

Semi-implicit numerical method of arbitrary high order on non-uniform 1D meshes for hyperbolic problems

Congrès National d'Analyse Numérique 2024 - Mai 2024

Rémi ABGRALL², Stéphane DEL PINO^{1,3}, <u>Axelle DROUARD^{1,3}</u>, Emmanuel LABOURASSE^{1,3}

¹CEA, DAM, DIF, F-91297 ARPAJON, FRANCE

²UNIVERSITY OF ZURICH, INSTITUTE OF MATHEMATICS, CH-8057 ZURICH, SWITZERLAND

³ Université Paris-Saclay, CEA DAM DIF, Laboratoire en Informatique Haute Performance pour le Calcul et la simulation, F-91297 Arpajon, France

Outline

Continuous problem

Hyperbolic problem Relaxation model

Semi-implicit numerical scheme

Discretization Deferred Correction method Finite Difference scheme Finite Volume scheme Similarity between FD and FV schemes

Numerical results

Conclusion

- Hyperbolic problem
- Relaxation model

Hyperbolic problem

Semi-implicit numerical scheme

Numerical results

Conclusion

Consider the following 1D hyperbolic system of conservation laws

$$\partial_t \mathbf{u} + \partial_x A(\mathbf{u}) = \mathbf{0} \tag{1}$$

with $\mathbf{u} : \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}^p$, $p \in \mathbb{N}$ and $A : \mathbb{R}^p \to \mathbb{R}^p$ a Lipschitz continuous flux.

In the context of fluid-structure interactions, the desired properties for the scheme are the following:

- Arbitrarily high order in time and space,
- CFL number larger or equal to unity (unlike fully explicit schemes),
- Computationally explicit scheme (implicit with the same complexity as an explicit one).

4

Semi-implicit numerical scheme

Numerical results

Conclusion

(2)

Set the relaxing system

Relaxation system

$$\partial_t \mathbf{F} + \partial_x \Lambda \mathbf{F} = rac{\mathbb{M}(\mathbb{P}\mathbf{F}) - \mathbf{F}}{arepsilon}$$

with $\mathbf{F} : \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}^{\rho k}$, $\mathbb{M} : \mathbb{R}^{\rho} \to \mathbb{R}^{\rho k}$ a Maxwellian function, $\mathbb{P} : \mathbb{R}^{\rho k} \to \mathbb{R}^{\rho}$ a linear operator and $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_k) \in \mathcal{M}_{\rho k, \rho k}(\mathbb{R})$ a constant matrix.

i

By construction, the Maxwellian function must satisfy the following properties

- $\blacksquare \mathbb{PM}(\mathbb{PF}) = \mathbb{PF},$
- $\blacksquare \mathbb{P} \wedge \mathbb{M}(\mathbb{P} \mathsf{F}) = A(\mathbb{P} \mathsf{F}),$
- Monotone Maxwellian Function:

$$\forall \mathbf{u} \in \mathbb{R}^p, \ \sigma(\mathbb{M}'_i(\mathbf{u})) \subset [0,\infty[, \quad \forall i=1,\ldots,k.$$

Semi-implicit numerical scheme

Numerical results

Conclusion

(3)

Chapman-Enskog expansion

Consider the relaxation system:

$$\partial_t \mathbf{F} + \partial_x \Lambda \mathbf{F} = rac{\mathbb{M}(\mathbb{P}\mathbf{F}) - \mathbf{F}}{arepsilon}.$$

 $\partial_t \mathbb{P} \mathbf{F} + \partial_x \mathbb{P} \Lambda \mathbf{F} = \mathbf{0}.$

1 Multiplying (3) by \mathbb{P} , we obtain

2 Multiply (3) by $\mathbb{P}\Lambda$, then

 $\mathbb{P} \wedge \mathbf{F} = A(\mathbb{P} \mathbf{F}) + O(\varepsilon).$

It leads to

 $\partial_t \mathbb{P} \mathbf{F} + \partial_x A(\mathbb{P} \mathbf{F}) = O(\varepsilon).$

Then $\mathbb{P}\mathbf{F} \to \mathbf{u}$ formally when $\varepsilon \to 0$.

For deeper analysis see [Bou99; Nat98].

