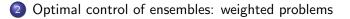
Weighted and uniform optimal control of ensembles via **F**-convergence

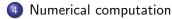
Alessandro Scagliotti

TUM, Munich Munich Center for Machine Learning

SMAI–CANUM Île de Ré, 27–31 Mai 2024



Optimal control of ensembles: minimax problems



Let us consider the following model for chemotherapy:

$$\begin{cases} \dot{x}_1 = \xi_1 x_1 \left(1 - \frac{x_1 + x_2}{M} \right) - \mu u x_1 & \text{(sensitive population)} \\ \dot{x}_2 = \xi_2 x_2 \left(1 - \frac{x_1 + x_2}{M} \right) & \text{(resistant population)} \end{cases}$$

where

• $u \in [0, u_{max}]$ is the control;

Let us consider the following model for chemotherapy:

$$\begin{cases} \dot{x}_1 = \xi_1 x_1 \left(1 - \frac{x_1 + x_2}{M} \right) - \mu u x_1 & \text{(sensitive population)} \\ \dot{x}_2 = \xi_2 x_2 \left(1 - \frac{x_1 + x_2}{M} \right) & \text{(resistant population)} \end{cases}$$

where

•
$$u \in [0, u_{max}]$$
 is the control;

• $\xi_1, \xi_2, M, \mu > 0$ are **unknown** parameters.

Let us consider the following model for chemotherapy:

$$\begin{cases} \dot{x}_1 = \xi_1 x_1 \left(1 - \frac{x_1 + x_2}{M} \right) - \mu u x_1 & \text{(sensitive population)} \\ \dot{x}_2 = \xi_2 x_2 \left(1 - \frac{x_1 + x_2}{M} \right) & \text{(resistant population)} \end{cases}$$

where

- $u \in [0, u_{max}]$ is the control;
- $\xi_1, \xi_2, M, \mu > 0$ are **unknown** parameters.

Classical strategy in medicine

Maximal dose: $u(t) \equiv u_{max}$ until the tumor starts growing again.

Let us consider the following model for chemotherapy:

$$\begin{cases} \dot{x}_1 = \xi_1 x_1 \left(1 - \frac{x_1 + x_2}{M} \right) - \mu u x_1 & \text{(sensitive population)} \\ \dot{x}_2 = \xi_2 x_2 \left(1 - \frac{x_1 + x_2}{M} \right) & \text{(resistant population)} \end{cases}$$

where

- $u \in [0, u_{max}]$ is the control;
- $\xi_1, \xi_2, M, \mu > 0$ are **unknown** parameters.

Classical strategy in medicine

Maximal dose: $u(t) \equiv u_{\text{max}}$ until the tumor starts growing again. Then, when possible, change drug (2nd line treatment) and use it at the maximal dose.

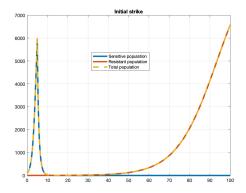


Figure: Strategy $u(t) \equiv u_{max}$. The sensitive population is rapidly extincted by the treatment. After some time, a resistant tumor returns.

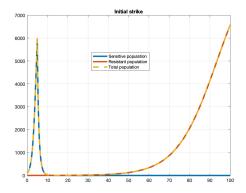


Figure: Strategy $u(t) \equiv u_{max}$. The sensitive population is rapidly extincted by the treatment. After some time, a resistant tumor returns.

This strategy does not require the knowledge of ξ_1, ξ_2, M, μ .

Alessandro Scagliotti (TUM, MCML)

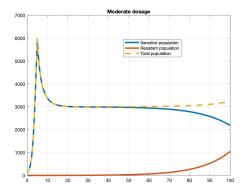


Figure: Strategy $u(t) \equiv \bar{u} < u_{max}$. The tumor never disappears, but it is stabilized. The sensitive cells are delaying the growth of the resistant population.

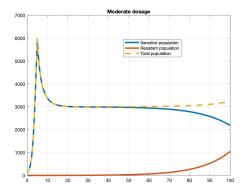


Figure: Strategy $u(t) \equiv \bar{u} < u_{max}$. The tumor never disappears, but it is stabilized. The sensitive cells are delaying the growth of the resistant population.

This strategy **depends on** ξ_1, ξ_2, M, μ .

Control of a qubit:

$$rac{d\psi}{dt} = egin{pmatrix} {\mathsf E} + lpha & u(t) \ u(t) & -{\mathsf E} - lpha \end{pmatrix} \psi,$$

where α represents the uncertainty affecting the *resonance frequency*.

Control of a qubit:

$$\frac{d\psi}{dt} = \begin{pmatrix} E + \alpha & u(t) \\ u(t) & -E - \alpha \end{pmatrix} \psi,$$

where α represents the uncertainty affecting the *resonance frequency*.

In [Robin, Augier, et al., J.Diff.Eq., 2022] a strategy for *uniform ensemble controllability* is proposed.

Control of a qubit:

$$\frac{d\psi}{dt} = \begin{pmatrix} E + \alpha & u(t) \\ u(t) & -E - \alpha \end{pmatrix} \psi,$$

where α represents the uncertainty affecting the *resonance frequency*.

In [Robin, Augier, et al., J.Diff.Eq., 2022] a strategy for *uniform ensemble controllability* is proposed.

Is it possible to find *optimal strategies*? Optimal could be *on average* on the ensemble, or *uniformly*.

