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A crash introduction to (multi-marginal)
Optimal Transport



Classical Optimal Transportation Theory

Consider two probability measures µi on Xi ⊆ Rd , and c a cost function (e.g. continuous or l.s.c.), the
Optimal Transport (OT) problem is defined as follows

OT0 := inf

{∫
X
c(x1, x2)dγ(x1, x2) | γ ∈ Π(µ1, µ2)

}
(1)

where Π(µ1, µ2) denotes the set of couplings γ(x1, x2) ∈ P(X ) having µ1 and µ2 as marginals.
• Solution à la Monge the transport plan γ is deterministic (or à la Monge) if γ = (Id ,T )♯µ where
T♯µ1 = µ2.

• Duality:

sup {J(ϕ1, ϕ2) | (ϕ1, ϕ2) ∈ K} . (2)

where

J(ϕ1, ϕ2) :=

∫
X1

ϕ1dµ1 +

∫
X2

ϕ2dµ2

and K is the set of bounded and continuous functions
(ϕ1, ϕ2) such that ϕ1(x1) + ϕ(x2) ≤ c(x1, x2).
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The Multi-Marginal Optimal Transportation

Take (1) m probability measures µi ∈ P(Xi ); (2) c a cost function. Then the multi-marginal OT
problem reads as:

Multi-Marginal Optimal Transport problem
It reads as:

MOT0 := inf
γ∈Π(µ1,...,µm)

∫
X
c(x1, . . . , xm)dγ(x1, . . . , xm) (3)

where Π(µ1, . . . , µm) denotes the set of couplings γ(x1, . . . , xm) having µi as marginals.
• Solution à la Monge: γ = (Id ,T2, . . . ,Tm)♯µ1 where Ti♯µ1 = µi .
• Duality: Both 2 and m marginal OT problems admit a useful dual formulation

Why is it a difficult problem to treat? (the discrete case)
Let cj1,··· ,jm = c(xj1 , · · · , xjm ) ∈ ⊗N

1 RM (M is the number of gridpoints to discretize Rdi )

inf
γ∈Π(µ1,...,µm)

M∑
(j1,··· ,jm)=1

cj1,··· ,jmγj1,··· ,jm

Mm unknowns!
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Why are we interested in MOT?

• The Wasserstein barycenter problem can be rewritten as a MMOT problem (see [Agueh, Carlier
’11]): statistics, machine learning, image processing;

• Matching for teams problem (see [Carlier,Ekeland ’10]): economics.

• In Density Functional Theory: the electron-electron repulsion (see [Buttazzo, De Pascale,
Gori-Giorgi ’12] and [Cotar, Friesecke, Klüppelberg ’13]). The plan γ(x1, . . . , xm) returns the
probability of finding electrons at position x1, . . . , xm;

• Incompressible Euler Equations (see [Brenier ’89]) : γ(ω) gives “the mass of fluid” which follows a
path ω. See also [Benamou, Carlier, N. ’18].

• Mean Field Games [Benamou, Carlier, Di Marino, N. ’18];

• Risk measures [Ennaji, Mérigot, N., Pass ’23];

• Multi-period martingale transport, etc [Hiew, N., Pass ’24]
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Connecting 2−marginal OT and MOT



The ν−based Wasserstein distance

ν−based Wasserstein distance

W
2
ν(µ1, µ2) = inf

{∫
|x1 − x2|2dγ(y , x1, x2); γ ∈ P(X 2 × Y ), γy,xi ∈ ΠO(µi , ν)

}
,

where ΠO(µi , ν) is the set of optimal plans between µi and ν.

• This is only a semi-metric in
general, that is the triangle
inequality fails.
• If we restrict to the class
Pu
ν(X ) ⊆ P(X ) of probability

measures on X for which optimal
transport is unique, then it is a
metric. If m = nm = nm = n it coincides with
the Linear Optimal Transport
distance introduced in
[Wang,Slepčev, Basu, Ozolek, and
Rohde ’13].

4/12



The ν−based Wasserstein distance

ν−based Wasserstein distance

W
2
ν(µ1, µ2) = inf

{∫
|x1 − x2|2dγ(y , x1, x2); γ ∈ P(X 2 × Y ), γy,xi ∈ ΠO(µi , ν)

}
,

where ΠO(µi , ν) is the set of optimal plans between µi and ν.

