



# Hierarchical matrix preconditioning for dominant advection problems

Arthur Saunier\*,†

under the supervision of

A.ANCIAUX\* L.AGÉLAS\* \*IFPEn I.BEN GHARBIA\* <sup>†</sup>Sorbonne Université



### Plan

#### 1. Introduction

- 2. Recap on Hierarchical matrices Key ingredients  $\mathcal{H}$ -matrix: toy model
- H-matrix applied to dominant advection Theoretical study Numerical experiments

#### 4. Conclusion

### Plan

#### 1. Introduction

- Recap on Hierarchical matrices Key ingredients *H*-matrix: toy model
- H-matrix applied to dominant advection Theoretical study Numerical experiments
- 4. Conclusion

### Introduction

- Advection diffusion: -εΔu + b · ∇u + cu = f on Ω, b ∈ ℝ<sup>3</sup>, c, f ∈ L<sup>2</sup>(Ω), u|<sub>∂Ω</sub> = 0.
   Dominant advection :ε → 0.
  - Numerical resolution of PDEs by discretization methods (FEM:finite elements methods, ...).
  - Sparse linear system Ax = y.
  - Numerical simulations  $\rightarrow$  inversion of large sparse matrices.
- Preconditioned iterative methods:  $M^{-1}Ax = M^{-1}y$ .
- Choice of the preconditioner: *ILU* with *k* level of fill-in.
  - ILU(0) same sparsity, convergence issue.
  - ILU(k) lost of the sparsity, convergence improved with k.
- H-matrices: approximate the inverse in quasi-linear complexity.
  - Storage of  $A_{\mathcal{H}}^{-1}$ :  $\mathcal{O}(n \log(n))$  against  $\mathcal{O}(n^2)$ .
  - Factorisation  $\mathcal{H}$ -LU :  $\mathcal{O}(n \log(n)^3)$  against  $\mathcal{O}(n^3)$ .

### General idea : $\mathcal{H}$ -matrices

• Block representation to approximate/compress a matrix.

- Compressed blocks (approximated blocks).
- Dense blocks (blocks left identical).



Hierarchical representation: invert of a FEM matrix compressed blocks, dense blocks

### Plan

#### 1. Introduction

- Recap on Hierarchical matrices Key ingredients *H*-matrix: toy model
- H-matrix applied to dominant advection Theoretical study Numerical experiments
- 4. Conclusion

# Two key ingredients

### Compression

• Compression method  $\rightarrow$  Low rank approximation.

### Partitioning

- $\checkmark$  Correspondence DOF  $\longleftrightarrow$  geometrical points.
- Block representation: Splitting strategy  $\rightarrow$  Cluster tree.
- ◆ Partitioning criterion: Admissibility condition→ Block cluster tree.

# First key ingredient: Low rank approximation



- Tolerance tol > 0,  $||M UV^T||_F \le tol||M||_F$  with  $r \ll n$ .
- Low-rank format: Arithmetic in linear complexity.
- Best low rank approximation: truncated SVD in  $\mathcal{O}(n^3)$ .
- Factorisation up to rank  $r_0$ /precision tol in  $\mathcal{O}(r_0 n)$  (Adaptive Cross Approximation).

### Block representation and Cluster tree

Cluster tree = Recursif partitioning of the cluster of points given a splitting strategy.



8 / 33

# Second key ingredient: Block Cluster Tree

• Cluster of points  $\mathcal{P}$ + Splitting strategy  $\Rightarrow$  Cluster tree.

# Second key ingredient: Block Cluster Tree

- Cluster of points  $\mathcal{P}$ + Splitting strategy  $\Rightarrow$  Cluster tree.
- Recursively build a partition of  $\mathcal{P} \times \mathcal{P}$  with the cluster tree: Block cluster tree.

# Second key ingredient: Block Cluster Tree

- Cluster of points  $\mathcal{P}$ + Splitting strategy  $\Rightarrow$  Cluster tree.
- Recursively build a partition of  $\mathcal{P} \times \mathcal{P}$  with the cluster tree: Block cluster tree.

au

- Node M|<sub>τ×σ</sub> ↔ interaction between two nodes τ and σ of the cluster tree.
  - $(\tau, \sigma)$  admissible  $\Rightarrow M|_{\tau \times \sigma}$  is a leaf.
  - Else  $M|_{\tau \times \sigma} = \begin{pmatrix} M|_{\tau_1 \times \sigma_1} & M|_{\tau_1 \times \sigma_2} \\ M|_{\tau_2 \times \sigma_1} & M|_{\tau_2 \times \sigma_2} \end{pmatrix}$
- au imes au cannot be admissible.