Given a compact set of parameters $\Theta \subset \mathbb{R}^d$, we consider a family of affine-control systems in \mathbb{R}^n on the time interval [0, T]:

$$\dot{x}^ heta=b^ heta(x)+A^ heta(x)u,\ \ x^ heta(0)=x_0^ heta,$$

simultaneously controlled by $u \in \mathcal{U} := L^p([0, T], \mathbb{R}^m)$, 1 .

Given a compact set of parameters $\Theta \subset \mathbb{R}^d$, we consider a family of affine-control systems in \mathbb{R}^n on the time interval [0, T]:

$$\dot{x}^ heta=b^ heta(x)+A^ heta(x)u,\ \ x^ heta(0)=x_0^ heta,$$

simultaneously controlled by $u \in \mathcal{U} := L^p([0, T], \mathbb{R}^m)$, 1 .

Modelling data uncertainty affecting the dynamics or the initial datum.

Given a compact set of parameters $\Theta \subset \mathbb{R}^d$, we consider a family of affine-control systems in \mathbb{R}^n on the time interval [0, T]:

$$\dot{x}^ heta=b^ heta(x)+A^ heta(x)u,\ \ x^ heta(0)=x_0^ heta,$$

simultaneously controlled by $u \in \mathcal{U} := L^p([0, T], \mathbb{R}^m)$, 1 .

Modelling data uncertainty affecting the dynamics or the initial datum.

Technical assumptions

•
$$(x, \theta) \mapsto b^{\theta}(x) \in \mathbb{R}^n$$
, $(x, \theta) \mapsto A^{\theta}(x) \in \mathbb{R}^{n \times m}$ Lipschitz-continuous;

• $\theta \mapsto x_0^{\theta}$ is Lipschitz-continuous.

Optimal control of ensembles: weighted problems

For every $\theta \in \Theta$, we would like to solve

$$a^{ heta}(x^{ heta}(T)) + eta \int_0^T f(u(s)) \, ds o \min,$$

with $\beta > 0$, and where

- $a^{\theta} : \mathbb{R}^n \to \mathbb{R}_+$ is the end-point cost $(a : \mathbb{R}^n \times \Theta \to \mathbb{R}_+$ continuous);
- $f : \mathbb{R}^m \to \mathbb{R}$ convex, continuous, and $f(u) \ge c(1 + |u|_2^p)$.

Optimal control of ensembles: weighted problems

For every $\theta \in \Theta$, we would like to solve

$$a^{ heta}(x^{ heta}(T)) + eta \int_0^T f(u(s)) \, ds o \min,$$

with $\beta > 0$, and where

- $a^{\theta} : \mathbb{R}^n \to \mathbb{R}_+$ is the end-point cost $(a : \mathbb{R}^n \times \Theta \to \mathbb{R}_+$ continuous);
- $f : \mathbb{R}^m \to \mathbb{R}$ convex, continuous, and $f(u) \ge c(1 + |u|_2^p)$.

Idea

We use a probability measure $\mu \in \mathcal{P}(\Theta)$ to quantify the uncertainty on θ . Then, we consider

$$\mathcal{G}_{\mu}(u) = \int_{\Theta} a(x^{ heta}(T), heta) \, d\mu(heta) + eta \int_{0}^{T} f(u(s)) \, ds o \min.$$

Existence of minimizers

Let us consider

$$\mathcal{G}_{\mu}(u) = \int_{\Theta} a(x^{ heta}(T), heta) \, d\mu(heta) + eta \int_{0}^{T} f(u(s)) \, ds.$$

Proposition

There exists $\hat{u} \in \mathcal{U}$ such that

$$\mathcal{G}_{\mu}(\hat{u}) = \inf_{\mathcal{U}} \mathcal{G}_{\mu}.$$

Moreover, for every $\hat{u} \in \arg \min \mathcal{G}_{\mu}$, we have $\|\hat{u}\|_{L^p} \leq C(\beta)$.

The problem of finding the minimizers of \mathcal{G}_{μ} requires:

• the exact knowledge of the probability measure μ ;

The problem of finding the minimizers of \mathcal{G}_{μ} requires:

- the exact knowledge of the probability measure μ;
- handling simultaneously an infinite number of control systems.

The problem of finding the minimizers of \mathcal{G}_{μ} requires:

- the exact knowledge of the probability measure μ;
- handling simultaneously an infinite number of control systems.

In practice, we may have access to empirical measurements $\theta^1, \ldots, \theta^M \in \Theta$, independently sampled from μ . We define

$$\mu^{M} := \frac{1}{M} \sum_{j=1}^{M} \delta_{\theta^{j}}$$

The problem of finding the minimizers of \mathcal{G}_{μ} requires:

- the exact knowledge of the probability measure μ;
- handling simultaneously an infinite number of control systems.

In practice, we may have access to empirical measurements $\theta^1, \ldots, \theta^M \in \Theta$, independently sampled from μ . We define

$$\mu^M := \frac{1}{M} \sum_{j=1}^M \delta_{\theta^j},$$

and we assume that

$$\lim_{M\to\infty} \langle \mu^M, \phi \rangle = \langle \mu, \phi \rangle, \quad \forall \phi \in C_b(\Theta),$$

i.e.,
$$\mu^{M} \rightharpoonup^{*} \mu$$
 as $M \rightarrow \infty$.

