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ABOUT ME

Real-Time Neural Materials using Block-Compressed Features

C. Weinreich!, L. De Oliveira!, A. Houdard! and G. Nader!

Since 2021 — Research Scientist at Ubisoft
3D rendering, Computer Graphics, Image Processing .
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New paper about real time compression at EG2024

Mipmapped Neural Textures

Figure 1: PBR material texture set is decoded in real-time from our Block Compressed newural features (BCY) resulting in an image that is
visually sharper than standard BC textures of similar resolution.

2019-2021— Post-doc atIMB, Univ. Bordeaux
Optimal Transport, Generative Models, Texture Synthesis

On the Gradient Formula for learning Generative Models with PO

Regularized Optimal Transport Costs
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Abstract: Learning a Wasserstein Generative Adversarial Networks (WGAN) requires the differentiation of the optimal transport cost with respect to the parameters of the generative model. In this work,
we provide sufficient conditions for the existence of a gradient formula in two different frameworks: the case of semi-discrete optimal transport (i.e. with a discrete target distribution) and the case of
regularized optimal transport (i.e. with an entropic penalty). In both cases the gradient formula involves a solution of the semi-dual formulation of the optimal transport cost. Our study makes a
connection between the gradient of the WGAN loss function and the Laguerre diagrams associated to semi-discrete transport maps. The learning problem is addressed with an alternating algorithm,

which is in general not convergent. However, in most cases, it stabilizes close to a relevant solution for the generative learning problem. We also show that entropic regularization can improve the
convergence speed but noticeably changes the shape of the learned generative model.




GENERATIVE MODELS
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Random distribution

Generated samples Data from dataset

Goal: optimize 6 such that generated samples match the dataset distribution

Ex: GANs use a discriminator D, and try to solve min max L(Gg, D,)

n
Ex: Diffusion models learn a step-conditioned generator to iteratively generate target distribution



SEEN AS STATISTICAL ESTIMATION

* Data{ } sampled from

* Distribution image ug = go#¢ defined through a generative model
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samples of Z ~ T samples of go(Z) ~ go#

Goal: find an estimate of 6 s.t. ug and v are close

?



OPTIMAL TRANSPORT COST

Find an estimate of 6 s.t. 14 /s close to v for the optimal transport cost
0= mein OT, (ug, V)

using semi-duale formulation

OT, (o, V) = M By [YEC0] + By (V)]

where Y¢(x) = m;'n[c(x, y) — v ()]

with c(x,y) = |x — y|. we have y° = — and we get the formulation from Wassestein GAN

TITLE CITED BY YEAR

. *
Wasserstein gan 16061 2017
M Arjovsky, S Chintala, L Bottou

» How to use OT cost as aloss? General case for any cost? Getrid of the neural network for s?



MINIMIZE OPTIMAL TRANSPORT LOSS

> Goal: minimizew.r.t. 0
W(®) = 0T.(gg#{,v) = quJlx Ez ¢[W°(g0(Z))] + Eyy[W(Y)]
> distribution v is known (data)

» one cansample from uy = go#{ (forward generative model)

‘ Can we compute a stochastic gradient of W(6)?

Proposition (envelop theorem):

Under some regularity conditions of gy and ¢, if Yy is an optimal potential for 8, then

VoW (80) = VoEyz~g | Wi (96,(2))|

Whenever both terms are well-defined




WASSERSTEIN GAN THEOREM 35

WGAN paper uses this to derive a gradient formula

Theorem 3. Let P, be any distribution. Let Py be the distribution of go(Z) with Z
a random variable with density p and gy a function satisfying assumption[1. Then,
there is a solution f: X — R to the problem

(hax Eop, [f(2)] — B f ()]

and we have
vﬂI’V{PﬁPﬂ) _Ezmp(z}[vﬂf(ﬂﬂ{zj}]

when both terms are well-defined.

Proof. See Appendix|[C]

This formula may never hold!

"Whenever both terms are well-defined"



WASSERSTEIN GAN THEOREM 3

Let f € X*(#), which we knows exists since X *() is non-empty for all . Then,
we get

» Fixing f assume that we have fixed 6:

VoW (P,,Pg) = VoV (£,6) Let 8, and let f be in X*(0) ...

= Ve[Eenp, [f()] — Eovpiz) [ fg0(2))]
= vaEsz{z} lf(Qﬁ‘(z”J

under the condition that the first and last terms are well-defined. The rest of the
proof will be dedicated to show that

—VoE.p)[f(90(2))] = —E.rp(z) [V f(g0(2))] (5)

when the right hand side is defined. For the reader who is not interested in such
technicalities, he or she can skip the rest of the proof.

