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1. Introduction



I Introduction

@ Advection diffusion: —eAu-+b-Vu+cu=rfonQ, beR3 ¢, fc [3(Q), ulsg =0.
Dominant advection :c — 0.
< Numerical resolution of PDEs by discretization methods (FEM:finite elements methods, ...).

< Sparse linear system Ax = y.

< Numerical simulations — inversion of large sparse matrices.
@ Preconditioned iterative methods: M~1Ax = M1y .

@ Choice of the preconditioner: ILU with k level of fill-in.
< ILU(0) same sparsity, convergence issue.
< ILU(k) lost of the sparsity, convergence improved with k.
@ 7-matrices: approximate the inverse in quasi-linear complexity.
< Storage of A;_ll: O(nlog(n)) against O(n?).
< Factorisation H-LU : O(nlog(n)3) against O(n3).
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General idea : H-matrices

@ Block representation to approximate/compress a matrix.

Compressed blocks
(approximated blocks).

Dense blocks
(blocks left identical).
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Hierarchical representation:
invert of a FEM matrix
compressed blocks, dense blocks
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2. Recap on Hierarchical matrices
Key ingredients

‘H-matrix: toy model



ITwo key ingredients

e Compression

< Compression method — Low rank approximation.

e Partitioning

< Correspondence DOF <— geometrical points.
< Block representation: Splitting strategy — Cluster tree.

< Partitioning criterion: Admissibility condition— Block cluster tree.
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I First key ingredient: Low rank approximation

® Tolerance tol >0, ||M — UVT||¢ < tol||M||r with r < n.
@ Low-rank format: Arithmetic in linear complexity.
@ Best low rank approximation: truncated SVD in O(n?).

@ Factorisation up to rank ro/precision tol in O(ron) (Adaptive Cross Approximation).
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Block representation and Cluster tree

Cluster tree = Recursif partitioning of the cluster of points given a splitting strategy.

P112
>
b1 M|py xp
P12, I ..................
P2 M
Interaction:

p2 X p1 (depth = 1),
P1., X P, (depth=3).
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ISecond key ingredient: Block Cluster Tree

@ Cluster of points P+ Splitting strategy = Cluster tree.
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ISecond key ingredient: Block Cluster Tree

@ Cluster of points P+ Splitting strategy = Cluster tree.

@ Recursively build a partition of P x P with the cluster tree: Block cluster tree.
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ISecond key ingredient: Block Cluster Tree

@ Cluster of points P+ Splitting strategy = Cluster tree.

@ Recursively build a partition of P x P with the cluster tree: Block cluster tree.
® Node M|;x, > interaction between two
nodes 7 and o of the cluster tree.
< (7,0) admissible
= M|;xo is a leaf.

< Else

a-admissibility:

@ 7 X 7 cannot be admissible.

min(diam(7), diam(c)) < 2« dist(7, o)
N——

5
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I H-matrix

Recursively build the H-matrix with the block cluster tree by approximating its leaves.

Algorithm 0: Hierarchical formatting

build-Hmatrix (7 x o):

if 7 X o is admissible then
| My|rxo = LowRank(M|;xs)

else

for (7' € sons(7),0’ € sons(c)) do
| build-Hmatrix (7" x ¢”)

end

end

®po

®p

®p7

®pg

P1

®py

Cluster tree
depth =0

H-matrix
depth =0
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I H-matrix

Recursively build the H-matrix with the block cluster tree by approximating its leaves.

Algorithm 0: Hierarchical formatting
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I H-matrix

Recursively build the H-matrix with the block cluster tree by approximating its leaves.
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I H-matrix

Recursively build the H-matrix with the block cluster tree by approximating its leaves.
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I H-matrix

Recursively build the H-matrix with the block cluster tree by approximating its leaves.

Algorithm 0: Hierarchical formatting
build-Hmatrix (7 x o):
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3. H-matrix applied to dominant advection
Theoretical study

Numerical experiments



ITheoreticaI study: —eAu+b-Vu+cu="f

@ Solution v with u=00n 9Q, b€ R3 cc L=(Q), f € [*(Q) and £ > 0,
dominant advection: ¢ — 0.

