Numerical analysis of a spectral problem equation with Ventcel boundary conditions on curved meshes

Joyce Ghantous supervised by Fabien Caubet and Charles Pierre

Université de Pau et des Pays de l'Adour - LMAP.

46th National Congress on Numerical Analysis - 30 Mai 2024

Section 1

1 Introduction

- 2 The spectral Ventcel problem
- Ourved meshes, finite element approximation and lift definition

4 Main result

5 Numerical examples

6 Conclusion

Motivation

Vibrating mechanical piece

 \implies Shape optimisation

Introductio

Motivation

¹V. Bonnaillie-Noel, D. Brancherie, M. Dambrine, F. Herau, S. Tordeux, and G. Vial, *Multiscale expansion and numerical approximation for surface defects.* ESAIM (2011).

Introductio

Motivation

¹V. Bonnaillie-Noel, D. Brancherie, M. Dambrine, F. Herau, S. Tordeux, and G. Vial, *Multiscale expansion and numerical approximation for surface defects.* ESAIM (2011).

Introductio

Motivation

(G.I.B.C, generalisation of Robin, higher order).

¹V. Bonnaillie-Noel, D. Brancherie, M. Dambrine, F. Herau, S. Tordeux, and G. Vial, *Multiscale expansion and numerical approximation for surface defects.* ESAIM (2011).

Definitions

We can define the Laplace-Beltrami operator of $w \in C^2(\Gamma)$ by

$$\Delta_{\Gamma} w = \operatorname{div}_{\Gamma} [\nabla_{\Gamma} w],$$

where

- $\operatorname{div}_{\Gamma}$ is the tangential divergence.
- **2** $\nabla_{\Gamma} w$ is the tangential gradient of w given by

$$\nabla_{\Gamma} w = \nabla w^{\ell} - (\nabla w^{\ell} \cdot \mathbf{n})\mathbf{n},$$

where w^{ℓ} is a smooth extension of w on \mathbb{R}^n and \mathbf{n} is a unit normal on Γ .

Section 2

1 Introduction

- 2 The spectral Ventcel problem
- Ourved meshes, finite element approximation and lift definition
- 4 Main result
- 5 Numerical examples

The spectral Ventcel problem

Let:

- Ω be an open-bounded connected domain of \mathbb{R}^n (n=2,3);
- $\Gamma=\partial\Omega$ be a smooth boundary.

We consider the following system,

$$\begin{cases} -\Delta u = \lambda u & \text{in } \Omega, \\ -\Delta_{\Gamma} u + \partial_n u + u = 0 & \text{on } \Gamma, \end{cases}$$

where

- \mathbf{n} is the outer unit normal vector on Γ ;
- Δ_{Γ} Laplace-Beltrami operator.

Variational form

The variational form of the problem is: to find $(\lambda, u) \in \mathbb{R} \times H^1(\Omega, \Gamma)$ such that,

$$a(u,v) = \lambda \int_{\Omega} uv dx,$$

for all $v \in \mathrm{H}^1(\Omega, \Gamma) := \{ u \in \mathrm{H}^1(\Omega), \ u_{|_{\Gamma}} \in \mathrm{H}^1(\Gamma) \}$, where the bilinear form *a* is given by,

$$a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v dx + \int_{\Gamma} \nabla_{\Gamma} u \cdot \nabla_{\Gamma} v d\sigma + \int_{\Gamma} u v d\sigma$$

Variational form

The variational form of the problem is: to find $(\lambda, u) \in \mathbb{R} \times H^1(\Omega, \Gamma)$ such that,

$$a(u,v) = \lambda \int_{\Omega} uv dx,$$

for all $v \in \mathrm{H}^1(\Omega, \Gamma) := \{ u \in \mathrm{H}^1(\Omega), \ u_{|_{\Gamma}} \in \mathrm{H}^1(\Gamma) \}$, where the bilinear form *a* is given by,

$$a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v dx + \int_{\Gamma} \nabla_{\Gamma} u \cdot \nabla_{\Gamma} v d\sigma + \int_{\Gamma} u v d\sigma$$

Remark

There exists an increasing sequence $(\lambda_n)_{n\geq 1}$ of positive eigenvalues, tending to infinite with finite multiplicities. Their associated eigenfunctions form an orthonormal Hilbert basis of $L^2(\Omega)$, denoted $(u_n)_{n\geq 1} \in H^1(\Omega, \Gamma)$.

Section 3

Introduction

- 2 The spectral Ventcel problem
- Ourved meshes, finite element approximation and lift definition
- 4 Main result
- 5 Numerical examples

Motivation behind curved higher order meshes

Figure: Affine and quadratic meshes of a smooth domain with the same number of mesh elements.