Reduction to finite ensembles: **Г**-convergence

For every $M \geq 1$, we consider $\mathcal{G}_{\mu^M} : \mathcal{U} \to \mathbb{R}$ defined as

$$\mathcal{G}_{\mu^M}(u) = \int_{\Theta} \mathsf{a}(\mathsf{x}^{ heta}(T), heta) \, d\mu^M(heta) + eta \int_0^T f(u(s)) \, ds.$$

Reduction to finite ensembles: **Г**-convergence

For every $M\geq 1$, we consider $\mathcal{G}_{\mu^M}:\mathcal{U}
ightarrow\mathbb{R}$ defined as

$$\mathcal{G}_{\mu^M}(u) = \int_{\Theta} \mathsf{a}(x^{ heta}(T), heta) \, d\mu^M(heta) + eta \int_0^T f(u(s)) \, ds.$$

Theorem

For every $M \ge 1$, let us consider $\mathcal{G}_{\mu^M} : \mathcal{U} \to \mathbb{R}$. Then, the sequence $(\mathcal{G}_{\mu^M})_{M \ge 1}$ is Γ -convergent to the functional $\mathcal{G}_{\mu} : \mathcal{U} \to \mathbb{R}$ with respect to the weak topology of \mathcal{U} .

Reduction to finite ensembles: **Г**-convergence

For every $M\geq 1$, we consider $\mathcal{G}_{\mu^M}:\mathcal{U}
ightarrow\mathbb{R}$ defined as

$$\mathcal{G}_{\mu^M}(u) = \int_{\Theta} \mathsf{a}(x^{ heta}(T), heta) \, d\mu^M(heta) + eta \int_0^T f(u(s)) \, ds.$$

Theorem

For every $M \geq 1$, let us consider $\mathcal{G}_{\mu^M} : \mathcal{U} \to \mathbb{R}$. Then, the sequence $(\mathcal{G}_{\mu^M})_{M \geq 1}$ is Γ -convergent to the functional $\mathcal{G}_{\mu} : \mathcal{U} \to \mathbb{R}$ with respect to the weak topology of \mathcal{U} .

Remark

Here the fact that the systems are affine in the control is crucial!

Γ-convergence: consequences

Convergence of minima.

$$\min_{u\in\mathcal{U}}\mathcal{G}_{\mu^M} o\min_{u\in\mathcal{U}}\mathcal{G}_{\mu}$$
 as $M o\infty.$

F-convergence: consequences

Convergence of minima.

$$\min_{u\in\mathcal{U}}\mathcal{G}_{\mu^M} o\min_{u\in\mathcal{U}}\mathcal{G}_{\mu} \quad ext{as } M o\infty.$$

Convergence of minimizers. Let $\hat{u}^M \in \arg \min_{\mathcal{U}} \mathcal{G}_{\mu^M}$.

Then (\hat{u}^M) is pre-compact in the **weak topology** of L^p , and clusters are minimizers of \mathcal{G}_{μ} .

F-convergence: consequences

Convergence of minima.

$$\min_{u\in\mathcal{U}}\mathcal{G}_{\mu^M}\to\min_{u\in\mathcal{U}}\mathcal{G}_{\mu}\quad\text{as }M\to\infty.$$

Convergence of minimizers. Let $\hat{u}^M \in \arg \min_{\mathcal{U}} \mathcal{G}_{\mu^M}$.

Then (\hat{u}^M) is pre-compact in the **weak topology** of L^p , and clusters are minimizers of \mathcal{G}_{μ} .

Convergence of integral costs. Let $\hat{u}^M \in \arg \min_{\mathcal{U}} \mathcal{G}_{\mu^M}$, and assume that $\hat{u}^M \rightharpoonup \hat{u}$. Then,

$$\lim_{M \to \infty} \int_{\Theta} a(x_{\hat{u}^{M}}^{\theta}(T), \theta) \, d\mu^{M}(\theta) = \int_{\Theta} a(x_{\hat{u}}^{\theta}(T), \theta) \, d\mu(\theta),$$
$$\lim_{M \to \infty} \int_{0}^{T} f(\hat{u}^{M}(s)) \, ds = \int_{0}^{T} f(\hat{u}(s)) \, ds.$$

Γ-convergence: consequences – improved

Convergence of minima.

$$\min_{u\in\mathcal{U}}\mathcal{G}_{\mu^M}\to\min_{u\in\mathcal{U}}\mathcal{G}_{\mu}\quad\text{as }M\to\infty.$$

Convergence of minimizers. Let $\hat{u}^M \in \arg \min_{\mathcal{U}} \mathcal{G}_{\mu^M}$. Then if f is strictly convex (\hat{u}^M) is pre-compact in the strengt

Then, if f is strictly convex, (\hat{u}^M) is pre-compact in the strong topology of L^p , and clusters are minimizers of \mathcal{G}_{μ} .

Convergence of integral costs. Let $\hat{u}^M \in \arg \min_{\mathcal{U}} \mathcal{G}_{\mu^M}$, and assume that $\hat{u}^M \rightharpoonup \hat{u}$. Then,

$$\lim_{M \to \infty} \int_{\Theta} a(x_{\hat{u}^{M}}^{\theta}(T), \theta) \, d\mu^{M}(\theta) = \int_{\Theta} a(x_{\hat{u}}^{\theta}(T), \theta) \, d\mu(\theta),$$
$$\lim_{M \to \infty} \int_{0}^{T} f(\hat{u}^{M}(s)) \, ds = \int_{0}^{T} f(\hat{u}(s)) \, ds.$$

F-convergence and PMP: preliminaries

Idea

Try to use Γ -convergence to establish PMP for infinite ensembles. When considering μ^M , the problem reduces to a control system in $(\mathbb{R}^n)^M$

Γ-convergence and PMP: preliminaries

Idea

Try to use Γ -convergence to establish PMP for infinite ensembles. When considering μ^M , the problem reduces to a control system in $(\mathbb{R}^n)^M$.