 $\sigma$   $\alpha\text{-admissibility:}$   $\min(diam(\tau), diam(\sigma)) \leq 2\alpha \underbrace{dist(\tau, \sigma)}_{\delta}$ 







Recursively build the  $\mathcal{H}$ -matrix with the block cluster tree by approximating its leaves.





depth = 2

depth = 2





### Plan

#### 1. Introduction

- Recap on Hierarchical matrices Key ingredients *H*-matrix: toy model
- H-matrix applied to dominant advection Theoretical study Numerical experiments

#### 4. Conclusion

## Theoretical study: $-\varepsilon \Delta u + b \cdot \nabla u + cu = f$

- Solution u with u = 0 on ∂Ω, b ∈ ℝ<sup>3</sup>, c ∈ L<sup>∞</sup>(Ω), f ∈ L<sup>2</sup>(Ω) and ε > 0, dominant advection: ε → 0.
- Variational formulation:  $a(u, v) = \int_{\Omega} \varepsilon \nabla u \cdot \nabla v + b \cdot \nabla u v + cu \, dx = \int_{\Omega} fv \, dx \quad \forall v \in H_0^1(\Omega)$
- Discrete problem AU = F (example: finite elements methods).
- Approximate  $A^{-1}$  with  $\mathcal{H}$ -matrix?
  - Elliptic problems: [W.Hackbush], [M.Bebendorf].
- Compression really low with the  $\mathcal{H}$ -matrix format for  $\varepsilon \to 0$ .
  - Dominant advection: [S.Le Borne] heuristic reasoning on structured meshes.
  - ◆ Extend the proofs of [M.Faustmann, J.Melenk, D.Praetorious] and [S.Börm] to the case  $\varepsilon \rightarrow 0$ .



# How it works: admissibility condition $\Rightarrow \mathcal{H}$ -matrix approximability

- What admissibility condition on  $(\tau, \sigma)$  would ensure a good hierarchical approximation ?
- Corollary: Assume  $(\tau, \sigma)$  admissible, then  $\exists q \in (0, 1), C, C_{dim} > 0$  such that  $\forall p \in \mathbb{N}_{\geq 2}$  we can find  $U \in \mathbb{R}^{|\tau| \times k}, V \in \mathbb{R}^{|\sigma| \times k}$  (with  $k \leq C_{dim} p^{dim(\Omega)+1}$ ) satisfying  $\forall x \in \mathbb{R}^{|\sigma|}$

$$||(A^{-1}|_{\tau \times \sigma} - UV^{T})x||_{Frobenius} \leq Cq^{p}||x||$$

• **Theorem**: Assume  $(\tau, \sigma)$  admissible, then  $\exists q \in (0, 1), p \in \mathbb{N}^2, C, C_1, C_2 > 0$  and  $v \in V$ , where  $dim(V) < Cp^{dim(\Omega)+1}$ , locally approximating the solution on  $\tau$  with the estimates

$$\begin{split} ||\nabla(u|_{\tau} - v)||_{L^{2}(\tau)} &\leq C_{1}q^{p}||f||_{L^{2}(\Omega)} \\ ||u|_{\tau} - v||_{L^{2}(\tau)} &\leq C_{2}q^{p+1}||f||_{L^{2}(\Omega)} \end{split}$$

Idea of the proof: Successive approximations on narrower sets.

## Key ingredient of the proof: Caccioppoli inequality

• 
$$||\nabla u||_{L^{2}(\tau)} \leq \frac{c}{\operatorname{dist}(\tau, \partial \tau^{+})} ||u||_{L^{2}(\tau^{+})}$$
 where  $\tau \subsetneq \tau^{+}$ .

