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Vibrating mechanical piece
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Ventcel boundary condition
(G.I.B.C, generalisation of Robin,
higher order).



Introduction

Definitions

We can define the Laplace-Beltrami operator of w ∈ C 2(Γ) by

∆Γw = divΓ[∇Γw ],

where

1 divΓ is the tangential divergence.

2 ∇Γw is the tangential gradient of w given by

∇Γw = ∇w ℓ − (∇w ℓ · n)n,

where w ℓ is a smooth extension of w on Rn and n is a unit normal on Γ.
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The spectral Ventcel problem

The spectral Ventcel problem

Let:

Ω be an open-bounded connected domain of Rn (n=2,3);

Γ = ∂Ω be a smooth boundary.

We consider the following system,{
−∆u = λu in Ω,

−∆Γu + ∂nu + u = 0 on Γ,

where

n is the outer unit normal vector on Γ;

∆Γ Laplace-Beltrami operator.
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The spectral Ventcel problem

Variational form

The variational form of the problem is: to find (λ, u) ∈ R×H1(Ω, Γ) such that,

a(u, v) = λ

∫
Ω

uvdx ,

for all v ∈ H1(Ω, Γ) := {u ∈ H1(Ω), u|Γ ∈ H1(Γ)}, where the bilinear form a is given by,

a(u, v) =

∫
Ω

∇u · ∇vdx +

∫
Γ

∇Γu · ∇Γvdσ +

∫
Γ

uvdσ.

Remark

There exists an increasing sequence (λn)n≥1 of positive eigenvalues, tending to infinite
with finite multiplicities. Their associated eigenfunctions form an orthonormal Hilbert
basis of L2(Ω), denoted (un)n≥1 ∈ H1(Ω, Γ).
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Mesh, FE approx., Lift

Motivation behind curved higher order meshes

Figure: Affine and quadratic meshes of a smooth domain with the same number of mesh
elements.

Not exact meshes !

Error decrease on higher order meshes.
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Mesh, FE approx., Lift

The discrete variational form

We define the finite element space,

Vh = {χ ∈ C 0(Ωh), χ|T = χ̂ ◦ (F (r)
T )−1; χ̂ ∈ Pk(T̂ ), ∀ T ∈ T (1)

h }.

The approximation problem: find (Λ,U) ∈ R× Vh such that,

ah(U,V ) = Λ

∫
Ωh

UVdx , ∀ V ∈ Vh,

where ah is the following bilinear form, defined on Vh × Vh,

ah(U,V ) :=

∫
Ωh

∇U · ∇Vdx +

∫
Γh

∇ΓhU · ∇ΓhVdσh +

∫
Γh

UVdσh.
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Mesh, FE approx., Lift

Lift motivation

G
(r)
h−→

uh : Ωh → R =⇒ uℓ
h : Ω → R.

Advantages:

redefining a function on another domain;

intervenes in the error estimation.
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Mesh, FE approx., Lift

Lift references throughout the years

The idea of lifting a function from the discrete domain onto the continuous one,

is not new;

dates back to the 1970’s;

most notably: Nedelec2, Scott3, Lenoir4, Bernardi5.

Surface lifts;

were firstly introduced in 1988 by Dziuk 6;

discussed in more details and applications by Demlow in 2009 in his recent works 7.

Recently, Elliott and Ranner discussed a simpler way to define a lift, in their work:
Finite element analysis for a coupled bulk-surface partial differential equation, IMA J.
Numer. Anal. (2013).

2J.-C. Nedelec, Curved finite element methods for the solution of singular integral equations on surfaces in
R3, CMAME (1976).

3L. R. Scott, Interpolated boundary conditions in the finite element method, SINUM (1975).
4M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved

boundaries, SINUM (1986).
5C. Bernardi, Optimal finite-element interpolation on curved domains, SINUM (1989).
6G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, in Partial differential equations

and calculus of variations, (1988).
7A. Demlow, Higher-order finite element methods and pointwise error estimates for elliptic646 problems on

surfaces, SINUM (2009)

J. Ghantous (UPPA/LMAP) Numerical analysis of the spectral Ventcel problem CANUM 13 / 27



Mesh, FE approx., Lift

Lift references throughout the years

The idea of lifting a function from the discrete domain onto the continuous one,

is not new;

dates back to the 1970’s;

most notably: Nedelec2, Scott3, Lenoir4, Bernardi5.