Notations

For every $u \in \mathcal{U}$, we define $X_u : [0, T] \times \Theta \to \mathbb{R}^n$ as

$$X_u(t,\theta) := x_u^{\theta}(t),$$

Γ-convergence and PMP: preliminaries

Idea

Try to use Γ -convergence to establish PMP for infinite ensembles. When considering μ^M , the problem reduces to a control system in $(\mathbb{R}^n)^M$.

Notations

For every $u \in \mathcal{U}$, we define $X_u : [0, T] \times \Theta \to \mathbb{R}^n$ as

$$X_u(t,\theta) := x_u^{\theta}(t),$$

and $\Lambda_u : [0, T] imes \Theta o (\mathbb{R}^n)^*$ as

$$\Lambda_u(t,\theta):=\lambda_u^\theta(t),$$

where

$$\dot{\lambda}_{u}^{\theta} = -\lambda_{u}^{\theta} \cdot \frac{\partial}{\partial x} \left(b^{\theta}(x_{u}) - A^{\theta}(x_{u})u \right), \quad \lambda_{u}^{\theta}(T) = -\nabla_{x}a(x_{u}(T), \theta).$$

Γ-convergence and PMP: finite ensembles

If $\# \operatorname{supp}(\mu^M) = M$, then we have a problem in $(\mathbb{R}^n)^M$.

Γ-convergence and PMP: finite ensembles

If $\# \operatorname{supp}(\mu^M) = M$, then we have a problem in $(\mathbb{R}^n)^M$.

Theorem

Let $\hat{u}^M \in \arg \min \mathcal{G}_{\mu^M}$. Then, considering $X_{\hat{u}^M} : [0, T] \times \Theta \to \mathbb{R}^n$ and $\Lambda_{\hat{u}^M} : [0, T] \times \Theta \to (\mathbb{R}^n)^*$ as before, we have that

$$\hat{u}^{M}(t) \in rgmax_{v \in \mathbb{R}^{m}} \left\{ \int_{\Theta} \Lambda_{\hat{u}^{M}}(t, \theta) \cdot A^{\theta} (X_{\hat{u}^{M}}(t, \theta)) v \, d\mu^{M}(\theta) - \beta f(v) \right\}$$

for a.e. $t \in [0, T]$.

Γ-convergence and PMP: finite ensembles

If $\# \operatorname{supp}(\mu^M) = M$, then we have a problem in $(\mathbb{R}^n)^M$.

Theorem

Let $\hat{u}^M \in \arg \min \mathcal{G}_{\mu^M}$. Then, considering $X_{\hat{u}^M} : [0, T] \times \Theta \to \mathbb{R}^n$ and $\Lambda_{\hat{u}^M} : [0, T] \times \Theta \to (\mathbb{R}^n)^*$ as before, we have that

$$\hat{u}^{M}(t) \in rgmax_{v \in \mathbb{R}^{m}} \left\{ \int_{\Theta} \Lambda_{\hat{u}^{M}}(t, \theta) \cdot A^{\theta} (X_{\hat{u}^{M}}(t, \theta)) v \, d\mu^{M}(\theta) - \beta f(v) \right\}$$

for a.e. $t \in [0, T]$.

Remark

No need for computing $X_{\hat{u}^{M}}(t,\theta), \Lambda_{\hat{u}^{M}}(t,\theta)$ for every $\theta \in \Theta$. Sufficient for $\theta \in \operatorname{supp}(\mu^{M})$.

Consider $\hat{u}^M \in \arg\min \mathcal{G}_{u^M}$, and assume that $\hat{u}^M \rightarrow_{L^p} \hat{u}$

Consider $\hat{u}^M \in \arg \min \mathcal{G}_{\mu^M}$, and assume that $\hat{u}^M \to_{L^p} \hat{u} \in \arg \min \mathcal{G}_{\mu}$. We have

$$\begin{cases} \mu^{M} \rightharpoonup^{*} \mu \\ X_{\hat{u}^{M}} \rightarrow_{C^{0}} X_{\hat{u}} \\ \Lambda_{\hat{u}^{M}} \rightarrow_{C^{0}} \Lambda_{\hat{u}} \\ \hat{u}^{M}(t) \rightarrow \hat{u}(t) \quad \text{a.e. (up to subseq.)} \end{cases} \text{ as } M \rightarrow \infty.$$

Consider $\hat{u}^M \in \arg \min \mathcal{G}_{\mu^M}$, and assume that $\hat{u}^M \to_{L^p} \hat{u} \in \arg \min \mathcal{G}_{\mu}$. We have

$$\begin{cases} \mu^{M} \xrightarrow{}^{*} \mu \\ X_{\hat{u}^{M}} \rightarrow_{C^{0}} X_{\hat{u}} \\ \Lambda_{\hat{u}^{M}} \rightarrow_{C^{0}} \Lambda_{\hat{u}} \\ \hat{u}^{M}(t) \rightarrow \hat{u}(t) \quad \text{a.e. (up to subseq.)} \end{cases} \quad \text{as } M \rightarrow \infty$$

We can pass to the limit here:

$$\hat{u}^{M}(t)\in rgmax_{v\in\mathbb{R}^{m}}\left\{\int_{\Theta} \wedge_{\hat{u}^{M}}(t, heta)\cdot A^{ heta}ig(X_{\hat{u}^{M}}(t, heta)ig) v\,d\mu^{M}(heta)-eta f(v)
ight\}$$

We use that the subdifferential ∂f has closed graph.