® Variational formulation: a(u,v) = [(eVu-Vv+b-Vuv+cudx = [,fvdx Vv e H3 ()
@ Discrete problem AU = F (example: finite elements methods).
@ Approximate A~! with H-matrix? Idea: Use the "orthogonality"

< Elliptic problems: [W.Hackbush], [M.Bebendorf]. of a:

@ Compression really low with the H-matrix format for

e — 0.

a(ul-,v)= [,fv=0
supp(v) C 7,supp(f) C o

< Dominant advection: [S.Le Borne| heuristic rea-

soning on structured meshes.

< Extend the proofs of [M.Faustmann, J.Melenk,
Separation of the support

D.Praetorious] and [S.Bérm] to the case € — 0. .
= "orthogonality" 16/33



I How it works: admissibility condition=> H-matrix approximability

@ What admissibility condition on (7, 0) would ensure a good hierarchical approximation ?

@ Corollary: Assume (7,0) admissible, then 3g € (0,1), C, Cgim > 0 such that Vp € N>> we can
find U € RIT¥F v e RIZIXK (with k < Climp®™@+1) satisfying Vx € RI!

H(A71‘7—><0— - UVT)XHFrobenius S quHX”

@ Theorem: Assume (7, 0) admissible, then 3g € (0,1), p € N?, C,Ci, G > 0 and v € V, where

dim(V) < Cpdm@+t locally approximating the solution on 7 with the estimates

IV (ulr = V)lliziry < Ga"lIf |20

lulr = vz < Cq" |12

@ Idea of the proof: Successive approximations on narrower sets.
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I Key ingredient of the proof: Caccioppoli inequality

® [[Vullizr)

— dlSl’(T 67-* ||

ul|2(+) where 7 C 7

@ "orthogonality" of a for two clusters 7 and & with dist(,0) =6 > 0 and supp(f) C o.

Separation = 75 = {x € Q|dist(x,T) < }.

VA > 1, 3n with supp(n) C 75, n|- =1 and
IVl < 5

@

Support of the cut-off 5

IV ul[F2ry < NIV (u)l[72(ry)

=< Vu,V(n?u) >12() + < uVn, uVn >2(q)

_1/b~V(u)n2udx
Q

—et / c772u2 dx + < uVn,uVn >2q)
Q

=c " a(m

N 2b
< 57”””3(75) + [ nu”= - Vndx.
o €
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I Choice of the geometry: vanishing of the term b- Vn

Q —
@ b r- Cluster 7 aligned on advection streams and
s which reach the incident border '™ = {nsq - b < 0}.
[ 7]

Support of the cut-off in 7.

b-Vn<0 n : b-Vn=0 n b-Vn=0
LA ®b
D r- — 5 P
) s 5

Variation of 7 in the directions b and b*. 10/33



I Admissible partitionning

@ Caccioppoli = a-admissibility, explicit admissibility condition:
(7,0) is admissible if 7 is aligned with b which reaches '™ and

dist(7,0) > 2adiames (1)

@ Clustering strategy — suited partitioning for the Caccioppoli frame.
— «

b b

Not suited partitionning ill suited partitionning Well suited partitionning

7 and o not in the frame T not in the frame 7 and o in the frame
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ITest case: matrices obtained with FreeFem

On [0, 1] x [0, 1], with an unstructured triangular mesh of 3057 nodes:

—eAu+ ((1)) -Vu+2u=10(1 - x)(1 —y)

e=1 5:1073 5210_6

Advection diffusion Transitory case Dominant advection /s
21 3



IApproximation of A°!

@ C++ library HTOOL for H-matrices (Pierre Marchand INRIA).

@ Standard approach: Principal Component Analysis + a-admissibility.

@ New approach: Partitioning into tubes aligned with the convection + new condition.