Surface lifts;

were firstly introduced in 1988 by Dziuk 6;

discussed in more details and applications by Demlow in 2009 in his recent works 7.

Recently, Elliott and Ranner discussed a simpler way to define a lift, in their work:
Finite element analysis for a coupled bulk-surface partial differential equation, IMA J.
Numer. Anal. (2013).

2J.-C. Nedelec, Curved finite element methods for the solution of singular integral equations on surfaces in
R3, CMAME (1976).

3L. R. Scott, Interpolated boundary conditions in the finite element method, SINUM (1975).
4M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved

boundaries, SINUM (1986).
5C. Bernardi, Optimal finite-element interpolation on curved domains, SINUM (1989).
6G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, in Partial differential equations

and calculus of variations, (1988).
7A. Demlow, Higher-order finite element methods and pointwise error estimates for elliptic646 problems on

surfaces, SINUM (2009)

J. Ghantous (UPPA/LMAP) Numerical analysis of the spectral Ventcel problem CANUM 13 / 27



Mesh, FE approx., Lift

Lift references throughout the years

The idea of lifting a function from the discrete domain onto the continuous one,

is not new;

dates back to the 1970’s;

most notably: Nedelec2, Scott3, Lenoir4, Bernardi5.

Surface lifts;

were firstly introduced in 1988 by Dziuk 6;

discussed in more details and applications by Demlow in 2009 in his recent works 7.

Recently, Elliott and Ranner discussed a simpler way to define a lift, in their work:
Finite element analysis for a coupled bulk-surface partial differential equation, IMA J.
Numer. Anal. (2013).

2J.-C. Nedelec, Curved finite element methods for the solution of singular integral equations on surfaces in
R3, CMAME (1976).

3L. R. Scott, Interpolated boundary conditions in the finite element method, SINUM (1975).
4M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved

boundaries, SINUM (1986).
5C. Bernardi, Optimal finite-element interpolation on curved domains, SINUM (1989).
6G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, in Partial differential equations

and calculus of variations, (1988).
7A. Demlow, Higher-order finite element methods and pointwise error estimates for elliptic646 problems on

surfaces, SINUM (2009)

J. Ghantous (UPPA/LMAP) Numerical analysis of the spectral Ventcel problem CANUM 13 / 27



Mesh, FE approx., Lift

Modified Lift transformation

For r = 2 :

T (2)

•

•

••

• •

Γ

G
(r)
h =F

(e)

T (r) ◦ (F
(r)
T )−1

= Id + ρT (r)
8

Γ

T (e)

•

•

••

• •

F
(r)
T F

(e)

T (r)

T̂

•

• •

•

•

•

8F. Caubet, J. Ghantous, C. Pierre, A priori error estimates of a diffusion equation with Ventcel boundary
conditions on curved meshes, (accepted in SIAM J. Num. Anal.).
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Mesh, FE approx., Lift

Lift operator

Definition

Let uh ∈ L2(Ωh, Γh). We define the lift associated to uh, denoted uℓ
h ∈ L2(Ω, Γ), by,

uℓ
h ◦ G

(r)
h = uh.

Remark

The restriction to Γh = ∂Ωh of the new transformation is equal to the orthogonal
projection b:

G
(r)
h |Γh

= b : Γh → Γ.

Remark

Note that,

Tr( uℓ
h ) = (Tr(uh) )

ℓ.

Lift ⇝ Error estimation (Main result)
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Main result

Eigenvalue error9

Theorem

Let

λ be an exact eigenvalue of multiplicity N such that,

λ = λj ∀ j ∈ {i , ..., i + N − 1};

Λj be a discrete eigenvalue.

Then, for any j ∈ {i , ..., i + N − 1}, there exists cλ > 0 such that,

|λj − Λj | ≤ cλ(h
2k + hr+1),

where

h is the mesh size;

k is the degree of the Lagrangien Finite element space;

r is the geometrical order of the mesh.

9F. Caubet, J. Ghantous, C. Pierre, Finite element analysis of a spectral problem on curved meshes
occurring in diffusion with high order boundary conditions (submitted).