Consider $\hat{u}^M \in \arg \min \mathcal{G}_{\mu^M}$, and assume that $\hat{u}^M \to_{L^p} \hat{u} \in \arg \min \mathcal{G}_{\mu}$. We have

$$\begin{cases} \mu^{M} \rightharpoonup^{*} \mu \\ X_{\hat{u}^{M}} \rightarrow_{C^{0}} X_{\hat{u}} \\ \Lambda_{\hat{u}^{M}} \rightarrow_{C^{0}} \Lambda_{\hat{u}} \\ \hat{u}^{M}(t) \rightarrow \hat{u}(t) \quad \text{a.e. (up to subseq.)} \end{cases} \quad \text{as } M \rightarrow \infty$$

We get:

$$\hat{u}(t)\inrg\max_{v\in\mathbb{R}^m}\left\{\int_{\Theta} {\sf A}_{\hat{u}}(t, heta)\cdot {\sf A}^{ heta}ig(X_{\hat{u}}(t, heta)ig) v\, {\sf d}\mu(heta)-eta f(v)
ight\}$$

We use that the subdifferential ∂f has closed graph.

Γ-convergence and PMP: infinite ensembles

We have obtained:

Theorem (S., 2023)

Let $\hat{u} \in \arg \min \mathcal{G}_{\mu}$. Then, considering $X_{\hat{u}} : [0, T] \times \Theta \to \mathbb{R}^n$ and $\Lambda_{\hat{u}} : [0, T] \times \Theta \to (\mathbb{R}^n)^*$ as before, we have that

$$\hat{u}(t) \in rg\max_{v \in \mathbb{R}^m} \left\{ \int_{\Theta} \Lambda_{\hat{u}}(t, heta) \cdot A^{ heta} (X_{\hat{u}}(t, heta)) v \, d\mu(heta) - eta f(v)
ight\}$$

for a.e. $t \in [0, T]$.

Optimal control of ensembles: minimax problems

For every $\theta\in\Theta$ we would like to solve

$$a^{ heta}(x^{ heta}(T))+eta\int_0^T f(u(s))\,ds o {
m min},$$

with $\beta > 0$, and where

- $a^{\theta} : \mathbb{R}^n \to \mathbb{R}_+$ is the end-point cost $(a : \mathbb{R}^n \times \Theta \to \mathbb{R}_+$ continuous);
- $f: \mathbb{R}^m \to \mathbb{R}$ convex, continuous, and $f(u) \ge c(1+|u|_2^p)$.

Optimal control of ensembles: minimax problems

For every $\theta\in\Theta$ we would like to solve

$$a^{ heta}(x^{ heta}(T)) + eta \int_0^T f(u(s)) \, ds o \min,$$

with $\beta > 0$, and where

- $a^{\theta} : \mathbb{R}^n \to \mathbb{R}_+$ is the end-point cost $(a : \mathbb{R}^n \times \Theta \to \mathbb{R}_+$ continuous);
- $f: \mathbb{R}^m \to \mathbb{R}$ convex, continuous, and $f(u) \ge c(1+|u|_2^p)$.

Idea

We want to do the best in the worst scenario:

$$\mathcal{F}_{\Theta}(u) = \sup_{\theta \in \Theta} a(x^{\theta}(T), \theta) + \beta \int_0^T f(u(s)) \, ds \to \min.$$

Existence of minimizers

Let us consider

$$\mathcal{F}_{\Theta}(u) = \sup_{\theta \in \Theta} a(x^{\theta}(T), \theta) + \beta \int_0^T f(u(s)) ds$$

Proposition

There exists $\hat{u} \in \mathcal{U}$ such that

$$\mathcal{F}_{\Theta}(\hat{u}) = \inf_{\mathcal{U}} \mathcal{F}_{\Theta}.$$

Moreover, for every $\hat{u} \in \arg \min \mathcal{F}_{\Theta}$, we have $\|\hat{u}\|_{L^p} \leq C(\beta)$.

The problem of finding the minimizers of \mathcal{F}_Θ requires:

• handling simultaneously an infinite number of control systems.

The problem of finding the minimizers of \mathcal{F}_Θ requires:

• handling simultaneously an infinite number of control systems.

In practice, we may be able to construct $\Theta^M \subset \Theta$ such that:

- $\#\Theta^M < \infty;$
- $d_H(\Theta^M, \Theta) \to 0$ as $M \to \infty$ (Hausdorff distance).

The problem of finding the minimizers of \mathcal{F}_Θ requires:

• handling simultaneously an infinite number of control systems.

In practice, we may be able to construct $\Theta^M \subset \Theta$ such that:

•
$$\#\Theta^M < \infty$$
;
• $d_H(\Theta^M, \Theta) \to 0$ as $M \to \infty$ (Hausdorff distance).

$$\mathcal{F}_{\Theta^M}(u) = \sup_{\theta \in \Theta^M} a(x^{\theta}(T), \theta) + \beta \int_0^T f(u(s)) \, ds.$$

The problem of finding the minimizers of \mathcal{F}_Θ requires:

• handling simultaneously an infinite number of control systems.

In practice, we may be able to construct $\Theta^M \subset \Theta$ such that:

$$\mathcal{F}_{\Theta^M}(u) = \sup_{\theta \in \Theta^M} a(x^{\theta}(T), \theta) + \beta \int_0^T f(u(s)) ds.$$

Theorem

For every $M \geq 1$, let us consider $\mathcal{F}_{\Theta^M} : \mathcal{U} \to \mathbb{R}$. Then, the sequence $(\mathcal{F}_{\Theta^M})_{M \geq 1}$ is Γ -convergent to the functional $\mathcal{F}_{\Theta} : \mathcal{U} \to \mathbb{R}$ with respect to the weak topology of \mathcal{U} .