- Not exact meshes !
- Error decrease on higher order meshes.

The discrete variational form

We define the finite element space,

$$\mathbb{V}_h = \{ \chi \in C^0(\Omega_h), \ \chi|_{\mathcal{T}} = \hat{\chi} \circ (\mathcal{F}_{\mathcal{T}}^{(r)})^{-1}; \ \hat{\chi} \in \mathbb{P}^k(\hat{\mathcal{T}}), \ \forall \ \mathcal{T} \in \mathcal{T}_h^{(1)} \}.$$

The approximation problem: find $(\Lambda, U) \in \mathbb{R} \times \mathbb{V}_h$ such that,

$$a_h(U,V) = \Lambda \int_{\Omega_h} UV \mathrm{d} x, \quad \forall \ V \in \mathbb{V}_h,$$

where a_h is the following bilinear form, defined on $\mathbb{V}_h \times \mathbb{V}_h$,

$$a_h(U,V) := \int_{\Omega_h} \nabla U \cdot \nabla V \mathrm{d}x + \int_{\Gamma_h} \nabla_{\Gamma_h} U \cdot \nabla_{\Gamma_h} V \mathrm{d}\sigma_h + \int_{\Gamma_h} U V \mathrm{d}\sigma_h$$

Lift motivation

Advantages:

- redefining a function on another domain;
- intervenes in the error estimation.

Lift references throughout the years

The idea of lifting a function from the discrete domain onto the continuous one,

- is not new;
- dates back to the 1970's;
- most notably: Nedelec², Scott³, Lenoir⁴, Bernardi⁵.

³L. R. Scott, Interpolated boundary conditions in the finite element method, SINUM (1975).

⁴M. Lenoir, *Optimal isoparametric finite elements and error estimates for domains involving curved boundaries*, SINUM (1986).

⁵C. Bernardi, Optimal finite-element interpolation on curved domains, SINUM (1989).

⁶G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, in Partial differential equations and calculus of variations, (1988).

⁷A. Demlow, *Higher-order finite element methods and pointwise error estimates for elliptic646 problems on surfaces,* SINUM (2009)

²J.-C. Nedelec, *Curved finite element methods for the solution of singular integral equations on surfaces in R3*, CMAME (1976).

Lift references throughout the years

The idea of lifting a function from the discrete domain onto the continuous one,

- is not new;
- dates back to the 1970's;
- most notably: Nedelec², Scott³, Lenoir⁴, Bernardi⁵.

Surface lifts;

- were firstly introduced in 1988 by Dziuk ⁶;
- discussed in more details and applications by Demlow in 2009 in his recent works ⁷.

³L. R. Scott, Interpolated boundary conditions in the finite element method, SINUM (1975).

13 / 27

²J.-C. Nedelec, *Curved finite element methods for the solution of singular integral equations on surfaces in R3*, CMAME (1976).

⁴M. Lenoir, *Optimal isoparametric finite elements and error estimates for domains involving curved boundaries*, SINUM (1986).

⁵C. Bernardi, Optimal finite-element interpolation on curved domains, SINUM (1989).

⁶G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, in Partial differential equations and calculus of variations, (1988).

⁷A. Demlow, *Higher-order finite element methods and pointwise error estimates for elliptic646 problems on surfaces,* SINUM (2009)

Lift references throughout the years

The idea of lifting a function from the discrete domain onto the continuous one,

- is not new;
- dates back to the 1970's;
- most notably: Nedelec², Scott³, Lenoir⁴, Bernardi⁵.

Surface lifts;

- were firstly introduced in 1988 by Dziuk ⁶;
- discussed in more details and applications by Demlow in 2009 in his recent works ⁷.

Recently, **Elliott and Ranner** discussed a simpler way to define a lift, in their work: *Finite element analysis for a coupled bulk-surface partial differential equation,* IMA J. Numer. Anal. (2013).

³L. R. Scott, Interpolated boundary conditions in the finite element method, SINUM (1975).

⁴M. Lenoir, *Optimal isoparametric finite elements and error estimates for domains involving curved boundaries*, SINUM (1986).

⁵C. Bernardi, Optimal finite-element interpolation on curved domains, SINUM (1989).

⁶G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, in Partial differential equations and calculus of variations, (1988).

⁷A. Demlow, *Higher-order finite element methods and pointwise error estimates for elliptic646 problems on surfaces,* SINUM (2009)

 $^{^{2}}$ J.-C. Nedelec, Curved finite element methods for the solution of singular integral equations on surfaces in R3, CMAME (1976).