• "orthogonality" of a for two clusters  $\tau$  and  $\sigma$  with  $dist(\tau, \sigma) = \delta > 0$  and  $supp(f) \subset \sigma$ . Separation  $\Rightarrow \tau_{\delta} = \{x \in \Omega | dist(x, \tau) < \delta\}.$ 

```
orall \lambda > 1, \ \exists \eta 	ext{ with } supp(\eta) \subset 	au_{\delta}, \ \eta|_{	au} = 1 	ext{ and } \ ||
abla \eta||_{L^{\infty}(\Omega)} \leq rac{\lambda}{\delta}
```



Support of the cut-off  $\eta$ 

$$\begin{split} ||\nabla u||_{L^{2}(\tau)}^{2} &\leq ||\nabla(\eta u)||_{L^{2}(\tau_{\delta})}^{2} \\ &= < \nabla u, \nabla(\eta^{2}u) >_{L^{2}(\Omega)} + < u\nabla\eta, u\nabla\eta >_{L^{2}(\Omega)} \\ &= \varepsilon^{-1} \overbrace{a(u, \eta^{2}u)}^{2} = 0 - \varepsilon^{-1} \int_{\Omega} b \cdot \nabla(u) \eta^{2} u dx \\ &- \varepsilon^{-1} \int_{\Omega} c \eta^{2} u^{2} dx + < u\nabla\eta, u\nabla\eta >_{L^{2}(\Omega)} \\ &\leq \frac{\lambda^{2}}{\delta^{2}} ||u||_{L^{2}(\tau_{\delta})}^{2} + \int_{\Omega} \eta u^{2} \frac{b}{\varepsilon} \cdot \nabla\eta dx. \end{split}$$

### Choice of the geometry: vanishing of the term $m{b}\cdot abla\eta$



Support of the cut-off in  $\tau_{\delta}$ .

Cluster  $\tau$  aligned on advection streams and which reach the incident border  $\Gamma^- = \{\mathbf{n}_{\partial\Omega} \cdot \mathbf{b} < \mathbf{0}\}.$ 



Variation of  $\eta$  in the directions b and  $b^{\perp}$ .

### Admissible partitionning

• Caccioppoli  $\Rightarrow \alpha$ -admissibility, explicit admissibility condition:

 $( au,\sigma)$  is admissible if au is aligned with b which reaches  $\Gamma^-$  and

 $dist(\tau, \sigma) > 2\alpha diam_{\infty}(\tau)$ 

• Clustering strategy  $\rightarrow$  suited partitioning for the Caccioppoli frame.



### Test case: matrices obtained with FreeFem

On  $[0,1]\times [0,1],$  with an unstructured triangular mesh of 3057 nodes:

$$-\varepsilon\Delta u + \begin{pmatrix} 1\\ 0 \end{pmatrix} \cdot \nabla u + 2u = 10(1-x)(1-y)$$







 $\varepsilon = 1$  Advection diffusion

 $\varepsilon = 10^{-3}$ 

#### Transitory case

Dominant advection 21/33

# Approximation of $A^{-1}$

- C++ library HTOOL for *H*-matrices (Pierre Marchand INRIA).
- Standard approach: Principal Component Analysis +  $\alpha$ -admissibility.
- New approach: Partitioning into tubes aligned with the convection + new condition.
- $M_{\mathcal{H}}$  hierarchical approximation of M,  $\mathcal{F} = \{$ leaves of  $M_{\mathcal{H}} \}$ ,  $\mathcal{R} = \{$ admissible leaves of  $M_{\mathcal{H}} \}$ ,

$$Compression(M_{\mathcal{H}}) = \frac{\sum_{R \in \mathcal{R}} \operatorname{rank}(R)(\operatorname{line}(R) + \operatorname{col}(R)) + \sum_{F \in \mathcal{F} \setminus \mathcal{R}} \operatorname{line}(F) \times \operatorname{col}(F)}{\operatorname{line}(M) \times \operatorname{col}(M)}$$
$$error(M_{\mathcal{H}}) = \frac{||M - M_{\mathcal{H}}||_{F}}{||M||_{F}}$$

### Approximation of $A^{-1}$ : C++ library HTOOL



Splitting PCA



Ususual condition + PCA (State of the art)







New condition + new splitting (Our method)

### Quality of approximations: matrices $3057 \times 3057$



Compression+20%, error 10<sup>9</sup> times lower!

# Test case: domain with a hole

The same equation on a domain with a hole, mesh with 3227 nodes.







arepsilon=1 Advection diffusion



 $arepsilon = 10^{-6}$  Dominant advection

### Quality of approximations: matrices $3227 \times 3227$



Compression +40% and error less than  $10^{-5}$  for  $\varepsilon \leq 10^{-4}$ .

### Plan

#### 1. Introduction

- Recap on Hierarchical matrices Key ingredients *H*-matrix: toy model
- H-matrix applied to dominant advection Theoretical study Numerical experiments

#### 4. Conclusion



• Proposal for a new admissibility condition and a new partitioning suited for dominant advection.

