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Introduction

The Landau-Lifshitz equation

orm + m X (Am — J(m)) =0,
describes an Hamiltonian dynamics for the magnetization

m = (m1,mo,m3) : RY xR — S2.

in a ferromagnetic material (Landau and Lifshitz [35]). In this
equation, the diagonal matrix

7+X1 O 0
0O 0 j+ A3

gives account of the anisotropy of the material.



In dimension N = 1, the Landau-Lifshitz equation is integrable
by means of the inverse scattering method (Sklyanin [79]) :

- this equation owns a form of universality (see e.g. Faddeev
and Takhtajan [87]) in the sense that it contains other integrable
equations in suitable asymptotic regimes.

- its long-time dynamics is governed by the propagation of a
train of solitons plus a dispersive part.



I. Asymptotic models in higher dimensions

Deriving well-known nonlinear dispersive models from the Lan-
dau-Lifshitz equation remains possible in any higher dimensions.
A typical example is given by the Sine-Gordon regime.

This regime describes the dynamics of a biaxial material in an
uniaxial regime with strong planar anisotropy. The numbers \q
and A3 are given by

1
A1 =oce and A3 = —,
E

where € > 0 is a small parameter and o > 0 is a fixed constant.



Its derivation relies on an hydrodynamical formulation. When
the map m = m1+wmo does not vanish, it may be lifted as

m=1/1— m% (sin(gb) + z'cos(qb)).

The hydrodynamical variables

(¢, u = m3),

satisfy the hydrodynamical Landau-Lifshitz equation

o = —div(;7% ) + (“'V“z')g ~ul VI +u( Az — Arsin2(9)),
Oru = div((1 — u2)v¢) — 7(1 — u?)sin(2¢).



The long-wave change of variables

S (1) = qb(%,t) and U.(z,t) = éu(%t)

leads to the system

OU: = div((l - aQUg)vq%) — (1 — £2U2) sin(2.).

(HLLe)
When ¢ — 0O, the limit function & satisfies the Sine-Gordon equa-
tion

pd — AD + %sin(QCD) = 0. (SG)



Theorem (de Laire and G. [17]). Let k> N/2 and 0 <e < 1.
Consider an initial datum (®q,Upy) such that the quantity

ko = ||[V®ol| gr+3 + €l VUo|| gr+3 + || Sin(Po) || ge+3 + [|Uo | 775+3,

satisfies the condition Ce kg < 1 for a positive number C'. There
exists a number
1
27
C“O

such that the corresponding solutions (., U:) to (HLL:), and
(®,U) to (SG), satisfy

T. >

| sin(Pe(-,t) =P, 1)) 2 + [[VPe(:,t) — V(- 1) || et
FUCot) = U )| i < C 2 kg (1 + kg)3 eCAtr0)*
for any 0 <t <'7T¢.

(see also Shatah and Zeng [06], Chiron [14], Germain and Rous-
set [16], and de Laire and G. [21])



II. Stability of solitons for the Landau-Lifshitz equation
with an easy-plane anisotropy

1. Link with the Gross-Pitaevskii equation

For A1 =0 and A3 =1, the Landau-Lifshitz equation with an
easy-plane anisotropy writes as

orm + m X (Am — m3e3> = 0,
with e3 = (0,0,1).

When the map m :=m1 + im is lifted as m = /1 — m3¢e'¥, the
variables v := mg and w := V¢ solve the hydrodynamical system

(O = —div((l — fvz)w>,

Av v| V|2 ) (HLL)

\



This system is very similar to the one corresponding to the
Gross-Pitaevskii equation
W + AW 4+ W (1 — |W]?) =0,

given for a function W : RY x R — C.

When this function is indeed lifted as WV = \/ﬁew, the vari-

ables n:=1 — p and v := —Vy solve the hydrodynamical Gross-
Pitaevskii equation

om = —2div((1 — n)v),

_ 2 A [Vl
o = _v(” — ol ey - 4(1—77)2>'




2. Travelling-wave solutions

Travelling waves are special solutions of the form

m(x,t) = me(xy —ct,...,xN).

Their profile m. is solution to the nonlinear elliptic equation

Ame + <|Vmc|2 —- [mc]%)mc — [me¢]z ez + eme X 01me = 0.

In dimension N =1, (non-constant) travelling waves are called
dark solitons. For any speed |c¢| < 1, there exists a unique soliton
(up to the geometric invariances), whose expression is explicit.



When ¢ # 0, the soliton m,. can be identified in the hydrody-
namical formulation with the pair

A train of solitons is then defined as a perturbation of a sum of
solitons

N
Scas(T) 1= Z S ch(a: - aj)a
J=1

for parameters a € RV, ¢ € (—1,1)" and s € {£1}¥.



3. Asymptotic stability of well-prepared trains of solitons

Theorem (Bahri [18]). Let sg € {£1} and ¢g € (=1, 1)V with

[co]l1 < <0< - < [eoln.
There exist two numbers o > 0 and Ly« > 0, such that, if an
initial datum vy = (vg,wg) € HY(R) x L?(R) satisfies

— QQ < O,

||UO o SC07a0750HH1 XL2

for positions ag € RY such that

min _ — 7 T
1<k<N-1 <[a0]k-|—1 [ao]k) 0 > Lx,



then there exist positions aj € Cl(R+,R), with a;(0) = [aplk,
and speeds o € (—1,1), with o, # 0, and,

a;{(t) — O,
00

such that the unique solution v of (HLL) with initial datum vg
satisfies

@)

o +ar(®).t) | = [solgvoy, in HY(R) x L?(R),

for all 1 < k < N.

(See also Martel, Merle and Tsai [02], Bethuel, G. and Smets
[14, 14], G. and Smets [15], de Laire and G. [15], Bahri [16]).



4. In higher dimensions

In dimensions N = 2 and N = 3, Papanicolaou and Spathis [99]
numerically exhibited a branch of travelling waves with speeds
c|] < 1.

Lin and Wei [10] proved the existence of small speed travelling
waves in dimension N = 2.

There are much more theoretical results concerning the exis-
tence and orbital stability of branches of travelling waves for the
Gross-Pitaevskii equation.

(See e.g. Jones, Putterman and Roberts [82, 86], Bethuel, G.
and Saut [09], Maris [13], Chiron and Pacherie [21, 23, 23], ...).



In order to improve the dynamical description of the Landau-
Lifshitz equation, it is interesting to investigate numerically :

- the existence of multiple branches of travelling waves in R2 or
in R3 (in the spirit of Chiron and Scheid [16, 18]),

- the dynamical interactions between travelling waves in R2 or
in R3 (in the spirit of the description of the vortex motion for
the Gross-Pitaevskii equation).



Thank you very much !