Modified Lift transformation

For r = 2:

⁸F. Caubet, J. Ghantous, C. Pierre, *A priori error estimates of a diffusion equation with Ventcel boundary conditions on curved meshes*, (accepted in SIAM J. Num. Anal.).

Lift operator

Definition

Let $u_h \in L^2(\Omega_h, \Gamma_h)$. We define the lift associated to u_h , denoted $u_h^\ell \in L^2(\Omega, \Gamma)$, by,

$$u_h^\ell \circ G_h^{(r)} = u_h.$$

Lift operator

Definition

Let $u_h \in L^2(\Omega_h, \Gamma_h)$. We define the lift associated to u_h , denoted $u_h^\ell \in L^2(\Omega, \Gamma)$, by,

$$u_h^\ell \circ G_h^{(r)} = u_h.$$

Remark

The restriction to $\Gamma_h = \partial \Omega_h$ of the new transformation is equal to the orthogonal projection b:

$$G_h^{(r)}|_{\Gamma_h} = b : \Gamma_h \to \Gamma.$$

Lift operator

Definition

Let $u_h \in L^2(\Omega_h, \Gamma_h)$. We define the lift associated to u_h , denoted $u_h^\ell \in L^2(\Omega, \Gamma)$, by,

$$u_h^\ell \circ {\pmb G}_h^{(r)} = u_h.$$

Remark

The restriction to $\Gamma_h = \partial \Omega_h$ of the new transformation is equal to the orthogonal projection b:

$$G_h^{(r)}|_{\Gamma_h} = b: \Gamma_h \to \Gamma.$$

Remark

Note that,

$$Tr(u_h^{\ell}) = (Tr(u_h))^{\ell}.$$

Lift ~>> Error estimation (Main result)

	UPPA	/LMAP
--	------	-------

Section 6

1 Introduction

- 2 The spectral Ventcel problem
- Ourved meshes, finite element approximation and lift definition

4 Main result

5 Numerical examples

6 Conclusion

Eigenvalue error⁹

Theorem

Let

• λ be an exact eigenvalue of multiplicity N such that,

$$\lambda = \lambda_j \quad \forall j \in \{i, ..., i + N - 1\};$$

• Λ_j be a discrete eigenvalue.

Then, for any $j \in \{i, ..., i + N - 1\}$, there exists $c_{\lambda} > 0$ such that,

$$|\lambda_j - \Lambda_j| \leq c_\lambda (h^{2k} + h^{r+1}),$$

where

- h is the mesh size;
- k is the degree of the Lagrangien Finite element space;
- r is the geometrical order of the mesh.

⁹F. Caubet, J. Ghantous, C. Pierre, *Finite element analysis of a spectral problem on curved meshes occurring in diffusion with high order boundary conditions* (submitted).

Eigenfunctions errors¹⁰

Theorem

Let

- $\{u_j\}_{j=i}^{i+N-1}$ be the exact eigenfunctions associated to λ ;
- E^{ℓ} be the lifted discrete eigenfunction space associated to Λ_j that approximate λ_j ;
- U be the orthogonal projection of u_j over E^{ℓ} .

Then, for any $j \in \{i, ..., i + N - 1\}$, there exists $c_{\lambda} > 0$ such that,

$$\inf_{U\in E^{\ell}}\|u_j-U\|_{\mathrm{L}^2(\Omega)}\leq \mathsf{c}_{\lambda}(h^{k+1}+h^{r+1/2}),\qquad \inf_{U\in E^{\ell}}\|u_j-U\|_{\mathrm{H}^1(\Omega,\Gamma)}\leq \mathsf{c}_{\lambda}(h^k+h^{r+1/2}),$$

where

- h is the mesh size;
- k is the degree of the Lagrangien Finite element space;
- r is the geometrical order of the mesh.

¹⁰F. Caubet, J. Ghantous, C. Pierre, *Finite element analysis of a spectral problem on curved meshes occurring in diffusion with high order boundary conditions* (submitted).

Section 7

1 Introduction

- 2 The spectral Ventcel problem
- Ourved meshes, finite element approximation and lift definition

4 Main result

5 Numerical examples

6 Conclusion

CUMIN

Curved Meshes In Numerical simulations¹¹ is a finite element library including:

- finite elements of high order,
- curved geometries: meshes of high geometrical order,
- solvers for diffusion and linear elasticity PDEs,
- coupling with linear system solvers and eigenvalue problem solvers.

¹¹https://plmlab.math.cnrs.fr/cpierre1/cumin.