• The compression and error results obtained in our tests significantly surpass those of the current state of the art.

# THANK YOU!

- M.Bebendorf. Hierarchical matrices : a means to efficiently solve elliptic boundary value problems, volume 63 of Lecture notes in computational science and engineering. 2008.
- [2] L.Grasedyck W.Hackbusch and S.Börm. An introduction to hierarchical matrices, 2001.
- [3] S.Börm. *Efficient numerical methods for non-local operators: H2-matrix compression, algorithms and analysis*, volume 14. European Mathematical Society, 2010.
- [4] J.Melenk M.Faustmann and D.Praetorius. *H*-matrix approximability of the inverses of FEM matrices. *Numerische Mathematik*, 131(4), 2015.
- [5] S.Le Borne and L.Grasedyck. H-matrix preconditioners in convection-dominated problems. SIAM J. Matrix Anal. Appl., 27(4), 2006.

# Local approximation in low dimension



Concentric bounding boxes

- We impose  $diam_{\infty}(\tau) \leq 2\alpha\delta$ ,  $\delta > dist(\tau_0, \sigma) = \gamma\delta > 0$
- Poincaré Wirtinger:  $v_1 \in V_1$ ,  $dim(V_1) = l^{dim(\Omega)}$ ,  $l \in \mathbb{N}$  with  $||u - v_1||_{L^2(\tau_0)} \leq \frac{diam_{\infty}(\tau_0)}{l} ||\nabla u||_{L^2(\tau_0)}.$

• Cacciopoli :  $au_1 o au_0$ 

$$||\nabla(u - v_1)||_{L^2(\tau_1)} \leq \frac{C}{\operatorname{dist}(\tau_1, \partial \tau_0)} ||u - v_1||_{L^2(\tau_0)} \longrightarrow \mathsf{PW}$$
  
$$\leq \underbrace{C' \frac{p}{l(1 - \gamma)}}_{q < 1} ||\nabla u||_{L^2(\tau_0)} \longleftarrow \mathsf{PW}$$

•  $\forall k \leq p$  we find  $v_k \in V_k$  approximation of  $u - \sum_{i \leq k-1} v_i$  in  $L^2(\tau_{k-1})$  (PW) then in  $H^1(\tau_k)$  (Cacciopoli).

# Local approximation in low dimension

•  $\tau_{\rho} = \tau$ ,  $v = \sum_{i \leq \rho} v_i |_{\tau} \in V = \sum_{i \leq \rho} V_i$  where  $dim(V) \leq \rho l^d$  and we have the estimates:

 $\begin{aligned} ||\nabla(u-v)||_{L^{2}(\tau)} &\leq Cq^{p}||\nabla u||_{L^{2}(\tau_{0})} \lesssim^{?} Cq^{p}||f||_{L^{2}(\Omega)} \\ ||u-v||_{L^{2}(\tau)} &\leq C'q^{p+1}||\nabla u||_{L^{2}(\tau_{0})} \lesssim^{?} C'q^{p+1}||f||_{L^{2}(\Omega)} \end{aligned}$ 

- dist $(\tau_0, \partial \tau_\delta) = \gamma \delta > 0 \Rightarrow$  Cacciopoli:  $||\nabla u||_{L^2(\tau_0)} \leq \frac{c}{\gamma \delta} ||u||_{L^2(\tau_\delta)}$ .
- Bound independent of *u*
- $c_0 = \inf(c \operatorname{div}(\frac{b}{2})) > 0 \Rightarrow ||u||_{L^2(\Omega)} ||f||_{L^2(\Omega)} \ge a(u, u) \ge c_0 ||u||_{L^2(\Omega)}^2$
- QED and explicit admissibility condition  $(\tau, \sigma)$ :

The couple( $\tau, \sigma$ ) is said to be admissible if  $\tau$  is an aligned cluster on b reaching  $\Gamma^-$ 

and  $dist(\tau, \sigma) > 2\alpha diam_{\infty}(\tau)$ 

### Importance of the tolerance of ACA



tolerance =  $10^{-6}$ ,  $\varepsilon = 10^{-3}$ 



tolerance =  $10^{-7}$ ,  $\varepsilon = 10^{-3}$ 

### Shape of the block's SVD



Error of a rank k approximation is proportional to the  $k + 1^{th}$  singular value.