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A crash introduction to (multi-marginal)
Optimal Transport



Classical Optimal Transportation Theory

Consider two probability measures 1; on X; C R9, and ¢ a cost function (e.g. continuous or |.s.c.), the
Optimal Transport (OT) problem is defined as follows

OTo = inf { [ clame)anta) |7 € nmhuz)} (1)

where M(u1, p2) denotes the set of couplings v(x1, x2) € P(X) having p1 and u2 as marginals.
e Solution a la Monge the transport plan « is deterministic (or a la Monge) if v = (Id, T)su where

Tspa = pa.
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Optimal Transport (OT) problem is defined as follows

OTo = inf { [ clame)anta) |7 € nmhuz)} (1)

where M(u1, p2) denotes the set of couplings v(x1, x2) € P(X) having p1 and u2 as marginals.
e Solution a la Monge the transport plan « is deterministic (or a la Monge) if v = (Id, T)su where

Tspa = pa.
e Duality:

sup {J(¢1, ¢2) | (¢1,¢2) € K} . (2)

where

3(61,02) = /X $1dp + /X $adpiz

and X is the set of bounded and continuous functions
(¢17 ¢2) such that ¢1(X1) + ¢(X2) < C(X1,X2).
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The Multi-Marginal Optimal Transportation

Take (1) m probability measures p; € P(X;); (2) ¢ a cost function. Then the multi-marginal OT

problem reads as:
Multi-Marginal Optimal Transport problem

It reads as:
MOT, = inf / c(x, .oy xm)dy(xa, ..y Xm) (3)
YEM(pa,--,mm) S x
where M(p1, ..., um) denotes the set of couplings y(x1, ..., xm) having u; as marginals.
° sy =(Id, T2, ..., Tm)sp1 where Tizu1 = p;.
° : Both 2 and m marginal OT problems admit a useful dual formulation
Why is it a difficult problem to treat? (the discrete case)
Let Gy oo o = C(Xjgs**+ s Xjy) € ®VRM (M is the number of gridpoints to discretize R%)
M
inf D0 G i

YEN(pa,e - pbm) . -
Gy dm)=1

M™ unknowns!
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Why are we interested in MOT?

e The Wasserstein barycenter problem can be rewritten as a MMOT problem (see [Agueh, Carlier
"11]): statistics, machine learning, image processing;
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e The Wasserstein barycenter problem can be rewritten as a MMOT problem (see [Agueh, Carlier
"11]): statistics, machine learning, image processing;

e Matching for teams problem (see [Carlier,Ekeland "10]): economics.

e In Density Functional Theory: the electron-electron repulsion (see [Buttazzo, De Pascale,
Gori-Giorgi '12] and [Cotar, Friesecke, Kliippelberg '13]). The plan y(xi, ..., xm) returns the
probability of finding electrons at position xi, ..., Xm;

e Incompressible Euler Equations (see [Brenier '89]) : ~(w) gives “the mass of fluid” which follows a
path w. See also [Benamou, Carlier, N. "18].

e Mean Field Games [Benamou, Carlier, Di Marino, N. '18];
e Risk measures [Ennaji, Mérigot, N., Pass '23];
e Multi-period martingale transport, etc [Hiew, N., Pass '24]
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Connecting 2—marginal OT and MOT



The v—based Wasserstein distance

v—based Wasserstein distance

W2 (1, p2) = inf{/ Ia — xe2dy(y, xa, x2); 7 € P(XZ X Y), vy € ”o(ui,V)} :

where Mo(ui,v) is the set of optimal plans between p; and v.
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The v—based Wasserstein distance

v—based Wasserstein distance

W2 (1, p2) = inf{/ Ia — xe2dy(y, xa, x2); 7 € P(XZ X Y), vy € ”o(ui,V)} :

where Mo(ui,v) is the set of optimal plans between p; and v.

f_'. ~ _

e This is only a semi-metric in
general, that is the triangle
inequality fails.

e If we restrict to the class
Pr(X) C P(X) of probability
measures on X for which optimal

transport is unique, then it is a
metric. If m = n it coincides with
the Linear Optimal Transport
distance introduced in

[Wang,Slepcev, Basu, Ozolek, and

Rohde '13].
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Characterisations of W2 (1, 112)

e Via conditional probabilities

leJ(/j/lnu/Z) = inf {/ Wg(ﬂfﬂgﬂ”(}’) | i € no(,uhl/), = 172} )
X

where 1} is the conditional probability given y of the optimal coupling mi(x, y) = v(y) & p!(x)
between v and p;.
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Characterisations of W2 (1, 112)

e Via conditional probabilities

lel(lj/lnu/Z) = inf {/ Wg(ﬂ{>ﬂ)2/)dl’()/) | i € no(ﬂhl/), = 172} )
X

where 117 is the conditional probability given y of the optimal coupling 7i(x,y) = v(y) ® p(x)
between v and p;.