J. Ghantous (UPPA/LMAP) Numerical analysis of the spectral Ventcel problem CANUM 17 / 27



Main result

Eigenfunctions errors10

Theorem

Let

{uj}i+N−1
j=i be the exact eigenfunctions associated to λ;

E ℓ be the lifted discrete eigenfunction space associated to Λj that approximate λ;

U be the orthogonal projection of uj over E
ℓ.

Then, for any j ∈ {i , ..., i + N − 1}, there exists cλ > 0 such that,

inf
U∈Eℓ

∥uj − U ∥L2(Ω) ≤ cλ(h
k+1 + hr+1/2), inf

U∈Eℓ
∥uj − U∥H1(Ω,Γ) ≤ cλ(h

k + hr+1/2),

where

h is the mesh size;

k is the degree of the Lagrangien Finite element space;

r is the geometrical order of the mesh.

10F. Caubet, J. Ghantous, C. Pierre, Finite element analysis of a spectral problem on curved meshes
occurring in diffusion with high order boundary conditions (submitted).
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Numerical exp.
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Numerical exp.

CUMIN

Curved Meshes In Numerical simulations 11 is a finite element library
including:

finite elements of high order,

curved geometries: meshes of high geometrical order,

solvers for diffusion and linear elasticity PDEs,

coupling with linear system solvers and eigenvalue problem solvers.

11https://plmlab.math.cnrs.fr/cpierre1/cumin.
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Numerical exp.

Eigenvalue estimations on a smooth domain

Consider the following system,{
−∆u = 0 in Ω,

−∆Γu + ∂nu + u = λu on Γ.

We do not know the exact eigenvalues of this system on the flower domain. A
convergence analysis is performed on the 6th eigenvalue λ6 computed on a reference
cubic mesh.

Figure: Numerical eigenfunction U6 on affine and quadratic meshes.

The reference mesh of order r = 3 using a P4 FEM counts 20× 25 boundary edges and is
made of approximately 77 000 cubic triangles, the associated P4 finite element space has
approximately 610 000 DOF.
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Numerical exp.

Eigenvalue estimations

A convergence analysis is performed on the 6th eigenvalue λ6.
The error |λ6 − Λ6| computed are computed on a series of succesively refined meshes:
each mesh counts 20× 2n−1 edges on the domain boundary, for n = 1 . . . 5.

|λ6 − Λ6|
Mesh type P1 P2 P3 P4

Affine (r=1) 1.99 2.004 2.003 2.001
Quadratic (r=2) 2.002 4.003 4.07 3.99
Cubic (r=3) 2.00 3.05 4.07 3.99

Table: Convergence order of |λ6 − Λ6|

The convergence order of |λ6 − Λ6| is equal to min{2k, r + 1}.
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Numerical exp.

Numerical results in 3d on quadratic meshes

Consider the following system on the unit ball;{
−∆u = 0 in B(0, 1),

−β∆Γu + ∂nu = λu on S(0, 1).

A convergence analysis is performed on the 10th eigenvalue λ10 of multiplicity 7 with
corresponding eigenspace E3, which is equal to the space of harmonic polynomials of
degree 3.
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A quadratic mesh (r=2)
of the unit Ball.

The convergence rate of
eλ10 = |λ10 − Λ10| = min{2k, r + 1}.



Numerical exp.

Numerical results in 3d on quadratic meshes

Figure: Display of the convergence rate of eH1
0
(resp. eL2 ) using P2 and P3 finite element on an

quadratic mesh on the left (resp. right).

CV rate of eH1
0
= inf{∥∇(Uℓ

10 − u)∥L2(Ω), u ∈ E3} = min{k, r + 1/2}.

CV rate of eL2 = inf{∥Uℓ
10−u∥L2(Ω), u ∈ E3} = min{k + 1, r + 1/2} <= min{k + 1, r + 1}.
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Conclusion

Perspectives

Ongoing work:

Do an a priori error estimation of the Elasticity model theoretically and numerically,{
−div(Ae(u)) = f in Ω,

−divΓ(AΓeΓ(u)) + u + Ae(u)n = g on Γ,

Optimisation of the eigenvalues of the spectral problem under Volume Constraint.

Long term:

Optimisation of the Eigenvalues of an Elasticity model under Volume constraint,{
−div(Ae(u)) = λu in Ω,

−divΓ(AΓeΓ(u)) + u + Ae(u)n = 0 on Γ,
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Conclusion

Thank you for your attention
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