0), v(0))∣

ε2
≲s,r ,m ε

∥u(t), v(t)∥Hs×Hs−1 ≲ ∥u(0), v(0)∥Hs×Hs−1 .

No significant exchange of energy is possible before a very long time.

”For almost all m” means that we require a Diophantine condition on
the frequencies ωj .

Similar stability results of this kind:
quantum harmonic oscillators [Grébert–Imekraz–Paturel09],
NLS on flat tori [Bambusi–Feola–Montalto22],
capillary-gravity periodic water waves [Berti–Delort17] ...
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the frequencies ωj .

Similar stability results of this kind:
quantum harmonic oscillators [Grébert–Imekraz–Paturel09],
NLS on flat tori [Bambusi–Feola–Montalto22],
capillary-gravity periodic water waves [Berti–Delort17] ...
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The theorem states:

Theorem (Bernier–Grébert21)

Let r ≥ 1 arbitrarily large. For almost all m > 0, provided that s = 1, there
exists ε0 > 0, if ∣∣u(0), v(0)∣∣H1×L2 ∶= ε < ε0, the solution of (KG) satisfies
for ∣t ∣ < ε−r

∑
j∈Z
⟨j⟩−2βr

∣Ej(u(t), v(t)) − Ej(u(0), v(0))∣

ε2
≲r ,m ε.

βr ≫ 1 is a constant depending only on r (very large).

Initial data live in the energy space (s = 1).

We cannot control all the super-actions.

Similar results can be obtained for many Hamiltonians; For instance
[Abou-Khalil22] on the quantum harmonic oscillators on R

i∂tu = (−∂xx + x
2
+V )u ± ∣u∣2pu.
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We start with backward error analysis in the spirit of [Faou–Grébert11]
and [Faou’s book] :

Propostion

Let r ≥ 1 be arbitrarily large and ε0 > 0 be fixed. Provided that the CFL
condition is satisfied, there exists a real modified Hamiltonian HK

h such
that for all ε < ε0 and ∥u, v∥H1×L2 ∶= ε < ε0, we have

∥(ϕhnum − ϕ
h
HK

h
)(u, v)∥

H1×L2
≲r ,ε0,δ h

2εr+1

and
∣HK

h (u, v) −H
K
(u, v)∣ ≲δ,m h ε3.

The modified Hamiltonian is constructed and is of the form

HK
h = Z

K
2 + Z

K
3,h +⋯ + Z

K
r ,h.
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Then, we prove the almost preservation of the energy and deduce a control
of the numerical flow in the energy space in the spirit of [Faou–Grébert11]
and [Gauckler17]:

Corollary

Provided that ∥u0, v0∥H1×L2 ∶= ε < ε0, we have for nh ≤ ε−r

∣HK
(un, vn) −HK

(u0, v0)∣ ≲δ,r ,m,ε0 h ε
3

and
∥un, vn∥H1×L2 ≲m ε.
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Finally, we apply the Birkhoff normal form procedure in low regularity in
the spirit of [Bernier–Grébert21]:

Theorem

Let r ≥ 1 be arbitrarily large. There exists βr ≫ 1, for almost all m > 0,
provided that CFL is satisfied, we can find ε1 ≳ ⟨j⟩

−βr and a symplectic
transformation τ defined on B(0, ε1) such that

HK
h ○ τ = Q + R

where Q commutes with the low super-actions Ej and R satisfies

∣R(u, v)∣ ≲r ,δ,m ⟨j⟩
βr ∣∣u, v ∣∣r+2H1×L2 .
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Table of Comparisons

[CHL08] [A-KB24]

Hs ×Hs−1 s ≫ 1 Energy space H1 × L2

Super-actions Low and high Low

NR condition Standard Strong

CFL r hω(K−1)/2 ≤ 2π − δ r hω(K−1)/2 ≤ 2π − δ

Mass m For almost all m > 0 For almost all m > 0
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On the strong non resonance condition:
Let q ≥ 3, j1 > ⋯ > jq ≥ 0, ℓ1,⋯, ℓq ∈ Z∗ and set

Ωℓ,j = ℓ1ωj1 +⋯ + ℓqωjq

Consider the following non resonance conditions

Weak ∣Ωℓ,j ∣ ≳ℓ ⟨j1⟩
−βq

Classical ∣Ωℓ,j ∣ ≳ℓ ⟨j3⟩
−βq [Bambusi03]

Strong ∣Ωℓ,j ∣ ≳ℓ ⟨jq⟩
−βq [Bernier–Grébert21]

Theorem (Bernier–Grébert21)

For almost all m > 0, the strong non resonance condition is satisfied

Proof : Weak NR + lim
j→0

d(ωj ,Z) = 0.

Thank you for your attention!
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