Γ-convergence: consequences – improved

Convergence of minima.

$$\min_{u\in\mathcal{U}}\mathcal{F}_{\Theta^M}\to\min_{u\in\mathcal{U}}\mathcal{F}_\Theta\quad\text{as }M\to\infty.$$

Γ-convergence: consequences – improved

Convergence of minima.

$$\min_{u \in \mathcal{U}} \mathcal{F}_{\Theta^M} \to \min_{u \in \mathcal{U}} \mathcal{F}_{\Theta} \quad \text{as } M \to \infty.$$

Convergence of minimizers. Let $\hat{u}^M \in \arg \min_{\mathcal{U}} \mathcal{F}_{\Theta^M}$.

Then, if f is strictly convex, (\hat{u}^M) is pre-compact in the strong topology of L^p , and clusters are minimizers of \mathcal{F}_{Θ} .

F-convergence: consequences – improved

Convergence of minima.

$$\min_{u \in \mathcal{U}} \mathcal{F}_{\Theta^M} \to \min_{u \in \mathcal{U}} \mathcal{F}_{\Theta} \quad \text{as } M \to \infty.$$

Convergence of minimizers. Let $\hat{u}^M \in \arg \min_{\mathcal{U}} \mathcal{F}_{\Theta^M}$. Then, if f is strictly convex, (\hat{u}^M) is pre-compact in the strong topology of L^p , and clusters are minimizers of \mathcal{F}_{Θ} .

Convergence of integral costs. Let $\hat{u}^M \in \arg \min_{\mathcal{U}} \mathcal{F}_{\Theta}$, and assume that $\hat{u}^M \rightharpoonup \hat{u}$. Then,

$$\lim_{M \to \infty} \sup_{\theta \in \Theta^M} a(x_{\hat{u}^M}^{\theta}(T), \theta) = \sup_{\theta \in \Theta} a(x_{\hat{u}}^{\theta}(T), \theta),$$
$$\lim_{M \to \infty} \int_0^T f(\hat{u}^M(s)) \, ds = \int_0^T f(\hat{u}(s)) \, ds.$$

PMP for minimax: notations recap

Notations

For every $u \in \mathcal{U}$, we define $X_u : [0, T] \times \Theta \to \mathbb{R}^n$ as

$$X_u(t,\theta) := x_u^{\theta}(t)$$

and $\Lambda_u : [0, T] \times \Theta \to (\mathbb{R}^n)^*$ as

$$\Lambda_u(t,\theta):=\lambda_u^\theta(t),$$

where

$$\dot{\lambda}_{u}^{\theta} = -\lambda_{u}^{\theta} \cdot \frac{\partial}{\partial x} \left(b^{\theta}(x_{u}) - A^{\theta}(x_{u})u \right), \quad \lambda_{u}^{\theta}(T) = -\nabla_{x}a(x_{u}(T), \theta).$$

If $\#\Theta^M < \infty$, then we have a minimax problem in $(\mathbb{R}^n)^{\#\Theta^M}$.

If $\#\Theta^M < \infty$, then we have a minimax problem in $(\mathbb{R}^n)^{\#\Theta^M}$.

Theorem (Vinter, Optimal Control, 2000)

Let $\hat{u}^M \in \arg \min \mathcal{F}_{\Theta^M}$. Then, considering $X_{\hat{u}^M} : [0, T] \times \Theta \to \mathbb{R}^n$ and $\Lambda_{\hat{u}^M} : [0, T] \times \Theta \to (\mathbb{R}^n)^*$ as before, there exists a probability measure $\nu^M \in \mathcal{P}(\Theta^M)$

If $\#\Theta^M < \infty$, then we have a minimax problem in $(\mathbb{R}^n)^{\#\Theta^M}$.

Theorem (Vinter, Optimal Control, 2000)

Let $\hat{u}^M \in \arg \min \mathcal{F}_{\Theta^M}$. Then, considering $X_{\hat{u}^M} : [0, T] \times \Theta \to \mathbb{R}^n$ and $\Lambda_{\hat{u}^M} : [0, T] \times \Theta \to (\mathbb{R}^n)^*$ as before, there exists a probability measure $\nu^M \in \mathcal{P}(\Theta^M)$ such that

$$\hat{u}^{M}(t) \in \operatorname*{arg\,max}_{v \in \mathbb{R}^{m}} \left\{ \int_{\Theta} \Lambda_{\hat{u}^{M}}(t, \theta) \cdot A^{\theta} (X_{\hat{u}^{M}}(t, \theta)) v \, d\nu^{M}(\theta) - \beta f(v) \right\}$$

for a.e. $t \in [0, T]$

If $\#\Theta^M < \infty$, then we have a minimax problem in $(\mathbb{R}^n)^{\#\Theta^M}$.

Theorem (Vinter, Optimal Control, 2000)

Let $\hat{u}^M \in \arg \min \mathcal{F}_{\Theta^M}$. Then, considering $X_{\hat{u}^M} : [0, T] \times \Theta \to \mathbb{R}^n$ and $\Lambda_{\hat{u}^M} : [0, T] \times \Theta \to (\mathbb{R}^n)^*$ as before, there exists a probability measure $\nu^M \in \mathcal{P}(\Theta^M)$ such that

$$\hat{u}^{M}(t) \in rg\max_{v \in \mathbb{R}^{m}} \left\{ \int_{\Theta} \Lambda_{\hat{u}^{M}}(t, heta) \cdot A^{ heta} (X_{\hat{u}^{M}}(t, heta)) v \, d
u^{M}(heta) - eta f(v)
ight\}$$

 $\textit{for a.e. } t \in [0, T], \textit{ and } \bar{\theta} \in \mathrm{supp}(\nu^M) \implies \bar{\theta} \in \arg\max_{\Theta^M} a(x^\theta_{\hat{u}^M}(T), \theta).$

If $\#\Theta^M < \infty$, then we have a minimax problem in $(\mathbb{R}^n)^{\#\Theta^M}$.