Via Multi-Marginal OT

any weak limit point 4 as 7 — 0 of minimizers y, of the multi-marginal problem

inf / (77|x1 - xz\z +|x — y\z + |x — y\z)d’y(y, X1, X2)
vEN(v,p1,12) J x3

is an optimal coupling between p; and p2 for the problem defining W2 (1, p12).
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Entropic Multi-Marginal Optimal
Transport




Entropic Multi-Marginal Optimal Transport

Consider

e m > 2 probability measures 1i; compactly supported on €2 submanifolds X; C RY of dim d; ;
e a cost function ¢ : X — R, (e.g. continuous or Isc) where X := x7X; ;
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Entropic Multi-Marginal Optimal Transport

Consider

e m > 2 probability measures 1i; compactly supported on €2 submanifolds X; C RY of dim d; ;
e a cost function ¢ : X — R, (e.g. continuous or Isc) where X := x7X; ;

Entropic Multi-Marginal Optimal Transport problem

It reads as:

MOT. = inf ){/ c(xty .y xm)dy(xa, ..., xm) + eEnt(y| @4 u;)},
Hm X

YEM(ua,s...,
where

e M(u1,...,um) is the set of couplings v € P(X) having ;i as marginals
e Ent(y|7) is the Boltzmann-Shannon entropy, that is

Ent(y|7) = /plogpd7r7 if v = pm.
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Some useful remarks

e ¢ =0 and m = 2. Classical Optimal Transport problem. Convex problem, but may have several
solutions ~y, with or without finite entropy!
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@lri ? - C m

Easy to solve numerically via Sinkhorn (take m = 2 for simplicity)

ok e -k,
o = _clog (/ e duz), ok = _clog (/ e F du1>.
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e More on entropic transport on Friday!
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2. Some assumptions to make it simple:

2.1 (Equal marginals and discrete set) All the marginals are equal p; = p = 3y pxdx, where X is a
finite subset.

2.2 (Pair-wise cost) c;(x1,. .., xm) =020y ST, 3 wxi, x;) 4+ 201, w(x, X;).

2.3 (Symmetric cost) The two body cost w is symmetric w(x, y) = w(x, y).

2.4 (Finite cost) The two body cost function w : X x X — R is everywhere real-valued.

Rmk: We can drop hypothesis 2.1—2.3.
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How to derive the differential equation

Step 1: Consider the dual problem (it is convex!);

inf {W(p,m)}. (4)
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How to derive the differential equation

Step 1: Consider the dual problem (it is convex!);
igf{‘l’(so,n)}~ (4)

Step 2: Thanks to convexity we have that the minimizers are characterized by V,W(y,n) = 0. Then, by
differentiate w.r.t.  we obtain

j—j(n) = f[D%,¢W(so(n),n)]*I%www(n),n).

Step 3: The following well-posedness theorem then holds.

Theorem

Let ©(n) be the solution to the dual problem above for all n € [0,1]. Then n +— @(n) is C' and is the
unique solution to the Cauchy problem with ¢(0) = ¢o.

Idea of the proof: fix the value of the potential in one point and then show that W is strongly
convex.

9/12



The algorithm and some numerical
results




The algorithm to compute the ODE solution

e Algorithm to compute the ¢ via explicit Euler method takes the following form:
Require: ¢(0) = ¢

1: while ||+ — ¢()|| <tol do

2: DM .= D%¢¢(¢(k), kh)

3 b= —8—V¢$(¢(k),kh)

€

4: Solve D"z = pk

5. ot = ¢ 4 py

6: end while
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The algorithm to compute the ODE solution

e Algorithm to compute the ¢ via explicit Euler method takes the following form:
Require: ¢(0) = ¢

1: while ||+ — ¢()|| <tol do

2. DW .= D%¢¢(¢(k), kh)

3 b= —8—V¢&>(¢(k),kh)

€

4: Solve Dz = pk)

5. ot = ¢ 4 py

6: end while

Remarks:

e The Euler scheme converges linearly and the uniform error between the discretized solution
obtained via the scheme and the solution to the ODE is O(h);
e Thanks to the regularity of the RHS of the ODE one can apply high order methods.

e At each step k we obtaine the solution of the entropic multi-marginal problem with cost ck!
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Comparison with Sinkhorn

Consider £ = 0.006, m = 3, the uniform measure on [0, 1] uniformily discretized with 400 gridpoints,
the pairwise interaction w(x,y) = —log(0.1 + [x — y|) and a reference solution . computed via a
gradient descent algorithm. Then we have the following comparison between the ODE approach and

Sinkhorn in terms of performances

3rd RK 5th RK 8th RK Sinkhorn
relative error | 1.47 x107° | 7.8 x 107° | 7.62 x 107° | 5.46 x 10~°
iterations 87 87 87 820
CPU time (sec) 72.39 158.9 385.1 102.8

74

n =025 n=0.75

Figure 1: Support of the coupling 'yf’z. 11/12



Some remarks

1. By taking ¢, = nc we have an interpolation (1) between different costs and (2) between the
solution ®™; ui (when entropy dominates) and the one to optimal transport;
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Some remarks

1. By taking ¢, = nc we have an interpolation (1) between different costs and (2) between the
solution ®™; ui (when entropy dominates) and the one to optimal transport;

2, 5 is a 3 marginals coupling with only two fixed

2. cy(x1,z,x) = (1—n)pa —z> + 1)z —x3
marginals, p1 and p2. Then the z—marginal of v gives the Wasserstein geodesic at time 7.

A A A

3. One can also compute the Wasserstein barycenter.

4. We can add extra linear constraints to treat other generalization of optimal transport: e.g.
martingale OT, etc

12/12
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Conclusion

Take-home messages:

An ODE to characterize entropic multi-marginal optimal transport;

e It works for symmetric and non symmetric cost;

Regularity allows to use high order methods;

e It allows to interpolate between different costs and for each n € [0, 1] it returns the solution to the
corresponding multi-marginal problems.

Wasserstein geodesics, Barycenter problem and Martingale transport;

Thank You!!
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