Continuous problem ○○○○● Semi-implicit numerical scheme

Numerical results

Conclusion

7

Maxwellian function

Define the linear operator $\ensuremath{\mathbb{P}}$ as

Set $k \ge d + 1$ with *d* the spacial dimension, and $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_k)$ such that $\sum_{i=1}^{k} \lambda_i = 0$. Set $S_{\Lambda} = \sum_{i=1}^{k} \lambda_i^2$, one can build \mathbb{M} as:

 $\mathbb{P}\mathbf{F} := \sum_{i=1}^{k} \mathbf{F}_{i}.$

$$\mathbb{M}_i(\mathbb{P}\mathbf{F}) = \frac{1}{k}\mathbb{P}\mathbf{F} + \frac{A(\mathbb{P}\mathbf{F})}{S_{\Lambda}}\lambda_i, \quad \forall i = 1\dots, k.$$

Monotone Maxwellian Function condition

$$\frac{1}{k} + \frac{\lambda_i}{|\Lambda|} \sigma_j \ge 0, \quad \forall i = 1, \dots, k, \quad \forall j = 1, \dots, p$$

where σ_i are the eigenvalues of the Jacobian of A.

Semi-implicit numerical scheme

- Time discretization: Deferred Correction method
- Space discretization
 - Finite Difference scheme
 - Finite Volume scheme
 - Equality of FD and FV fluxes

Semi-implicit numerical scheme

Numerical results

Conclusion

Discretization

Set on the mesh Ω the cells C_j of centers x_j and vertices $x_{j-\frac{1}{2}}$ and $x_{j+\frac{1}{2}}$ as follows:

Figure 1: Non uniform mesh example.

Set δ a *q*-th order spatial derivative operator such that $\Lambda \frac{1}{\Delta x_j} \delta_j \mathbf{F} \approx \Lambda \frac{\partial \mathbf{F}}{\partial x}$. Let us assume that the error is $O(\Delta x^q)$. The relaxation model becomes:

$$\frac{\partial \mathbf{F}_{j}}{\partial t} + \frac{1}{\Delta x_{j}} \Lambda \delta_{j} \mathbf{F} = \frac{\mathbb{M}(\mathbb{P}\mathbf{F}_{j}) - \mathbf{F}_{j}}{\varepsilon} + O(\Delta x^{q}).$$
(4)

We will define the operator δ later. Let us focus on the time discretization for now: Deferred Correction [AT22].

Semi-implicit numerical scheme

Numerical results

Conclusion

Time discretization: Deferred Correction method

Set q + 1 numbers $0 = c_0 < c_1 < \cdots < c_q = 1$ such that $\mathbf{F}_j^{n,i} \approx \mathbf{F}(x_j, t^n + c_i \Delta t)$ with $\mathbf{F}_j^{n,0} = \mathbf{F}_j^n$ and $\mathbf{F}_j^{n,q} = \mathbf{F}_j^{n+1}$.

Set $\mathcal{F}_j = \begin{pmatrix} \mathbf{F}_j^{n,1} & \dots & \mathbf{F}_j^{n,q} \end{pmatrix}^T$ and $\mathcal{F}_j^{(0)} = \begin{pmatrix} \mathbf{F}_j^{n,0} & \dots & \mathbf{F}_j^{n,0} \end{pmatrix}^T$.

Set \mathcal{L}^2 an implicit high order accurate operator, and \mathcal{L}^1 an explicit lower order operator. Our objective is to solve $\mathcal{L}^2(\mathcal{F}) = 0$.

Example (Order 2: Crank-Nicolson)

At order 2, set q = 1. Then

$$\mathcal{L}^{2}(\mathbf{F}_{j}^{n+1}) = \mathbf{F}_{j}^{n+1} - \mathbf{F}_{j}^{n} + \frac{\Delta t}{2\Delta x_{j}} \left(\delta_{j} \wedge \mathbf{F}^{n} + \delta_{j} \wedge \mathbf{F}^{n+1} \right) - \frac{\Delta t}{2\varepsilon} \underbrace{\left(\left(\mathbb{M}(\mathbb{P}\mathbf{F}_{j}^{n}) - \mathbf{F}_{j}^{n} \right) + \left(\mathbb{M}(\mathbb{P}\mathbf{F}_{j}^{n+1}) - \mathbf{F}_{j}^{n+1} \right) \right)}_{\mathbf{S}}.$$

and

$$\mathcal{L}^{1}(\mathbf{F}_{j}^{n+1}) = \mathbf{F}_{j}^{n+1} - \mathbf{F}_{j}^{n} + \underbrace{\frac{\Delta t}{\Delta x_{j}} \delta_{j} \wedge \mathbf{F}^{n}}_{\text{Forward Euler discretization}} - \underbrace{\frac{\Delta t}{2\varepsilon} \mathcal{S}}_{\text{As for } \mathcal{L}^{2}}$$

cea

Semi-implicit numerical scheme

Numerical results

Conclusion

Dec iterations

Deferred Correction method at order M = q + 1: **1** set, for any j, $\mathcal{F}_j^{(0)} = \begin{pmatrix} \mathbf{F}_j^n & \dots & \mathbf{F}_j^n \end{pmatrix}^T$; **2** solve, for $p = 0, \dots, M - 1$: $\mathcal{L}^1(\mathcal{F}_j^{(p+1)}) = \mathcal{L}^1(\mathcal{F}_j^{(p)}) - \mathcal{L}^2(\mathcal{F}_j^{(p)})$; **3** set $\mathcal{F}_j^{n+1} = \mathcal{F}_j^{(M)}$.