@ My, hierarchical approximation of M, F = {leaves of My}, R = {admissible leaves of My},

>_rer rank(R)(line(R) + col(R)) + >_rc 7\ » line(F) x col(F)

Compression(My) = line(M) x col(M)

[[M — My||r

M e
error(Mp) ™Il
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IApproximation of A=1: C++ library HTOOL

Ususual condition + PCA New condition + new splitting

23/33
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IQuality of approximations: matrices 3057 x 3057

Compression as a function of € Relative error as function of €
80 —— PCA, tol=e-6
10-3 —— directionnal, tol = e-6
—— PCA, tol = e-7
75 10-5 directionnal, tol = e-7
S
Q = -
570 —— PCA,tol =e-6 ;g) 107
s directionnal , tol = e-6 o
@ —— PCA,tol =e-7 =
o irecti - & 107°
g directionnal , tol = e-7 T
-4
E 65
O 10-11
60 10-13
le-0 le-1l le-2 le-3 le-4 le-5 le-6 le-0 le-l le-2 le-3 le-4 le-5 le-6
€ €
Compression VS ¢ Relative error VS of ¢

Compression-+20%, error 10° times lower!
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ITest case: domain with a hole

The same equation on a domain with a hole, mesh with3227 nodes.

e=1 e=10"3 e=10"°
Advection diffusion Transitory case Dominant advection
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IQuaIity of approximations: matrices 3227 x 3227

Compression rate as a function of & Relative error as a function of &
10t
80
103
70
S 10°°
o .
& —— PCA, tol=1e-6 g
g 60 —— directional, tol=1e-6 | & 10-7
@ —— PCA, tol=1e-7 2
o —— directi =le- o)
g directional, tol=1e-7 T 10-9
£ 50
S
o
-11
1071 — pca, tol=1e-6
40 —— directional, tol=1e-6
10-13{ —— PCA, tol=1e-7
—— directional, tol=1e-7

le-0 le-1l le-2 le-3 le-4 le-5 le-6 le-0 le-l le-2 le-3 le-4 le-5 le-6
€ €
Compression VS ¢ Relative error VS ¢

Compression +40% and error less than 107> for ¢ < 107,
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4. Conclusion



I Conclusion

@ Proposal for a new admissibility condition and a new partitioning suited for dominant advection.

@ The compression and error results obtained in our tests significantly surpass those of the current

state of the art.
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ILocaI approximation in low dimension

Concentric bounding boxes

® We impose diamo (1) < 20, 6 > dist(10,0) =0 >0
® Poincaré Wirtinger: vi € V4, dim(Vi) = 1" | € N with
llu—val[i2(rg) < %WHVUHB(TQ)-

® Cacciopoli : 11 — 70

C
< _
)_dist(ﬁ,@To)Hu vllez

70) PW
p ~+condition
< ]
= /(1 _ ’7) ||Vu||L2(7-o)
———

q<1

IV (e = va)lliz(ry

® Vk < p we find v € Vi approximation of u — Zigkfl vi in
L?(7k—1) (PW) then in H'(7%) (Cacciopoli).
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I Local approximation in low dimension
® =7, v= Zigp vilr € V = Zigp V; where dim(V) < pland we have the estimates:

?
IV (= W)li2r) < C&°|IVulli2r) S Ca°[IF[l12(@)

lu—=v|l2y < C pHHVUHLZ(m) < p+1Hf||L2(Q

Bound independent of u

® dist(70,d75) = v > 0 = Cacciopoli: [|Vu||i2(ro) < 5[|ul|2(ry)-
® o =inf(c —div(3)) > 0 = [[ull 2@ llflli2@) > a(u, u) > collullfz(q)

@ QED and explicit admissibility condition (7, 0):

The couple(r, o) is said to be admissible if 7 is an aligned cluster on b reaching '™

and dist(7, o) > 2adiame(7)
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I Importance of the tolerance of ACA

1500 2000 1500 2000

tolerance = 107%,e = 1073 tolerance = 10, ¢ = 1073
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Shape of the block's SVD

Singular Value Decomposition of the highlited block SVD around the rank of approximation
10°
102

100 g 107
= Z
B «

21078 S 10
> 2
o 1072 &

ES S 107°
£ o
x 1034 5

° 5 107t
a2 @
e 10 <

= 3 10710
£ 10750 g—
< <

10758 10-12

0 25 50 75 100 125 150 175 46 48 50 52 54 56 58
Singular value indices Singular value indices

Error of a rank k approximation is proportional to the k + 1% singular value.
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