Theorem (Vinter, Optimal Control, 2000)

Let $\hat{u}^M \in \arg \min \mathcal{F}_{\Theta^M}$. Then, considering $X_{\hat{u}^M} : [0, T] \times \Theta \to \mathbb{R}^n$ and $\Lambda_{\hat{u}^M} : [0, T] \times \Theta \to (\mathbb{R}^n)^*$ as before, there exists a probability measure $\nu^M \in \mathcal{P}(\Theta^M)$ such that

$$\hat{u}^{M}(t) \in rg\max_{v \in \mathbb{R}^{m}} \left\{ \int_{\Theta} \Lambda_{\hat{u}^{M}}(t, heta) \cdot A^{ heta} ig(X_{\hat{u}^{M}}(t, heta)ig) v \, d
u^{M}(heta) - eta f(v)
ight\}$$

for a.e. $t \in [0, T]$, and $\bar{\theta} \in \operatorname{supp}(\nu^M) \implies \bar{\theta} \in \operatorname{arg\,max}_{\Theta^M} a(x^{\theta}_{\hat{u}^M}(T), \theta).$

In other words, \hat{u}^M is as well an extremal for

$$\mathcal{G}_{\nu^M}(u) = \int_{\Theta} a(x_u^{\theta}(T), \theta) \, d\nu^M(\theta) + \beta \int_0^T f(u(s)) \, ds.$$

Alessandro Scagliotti (TUM, MCML)

Consider $\hat{u}^M \in \arg \min \mathcal{F}_{\Theta^M}$, and assume that $\hat{u}^M \to_{L^p} \hat{u} \in \arg \min \mathcal{F}_{\Theta}$.

Consider $\hat{u}^M \in \arg \min \mathcal{F}_{\Theta^M}$, and assume that $\hat{u}^M \to_{L^p} \hat{u} \in \arg \min \mathcal{F}_{\Theta}$. We have

$$\begin{cases} \nu^{M} \rightharpoonup^{*} \nu & \text{(up to subseq.)} \\ X_{\hat{u}^{M}} \rightarrow_{C^{0}} X_{\hat{u}} & \text{as } M \rightarrow \infty. \\ \Lambda_{\hat{u}^{M}} \rightarrow_{C^{0}} \Lambda_{\hat{u}} & \\ \hat{u}^{M}(t) \rightarrow \hat{u}(t) & \text{a.e. (up to subseq.)} \end{cases}$$

Consider $\hat{u}^M \in \arg \min \mathcal{F}_{\Theta^M}$, and assume that $\hat{u}^M \to_{L^p} \hat{u} \in \arg \min \mathcal{F}_{\Theta}$. We have

$$\begin{cases} \nu^{M} \rightharpoonup^{*} \nu & \text{(up to subseq.)} \\ X_{\hat{u}^{M}} \rightarrow_{C^{0}} X_{\hat{u}} & \text{as } M \rightarrow \infty. \\ \Lambda_{\hat{u}^{M}} \rightarrow_{C^{0}} \Lambda_{\hat{u}} & \\ \hat{u}^{M}(t) \rightarrow \hat{u}(t) & \text{a.e. (up to subseq.)} \end{cases}$$

We can pass to the limit here:

$$\hat{u}^{M}(t)\in rgmax_{v\in\mathbb{R}^{m}}\left\{\int_{\Theta} \wedge_{\hat{u}^{M}}(t, heta)\cdot A^{ heta}ig(X_{\hat{u}^{M}}(t, heta)ig) v \, d
u^{M}(heta) - eta f(v)
ight\}$$

We use that the subdifferential ∂f has closed graph.

Consider $\hat{u}^M \in \arg \min \mathcal{F}_{\Theta^M}$, and assume that $\hat{u}^M \to_{L^p} \hat{u} \in \arg \min \mathcal{F}_{\Theta}$. We have

$$\begin{cases} \nu^{M} \rightharpoonup^{*} \nu & \text{(up to subseq.)} \\ X_{\hat{u}^{M}} \rightarrow_{C^{0}} X_{\hat{u}} & \text{as } M \rightarrow \infty. \\ \Lambda_{\hat{u}^{M}} \rightarrow_{C^{0}} \Lambda_{\hat{u}} & \\ \hat{u}^{M}(t) \rightarrow \hat{u}(t) & \text{a.e. (up to subseq.)} \end{cases}$$

We get:

$$\hat{u}(t)\inrg\max_{v\in\mathbb{R}^m}\left\{\int_{\Theta} {\sf \Lambda}_{\hat{u}}(t, heta)\cdot {\sf A}^{ heta}ig(X_{\hat{u}}(t, heta)ig)v\,d
u(heta)-eta f(v)
ight\}$$

We use that the subdifferential ∂f has closed graph.