Example (Order 2: Crank-Nicolson)

Step 2 of the DeC method gives, for $p \in \{0, 1\}$:

$$\mathbf{F}_{j}^{n+1,(\rho+1)} = \left(1 + \frac{\Delta t}{2\varepsilon}\right)^{-1} \left(\frac{\Delta t}{2\varepsilon} \mathbb{M}(\mathbb{P}\mathbf{F}_{j}^{n+1,(\rho+1)}) + \mathbf{F}_{j}^{n} - \frac{\Delta t}{2\Delta x_{j}} \left(\delta_{j} \wedge \mathbf{F}^{n+1,(\rho)} + \delta_{j} \wedge \mathbf{F}^{n}\right) + \frac{\Delta t}{2\varepsilon} (\mathbb{M}(\mathbb{P}\mathbf{F}_{j}^{n}) - \mathbf{F}_{j}^{n})\right),$$

with

$$\mathbb{P}\mathbf{F}_{j}^{n+1,(p+1)} = \mathbb{P}\mathbf{F}_{j}^{n} - \frac{\Delta t}{2\Delta x_{j}} (\mathbb{P}\delta_{j} \Lambda \mathbf{F}^{n+1,(p)} + \mathbb{P}\Lambda \delta_{j} \mathbf{F}^{n}).$$

This method is:

- computationally explicit;
- L² stable on uniform meshes for a CFL condition of a few units;
- compatible with $\varepsilon = 0$.

Semi-implicit numerical method for hyperbolic problems - R. Abgrall, S. Del Pino, <u>A. Drouard</u>, E. Labourasse Canum 2

Canum 2024, 05/24

11

Semi-implicit numerical scheme

Numerical results

Conclusion

Space discretization: Finite Differences method

Objective: define δ such that

$$\frac{1}{\Delta x_j} \Lambda \delta_j \mathbf{F} \approx \partial_x \Lambda \mathbf{F}(x_j, t)$$

Set $\mathbf{F}_{i} \approx \mathbf{F}(x_{i})$, and L_{i} the Lagrange polynomial of degree q = r + s that interpolates \mathbf{F} in $\{\mathbf{F}_{i+i}; i \in S_{i}\}$, with $|S_{i}| = q + 1$ such that

$$\lambda L_j(x) = \lambda \sum_{l=-s}^r F_{j+l} \prod_{\substack{i=-s\\i\neq l}}^r \frac{x-x_{j+i}}{x_{j+l}-x_{j+i}}, ext{ if } \lambda \geq 0.$$

The spatial derivative operator δ_j is defined as follows: $\frac{1}{\Delta x_j} \lambda \delta_j F = \lambda L'_j(x_j)$.

Properties of the FD scheme

- Arbitrary high order on non-uniform meshes,
- Writes as a difference of fluxes on uniform meshes (conservativity),
- Non conservative on non-uniform meshes,
- Lax-Wendroff theorem under restrictive conditions on the mesh.

Semi-implicit numerical scheme

Numerical results

Conclusion

Finite Volume scheme

Set
$$\overline{\mathbf{F}}_j \approx \frac{1}{\Delta x_j} \int_j \mathbf{F}(x) dx$$
. Consider \mathbf{P}_j a polynomial of degree $q - 1$, built such that

$$rac{1}{\Delta x_j}\int_i \mathbf{P}_j(x) dx = \overline{\mathbf{F}}_i, \quad \forall i \in \mathcal{S}_j,$$

where S_j is the stencil of the reconstruction $(|S_j| = q - 1 \text{ and if } \lambda \ge 0, S_j = \{j - s + 1, \dots, j + r\})$. Set $\mathbf{F}_{j+\frac{1}{2}} = \mathbf{P}_j(x_{j+\frac{1}{2}})$ the numerical flux. The spatial derivative operator δ_j is given by

$$\frac{1}{\Delta x_j} \Lambda \delta_j \mathbf{F} = \frac{1}{\Delta x_j} \Lambda(\mathbf{F}_{j+\frac{1}{2}} - \mathbf{F}_{j-\frac{1}{2}}).$$