Since f € F, we know that it is 1-Lipschitz. Furthermore, g¢(z) is locally
Lipschitz as a function of (6, z). Therefore, f(ga(2)) is locally Lipschitz on (#, 2)
with constants L(#, z) (the same ones as g). By Radamacher’s Theorem, f(gg(z))
has to be differentiable almost everywhere for (#, z) jointly. Rewriting this, the set

A=1{8,2): fogis not differentiable! has measure 0. By Fubini’s Theorem, this > A depends on f
implies that for almost every @ the section Ay = {z : (#,z) € A} has measure 0.
Let’s now fix a #y such that the measure of Ag, is mull (such as when the right > 00 may therefore be different than 9

hand side of equation (5) is well defined). For this ) we have Vol (galz))]a,
is well-defined for almost any z, and since p(z) has a density, it is defined p(z)-a.e.
By assumption [1] we know that

Ezp(2) [IVof(90(2))0o [I] < Eznpzy[L{fo, 2)] < +00

50 B piz) Vo f(ga(z))o,] is well-defined for almost every #5. Now, we can see

may therefore never be defined at 8...

and since E...,(;)[2L(0y, z)] < +oo by assumption 1, we get by dominated conver
gence that Equation [6 converges to 0 as # — #y so

VoE.piz) [ f(g0(2)] = Ezrop(z) [V f(g0(2))]

for almost every @, and in particular when the right hand side is well defined. Note
that the mere existance of the left hand side (meaning the differentiability a.e. of
E,p(z)[f(g90(2))]) had to be proven, which we just did. O

True but this was needed for this specific 6...




WASSERSTEIN GAN THEOREM 3 FAILING CASE

Proposition 2 of our paper: a counter-example where the formula never holds

ug = Og

c-transformis never differentiable on the edge
of Laguerre’s cells.

By is always on the edge of these cells for Yy,



OUR PROPOSITIONS

On the Gradient Formula for learning Generative Models with
Regularized Optimal Transport Costs

Antoine Houdard, Arthur Leclaire, Nicolas Papadakis, Julien Rabin

E Published: 15 |ul 2023, Last Modified: 15 Jul 2023 '@ Accepted by TMLR & Everyone H‘l‘ tevisions | BibTeX
» Existence conditions and formulation of the gradient in the (Theorems 3 and 4)
» Existence conditions and formulation of the gradient for (Theorem 5)
» Existence conditions and formulation of the gradient for (Theorem 6)

‘ These formulations give a way to learn a generative model with stochastic gradient
descent on the optimal transport cost



CORRESPONDING ALGORITHM

Dataset are always finite: semi-discrete case

In this case, we can approximate an optimal potential with gradient ascent

Algorithm:
Initialize parameters of generative model 6
Iterate:
compute optimal potential i, with gradient ascent
perform a batch step of stochastic gradient descent with formula from theorems

Available soon here: O ahoudard / SDOT



EXAMPLE ON MNIST
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A= 0:070

A = 0.025

v' Semi-discrete case allows to lean generative model without discriminator network

v' proper optimal transport formulation

large accordingly which impact performance

when dataset is large, dual potentialis
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APPLICATION: TEXTURE SYNTHESIS

Wasserstein generative models for patch-based texture synthesis, SSVM 2021
A generative model for texture synthesis based on optimal transport between feature distributions, JMIV 2022

latent distribution ¢ 2

generative model gy /
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TEXTURE SYNTHESIS RESULTS




CONVERGENCE ROBUSTNESS

Evolution of the loss £(uy) according to iterations k

200 300 400
iterations k

Evolution of the loss £(ug) according to iterations k

200 300 400
iterations k

a. Sample  b. Initialization c. Alg. d. Loss




TEXTURE INPAINTING RESULTS




TEXTURE INTERPOLATION RESULTS

Our — Optimaltransport barycenter between patch distributions

Gatys — Gram loss interpolation between VGG features



TEXTURE INTERPOLATION RESULTS

Our — Optimaltransport barycenter between patch distributions

(5
B

SSo

Gatys — Gram loss interpolation between VGG features



All papers available online (HAL or ArXiv) Github ahoudard
Texture synthesis code github.com/ahoudard/GOTEX Twitter @AntoineHou
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