• This is only a semi-metric in
general, that is the triangle
inequality fails.
• If we restrict to the class
Pu
ν(X ) ⊆ P(X ) of probability

measures on X for which optimal
transport is unique, then it is a
metric. If m = nm = nm = n it coincides with
the Linear Optimal Transport
distance introduced in
[Wang,Slepčev, Basu, Ozolek, and
Rohde ’13].

4/12



The ν−based Wasserstein distance

ν−based Wasserstein distance

W
2
ν(µ1, µ2) = inf

{∫
|x1 − x2|2dγ(y , x1, x2); γ ∈ P(X 2 × Y ), γy,xi ∈ ΠO(µi , ν)

}
,

where ΠO(µi , ν) is the set of optimal plans between µi and ν.

• This is only a semi-metric in
general, that is the triangle
inequality fails.

• If we restrict to the class
Pu
ν(X ) ⊆ P(X ) of probability

measures on X for which optimal
transport is unique, then it is a
metric. If m = nm = nm = n it coincides with
the Linear Optimal Transport
distance introduced in
[Wang,Slepčev, Basu, Ozolek, and
Rohde ’13].

4/12



The ν−based Wasserstein distance

ν−based Wasserstein distance

W
2
ν(µ1, µ2) = inf

{∫
|x1 − x2|2dγ(y , x1, x2); γ ∈ P(X 2 × Y ), γy,xi ∈ ΠO(µi , ν)

}
,

where ΠO(µi , ν) is the set of optimal plans between µi and ν.

• This is only a semi-metric in
general, that is the triangle
inequality fails.
• If we restrict to the class
Pu
ν(X ) ⊆ P(X ) of probability

measures on X for which optimal
transport is unique, then it is a
metric. If m = nm = nm = n it coincides with
the Linear Optimal Transport
distance introduced in
[Wang,Slepčev, Basu, Ozolek, and
Rohde ’13].

4/12



Characterisations of W2
ν(µ1, µ2)

• Via conditional probabilities

W
2
ν(µ1, µ2) = inf

{∫
X

W
2
2(µ

y
1, µ

y
2)dν(y) | πi ∈ ΠO(µi , ν), i = 1, 2

}
,

where µy
i is the conditional probability given y of the optimal coupling πi (x , y) = ν(y)⊗ µy

i (x)

between ν and µi .

Via Multi-Marginal OT
any weak limit point γ̄ as η → 0 of minimizers γη of the multi-marginal problem

inf
γ∈Π(ν,µ1,µ2)

∫
X3

(
η|x1 − x2|2 + |x1 − y |2 + |x2 − y |2

)
dγ(y , x1, x2)

is an optimal coupling between µ1 and µ2 for the problem defining W2
ν(µ1, µ2).
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Entropic Multi-Marginal Optimal
Transport



Entropic Multi-Marginal Optimal Transport

Consider

• m ≥ 2 probability measures µi compactly supported on C2 submanifolds Xi ⊆ RN of dim di ;
• a cost function c : X → R+ (e.g. continuous or lsc) where X := ×m

i Xi ;

Entropic Multi-Marginal Optimal Transport problem
It reads as:

MOTε := inf
γ∈Π(µ1,...,µm)

{∫
X
c(x1, . . . , xm) dγ(x1, . . . , xm) + εEnt(γ | ⊗m

i=1 µi )

}
,

where

• Π(µ1, . . . , µm) is the set of couplings γ ∈ P(X) having µi as marginals

• Ent(γ |π) is the Boltzmann-Shannon entropy, that is

Ent(γ |π) =
∫

ρ log ρdπ, if γ = ρπ.
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Some useful remarks

• ε = 0 and m = 2. Classical Optimal Transport problem. Convex problem, but may have several
solutions γ, with or without finite entropy!

• ε > 0. Strictly convex cost =⇒ unique solution γε with finite entropy.
• It admits a dual problem

MOTε = sup
φi∈Cb(Xi )

Ψ(φ) :=
m∑
i=1

∫
Xi

φi (xi )dµi − ε log

(∫
X
e

∑m
i=1 φi (xi )−c(x)

ε d ⊗m
i=1 µi

)
.

• The solution γε is "almost" explicit

γε = exp

(
⊕m

i=1φ
ε
i − c

ε

)
⊗m

i=1 µi .

• Easy to solve numerically via Sinkhorn (take m = 2 for simplicity)

φk+1
1 = −ε log

(∫
X2

e
φk

2−c

ε dµ2

)
, φk+1

2 = −ε log

(∫
X1

e
φk+1

1 −c

ε dµ1

)
.