Reconstruction of the flux A: set $\mathcal{P}_j(g_i) \approx A(\mathbf{u}(g_i))$ with g_i the points of Gauss quadrature formula of q-th order in the *j*-th cell, then

$$\overline{\mathcal{A}(\mathbf{u})}_j = rac{1}{\Delta x_j} \sum_i \omega_i \mathcal{P}_j(g_i).$$

Semi-implicit numerical scheme

Numerical results

Conclusion

Finite Volume scheme

Properties of the FV scheme

- Arbitrary high order on non-uniform meshes with reconstruction of the flux function A(u),
- Conservative by construction,
- Consistency of the limit scheme ($\varepsilon = 0$) with the initial conservation law (1),
- Consistency of the scheme $\varepsilon \neq 0$ with the relaxing system (3),
- Lax-Wendroff theorem adapted to our problem on non-uniform mesh: $\mathbb{P}\mathbf{F}_{h}^{0} \rightarrow \mathbf{u}$ as $h \rightarrow 0$.

Semi-implicit numerical scheme

Numerical results

Conclusion

Similarities between FD and FV schemes

Proposition

The FD and FV fluxes are identical on uniform meshes.

Sketch of the proof

The FD scheme can write as a difference of fluxes on uniform meshes

$$\frac{\lambda}{\Delta x}\delta_{j}F = \frac{\lambda}{\Delta x}\sum_{l=-s}^{r}\gamma_{l}F_{j+l} = \frac{\lambda}{\Delta x}(F_{j+\frac{1}{2}}^{D} - F_{j-\frac{1}{2}}^{D}),$$

where

$$F_{j+\frac{1}{2}}^{D} = \sum_{\substack{l=-s+1 \ l\neq 0}}^{r} (\sum_{i=l}^{r} \gamma_{i}) F_{j+l},$$

= $\sum_{\substack{l=-s+1 \ l\neq 0}}^{r} (\sum_{i=l}^{r} \gamma_{i}) (F_{j+l} - F_{j}) + \underbrace{\sum_{\substack{l=-s+1 \ l\neq 0}}^{r} (\sum_{i=l}^{r} \gamma_{i}) F_{j},$

 $= \boldsymbol{\beta} \cdot \boldsymbol{B}_j + \boldsymbol{F}_j.$

with for all $l \in \{-s+1, \ldots, r\}, l \neq 0, (B_j)_l = F_{j+l} - F_j$ and $\beta_l = \sum_{i=l} \gamma_i$.

Semi-implicit numerical method for hyperbolic problems - R. Abgrall, S. Del Pino, A. Drouard, E. Labourasse

i-1 Canum 2024, 05/24

Semi-implicit numerical scheme

Numerical results

Conclusion

Similarities between FD and FV schemes

On the other hand, the FV fluxes write

$$F_{j+\frac{1}{2}}^{v} = P_{j}(x_{j+\frac{1}{2}}) = \sum_{l=0}^{r+s-1} \alpha_{j}^{l} e_{j}^{l}(x_{j+\frac{1}{2}}) + F_{j},$$

where e_j^l is the *l*-th element of the polynomial basis of degree at most q, and α_j^l are obtained when solving $Q^{-1}B_j$ with for all $i \in \{-s + 1, ..., r\}, i \neq 0$ and $l \in \{1, ..., r + s - 1\}$

$$Q_{ii} = \frac{\Delta x^{i}}{i+1} \left(\left(i+\frac{1}{2}\right)^{i+1} - \left(i-\frac{1}{2}\right)^{i+1} - \left(\frac{1}{2}\right)^{i+1} + \left(-\frac{1}{2}\right)^{i+1} \right).$$

Then

$$F_{j+\frac{1}{2}}^{v} = \sum_{l=0}^{r+s-1} (Q^{-1}B_{j})_{l}e_{j}^{l}(x_{j+\frac{1}{2}}) + F_{j};$$

= $(Q^{-1}B_{j}) \cdot E_{j}(x_{j+\frac{1}{2}}) + F_{j},$
= $B_{j} \cdot (Q^{-T}E_{j}(x_{j+\frac{1}{2}})) + F_{j}.$

where $E_j(\cdot) = (e_j^1(\cdot), \ldots, e_j^{r+s-1}(\cdot))^T$.