PMP for minimax problems

Theorem (S., 2024)

Let $\hat{u} \in \arg \min \mathcal{F}_{\Theta}$. Then, considering $X_{\hat{u}} : [0, T] \times \Theta \to \mathbb{R}^n$ and $\Lambda_{\hat{u}} : [0, T] \times \Theta \to (\mathbb{R}^n)^*$ as before, there exists a probability measure $\nu \in \mathcal{P}(\Theta)$ such that

$$\hat{u}(t) \in rg\max_{v \in \mathbb{R}^m} \left\{ \int_{\Theta} \Lambda_{\hat{u}}(t, heta) \cdot A^{ heta} (X_{\hat{u}}(t, heta)) v \, d
u(heta) - eta f(v)
ight\}$$

for a.e. $t \in [0, T]$, and $\bar{\theta} \in \operatorname{supp}(\nu) \implies \bar{\theta} \in \operatorname{arg\,max}_{\theta \in \Theta} a(x^{\theta}_{\hat{u}}(T), \theta)$.

PMP for minimax problems

Theorem (S., 2024)

Let $\hat{u} \in \arg \min \mathcal{F}_{\Theta}$. Then, considering $X_{\hat{u}} : [0, T] \times \Theta \to \mathbb{R}^n$ and $\Lambda_{\hat{u}} : [0, T] \times \Theta \to (\mathbb{R}^n)^*$ as before, there exists a probability measure $\nu \in \mathcal{P}(\Theta)$ such that

$$\hat{u}(t) \in rgmax_{v \in \mathbb{R}^m} \left\{ \int_{\Theta} \Lambda_{\hat{u}}(t, heta) \cdot A^{ heta} (X_{\hat{u}}(t, heta)) v \, d
u(heta) - eta f(v)
ight\}$$

 $\textit{for a.e. } t \in [0, T], \textit{ and } \bar{\theta} \in \mathrm{supp}(\nu) \implies \bar{\theta} \in \arg\max_{\theta \in \Theta} \textit{a}(x^{\theta}_{\hat{u}}(T), \theta).$

In other words, \hat{u} is as well an extremal for

$$\mathcal{G}_{\nu}(u) = \int_{\Theta} a(x_u^{\theta}(T), \theta) \, d\nu(\theta) + \beta \int_0^T f(u(s)) \, ds.$$

General strategy

Reduce to finite ensembles using Γ -convergence, and solve it as a finite-dimensional problem.

General strategy

Reduce to finite ensembles using Γ -convergence, and solve it as a finite-dimensional problem.

Taking advantage of the reduction to finite ensembles, we can use numerical methods for Optimal Control problems

General strategy

Reduce to finite ensembles using Γ -convergence, and solve it as a finite-dimensional problem.

Taking advantage of the reduction to finite ensembles, we can use numerical methods for Optimal Control problems:

• Projected Gradient Flow

General strategy

Reduce to finite ensembles using Γ -convergence, and solve it as a finite-dimensional problem.

Taking advantage of the reduction to finite ensembles, we can use numerical methods for Optimal Control problems:

- Projected Gradient Flow;
- Iterative methods based on Pontryagin Maximum Principle ([Sakawa & Shindo, 1980], [Chernousko & Lyubushin, 1982]).

General strategy

Reduce to finite ensembles using Γ -convergence, and solve it as a finite-dimensional problem.

Taking advantage of the reduction to finite ensembles, we can use numerical methods for Optimal Control problems:

- Projected Gradient Flow;
- Iterative methods based on Pontryagin Maximum Principle ([Sakawa & Shindo, 1980], [Chernousko & Lyubushin, 1982]).

Remark

The minimax problem is harder: the measures μ^M are not explicitly given, they should be *adaptively guessed* during the approximation of the optimal control.

Control system in \mathbb{R}^2 affected by uncertainty:

$$\dot{x}^{ heta}(s)=M^{ heta}x^{ heta}(s)+Au(s), \quad x^{ heta}(0)=0,$$

where

$$M^{ heta} := egin{pmatrix} 0 & 1 \ heta & 0 \end{pmatrix}, \quad A := egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}.$$

We considered $\theta \in \Theta = [-1/2, 1/2]$, and $\mu \sim \text{Beta}(4, 4)$ centered at 0.

Control system in \mathbb{R}^2 affected by uncertainty:

$$\dot{x}^{ heta}(s)=M^{ heta}x^{ heta}(s)+Au(s),\quad x^{ heta}(0)=0,$$

where

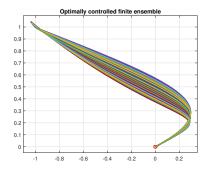
$$M^{ heta} := egin{pmatrix} 0 & 1 \ heta & 0 \end{pmatrix}, \quad A := egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}.$$

We considered $\theta \in \Theta = [-1/2, 1/2]$, and $\mu \sim \text{Beta}(4, 4)$ centered at 0.

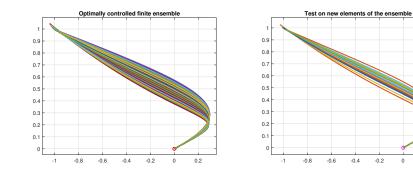
$$\mathcal{G}_{\mu}(u) := \int_{\Theta} |\mathrm{x}^{ heta}(1) - y_{\mathrm{tar}}|_2^2 \, d\mu(heta) + eta \|u\|_{L^2}^2,$$

 $y_{\text{tar}} = (-1, 1)$, with evolution horizon [0, 1].

$$\mathit{N}=300$$
, $\beta=10^{-3}$



$$N = 300, \ \beta = 10^{-3}$$



0.2

0

Thanks for the attention!

References:

- A. S. Optimal control of ensembles of dynamical systems. *ESAIM: COCV*, 2023.
- A. S. Minimax problems for ensembles of affine-control systems. *arXiv preprint*, 2024.
- C. Cipriani, A. S., T. Wöhrer. A minimax optimal control approach for robust neural ODEs. *European Control Conference 24, to appear.*