• More on entropic transport on Friday!
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.
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What are we interested in and direction of our work

We are interested in solving the entropic discrete multi-marginal optimal transport.

Main steps of the work:

1. Introduce a suitable one parameter family of cost functions cη, interpolating between the original
multi-marginal problem and a simpler one whose complexity scales linearly in the number of
marginals;

2. Some assumptions to make it simple:
2.1 (Equal marginals and discrete set) All the marginals are equal µi = ρ =

∑
x∈X ρxδx , where X is a

finite subset.
2.2 (Pair-wise cost) cη(x1, . . . , xm) := η

∑m
i=2

∑m
j=i+1 w(xi , xj ) +

∑∑∑m
i=2 w(x1, xi ).

2.3 (Symmetric cost) The two body cost w is symmetric w(x , y) = w(x , y).
2.4 (Finite cost) The two body cost function w : X × X → R is everywhere real-valued.

Rmk: We can drop hypothesis 2.1→2.3.
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How to derive the differential equation

Step 1: Consider the dual problem (it is convex!);

inf
φ

{Ψ(φ, η)} . (4)

Step 2: Thanks to convexity we have that the minimizers are characterized by ∇φΨ(φ, η) = 0. Then, by
differentiate w.r.t. η we obtain

dφ
dη

(η) = −[D2
φ,φΨ(φ(η), η)]−1 ∂

∂η
∇φΨ(φ(η), η).

Step 3: The following well-posedness theorem then holds.

Theorem

Let φ(η) be the solution to the dual problem above for all η ∈ [0, 1]. Then η 7→ φ(η) is C1 and is the
unique solution to the Cauchy problem with φ(0) = φ0.

Idea of the proof: fix the value of the potential in one point and then show that Ψ is strongly
convex.
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The algorithm and some numerical
results



The algorithm to compute the ODE solution

• Algorithm to compute the ϕ via explicit Euler method takes the following form:

Require: ϕ(0) = ϕw

1: while ||ϕ(k+1) − ϕ(k)|| <tol do
2: D(k) := D2

ϕ,ϕΦ̃(ϕ
(k), kh)

3: b(k) := − ∂

∂ϵ
∇ϕΦ̃(ϕ

(k), kh)

4: Solve D(k)z = b(k)

5: ϕ(k+1) = ϕ(k) + hz

6: end while

Remarks:

• The Euler scheme converges linearly and the uniform error between the discretized solution
obtained via the scheme and the solution to the ODE is O(h);

• Thanks to the regularity of the RHS of the ODE one can apply high order methods.

• At each step k we obtaine the solution of the entropic multi-marginal problem with cost ckh!
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Comparison with Sinkhorn

Consider ε = 0.006, m = 3, the uniform measure on [0, 1] uniformily discretized with 400 gridpoints,
the pairwise interaction w(x , y) = − log(0.1 + |x − y |) and a reference solution φε computed via a
gradient descent algorithm. Then we have the following comparison between the ODE approach and
Sinkhorn in terms of performances

3rd RK 5th RK 8th RK Sinkhorn
relative error 1.47 × 10−5 7.8 × 10−6 7.62 × 10−6 5.46 × 10−6

iterations 87 87 87 820
CPU time (sec) 72.39 158.9 385.1 102.8

η = 0 η = 0.25 η = 0.75 η = 1

Figure 1: Support of the coupling γη
1,2. 11/12



Some remarks

1. By taking cη = ηc we have an interpolation (1) between different costs and (2) between the
solution ⊗m

i=1µi (when entropy dominates) and the one to optimal transport;

2. cη(x1, z , x2) = (1 − η)|x1 − z |2 + η|z − x3|2, γ is a 3 marginals coupling with only two fixed
marginals, µ1 and µ2. Then the z−marginal of γ gives the Wasserstein geodesic at time η.

3. One can also compute the Wasserstein barycenter.

4. We can add extra linear constraints to treat other generalization of optimal transport: e.g.
martingale OT, etc
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Conclusion

Take-home messages:

• An ODE to characterize entropic multi-marginal optimal transport;

• It works for symmetric and non symmetric cost;

• Regularity allows to use high order methods;

• It allows to interpolate between different costs and for each η ∈ [0, 1] it returns the solution to the
corresponding multi-marginal problems.

• Wasserstein geodesics, Barycenter problem and Martingale transport;

Thank You!!
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