Semi-implicit numerical scheme

Numerical results

Conclusion

Similarities between FD and FV schemes

Finally, proving that the FD and FV fluxes are identical on a uniform mesh is equivalent to showing that

$$F_{j+\frac{1}{2}}^{D} = F_{j+\frac{1}{2}}^{V}$$
$$\iff \beta \cdot B_{j} + F_{j} = B_{j} \cdot (Q^{-T}E_{j}(x_{j+\frac{1}{2}})) + F_{j}$$
$$\iff \beta = Q^{-T}E_{j}(x_{j+\frac{1}{2}}).$$

Using some properties of the coefficients γ_l of the FD scheme and Bernoulli polynomials, the equality is verified.

 \Rightarrow Paper in preparation with the details of the proof.

Numerical results

- Smooth isentropic test case
- Sod shock tube

Euler equations

Semi-implicit numerical scheme

Numerical results

Conclusion

Consider the 1D system of conservation laws (1), setting

$$\mathbf{u} = \begin{pmatrix} \rho \\ \rho u \\ \rho E \end{pmatrix} \text{ and } A(\mathbf{u}) = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ u(\rho E + \rho) \end{pmatrix},$$

with the following equation of state for an ideal gas

$$p = (\gamma - 1)
ho \varepsilon$$
 where $\varepsilon = E - \frac{u^2}{2}$.

Consider the 2 waves scheme with MMF condition

 $\lambda \geq |u| + c.$

Numerical results

Conclusion

Smooth isentropic test case

Set the initial condition

Figure 2: Density of the smooth isentropic test case, 2-waves model, FV scheme, 3rd order, non-uniform mesh.

Figure 3: L^2 -error of the 2 waves FD and FV schemes on non-uniform mesh for the smooth test case at time T = 0.08.

Sod test case

Semi-implicit numerical scheme

Numerical results

Conclusion

Set the initial condition

 $\begin{cases} \rho_0(x) = \mathbbm{1}_{x < 0.5} + 0.125 \times \mathbbm{1}_{x \ge 0.5}, \\ u_0(x) = 0, \\ \rho_0(x) = \mathbbm{1}_{x < 0.5} + 0.1 \times \mathbbm{1}_{x \ge 0.5}. \end{cases}$

Set $\gamma = 1.4$.

Semi-implicit numerical scheme

Numerical results

Conclusion

Sod test case

Figure 4: Density, Sod shock tube with 2-waves model, FD and FV scheme of third order with and without TVD flux limitation on non-uniform mesh. Solution displayed with N = 100 cells.

Semi-implicit numerical scheme

Numerical results 00000000

Conclusion

Sod test case

Figure 5: Velocity, Sod shock tube with 2-waves model, FD and FV scheme of third order with and without TVD flux limitation on non-uniform mesh. Solution displayed with N = 100 cells.

Semi-implicit numerical scheme

Numerical results

Conclusion

Sod test case

Figure 6: Pressure, Sod shock tube with 2-waves model, FD and FV scheme of third order with and without TVD flux limitation on non-uniform mesh. Solution displayed with N = 100 cells.

25

Numerical results

Conclusion

Conclusion and perspectives

Conclusion

- Two computationally explicit schemes of arbitrary high order on non-uniform meshes that share the same fluxes on uniform meshes.
- Finite Differences scheme:
 - good results despite non-conservativity,
 - Lax-Wendroff theorem under restrictive conditions.
- Finite Volume scheme:
 - consistency of the limit scheme ($\varepsilon = 0$) with the initial conservation law (1),
 - consistency of the scheme $\varepsilon \neq 0$ with the relaxing system (3),
 - Lax-Wendroff theorem on non-uniform mesh.
- k-waves scheme implemented at order up to 3 in time and space for scalar (transport, Burgers) and vector (waves equation, Euler) problems.

Perspectives

- Lagrangian scheme: 1st results at order 1,
- Hyperelasticity model, fluid-structure coupling,
- 2D, unstructured meshes.

Thank you for your attention

- [AT22] Rémi Abgrall and Davide Torlo. "Some preliminary results on a high order asymptotic preserving computationally explicit kinetic scheme". In: *Communications in Mathematical Sciences* 20.2 (2022), pp. 297–326. DOI: 10.4310/cms.2022.v20.n2.a1.
- [Bou99] François Bouchut. "Construction of BGK models with a family of kinetic entropies for a given system of conservation laws". In: *Journal of Statistical Physics* 95.1 (1999), pp. 113–170.
- [Nat98] Roberto Natalini. "A Discrete Kinetic Approximation of Entropy Solutions to Multidimensional Scalar Conservation Laws". In: *Journal of Differential Equations* 148.2 (1998), pp. 292–317. ISSN: 0022-0396. DOI: https://doi.org/10.1006/jdeq.1998.3460.