Eigenvalue estimations on a smooth domain

Consider the following system,

$$\begin{cases} -\Delta u = 0 & \text{in } \Omega, \\ -\Delta_{\Gamma} u + \partial_n u + u = \lambda u & \text{on } \Gamma. \end{cases}$$

We do not know the exact eigenvalues of this system on the flower domain. A convergence analysis is performed on the 6^{th} eigenvalue λ_6 computed on a reference cubic mesh.

Figure: Numerical eigenfunction U_6 on affine and quadratic meshes.

Eigenvalue estimations on a smooth domain

Consider the following system,

$$\begin{cases} -\Delta u = 0 & \text{in } \Omega, \\ -\Delta_{\Gamma} u + \partial_n u + u = \lambda u & \text{on } \Gamma. \end{cases}$$

We do not know the exact eigenvalues of this system on the flower domain. A convergence analysis is performed on the $6^{\rm th}$ eigenvalue λ_6 computed on a reference cubic mesh.

Figure: Numerical eigenfunction U_6 on affine and quadratic meshes.

The reference mesh of order r = 3 using a \mathbb{P}^4 FEM counts 20×2^5 boundary edges and is made of approximately 77 000 cubic triangles, the associated \mathbb{P}^4 finite element space has approximately 610 000 DOF.

J. Ghantous (UPPA/LMAP

Eigenvalue estimations

A convergence analysis is performed on the 6^{th} eigenvalue λ_6 .

The error $|\lambda_6 - \Lambda_6|$ computed are computed on a series of succesively refined meshes: each mesh counts $20 \times 2^{n-1}$ edges on the domain boundary, for n = 1...5.

	$ \lambda_6 - \Lambda_6 $			
Mesh type	\mathbb{P}^1	\mathbb{P}^2	\mathbb{P}^3	\mathbb{P}^4
Affine (r=1)	1.99	2.004	2.003	2.001
Quadratic (r=2)	2.002	4.003	4.07	3.99
Cubic (r=3)	2.00	3.05	4.07	3.99

Table: Convergence order of $|\lambda_6 - \Lambda_6|$

The convergence order of $|\lambda_6 - \Lambda_6|$ is equal to $\min\{2k, r+1\}$.

Numerical results in 3d on quadratic meshes

Consider the following system on the unit ball;

$$\begin{cases} -\Delta u = 0 & \text{in } B(0,1), \\ -\beta \Delta_{\Gamma} u + \partial_{n} u = \lambda u & \text{on } S(0,1). \end{cases}$$

A convergence analysis is performed on the $10^{\rm th}$ eigenvalue λ_{10} of multiplicity 7 with corresponding eigenspace E_3 , which is equal to the space of harmonic polynomials of degree 3.

Numerical results in 3d on quadratic meshes

Figure: Display of the convergence rate of $e_{H_0^1}$ (resp. e_{L^2}) using \mathbb{P}^2 and \mathbb{P}^3 finite element on an quadratic mesh on the left (resp. right).

CV rate of
$$e_{\mathrm{H}^1_0} = \inf\{\|\nabla(U_{10}^\ell - u)\|_{\mathrm{L}^2(\Omega)}, u \in \mathrm{E}_3\} = \min\{k, r+1/2\}.$$

CV rate of $e_{L^2} = \inf\{\|U_{10}^{\ell} - u\|_{L^2(\Omega)}, u \in E_3\} = \min\{k+1, r+1/2\} <= \min\{k+1, r+1\}.$

Section 8

1 Introduction

- 2 The spectral Ventcel problem
- Ourved meshes, finite element approximation and lift definition

4 Main result

5 Numerical examples

6 Conclusion

Perspectives

Ongoing work:

• Do an a priori error estimation of the Elasticity model theoretically and numerically,

$$\begin{cases} -\operatorname{div}(Ae(u)) = f & \text{in } \Omega, \\ -\operatorname{div}_{\Gamma}(A_{\Gamma}e_{\Gamma}(u)) + u + Ae(u)\mathbf{n} = g & \text{on } \Gamma, \end{cases}$$

• Optimisation of the eigenvalues of the spectral problem under Volume Constraint. Long term:

• Optimisation of the Eigenvalues of an Elasticity model under Volume constraint,

$$\begin{cases} -\operatorname{div}(Ae(u)) = \lambda u & \text{in } \Omega, \\ -\operatorname{div}_{\Gamma}(A_{\Gamma}e_{\Gamma}(u)) + u + Ae(u)\mathbf{n} = 0 & \text{on } \Gamma, \end{cases}$$

Thank you for your attention