About the dynamics of the Landau-Lifshitz equation

Philippe Gravejat
CY Cergy Paris University

Joint work with André de Laire (University of Lille), and by Yakine Bahri (British Columbia Investment).

Introduction

The Landau-Lifshitz equation

$$
\partial_{t} m+m \times(\Delta m-J(m))=0
$$

describes an Hamiltonian dynamics for the magnetization

$$
m=\left(m_{1}, m_{2}, m_{3}\right): \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{S}^{2}
$$

in a ferromagnetic material (Landau and Lifshitz [35]). In this equation, the diagonal matrix

$$
J=\left(\begin{array}{ccc}
j+\lambda_{1} & 0 & 0 \\
0 & j & 0 \\
0 & 0 & j+\lambda_{3}
\end{array}\right)
$$

gives account of the anisotropy of the material.

In dimension $N=1$, the Landau-Lifshitz equation is integrable by means of the inverse scattering method (Sklyanin [79]) :

- this equation owns a form of universality (see e.g. Faddeev and Takhtajan [87]) in the sense that it contains other integrable equations in suitable asymptotic regimes.
- its long-time dynamics is governed by the propagation of a train of solitons plus a dispersive part.

I. Asymptotic models in higher dimensions

Deriving well-known nonlinear dispersive models from the Lan-dau-Lifshitz equation remains possible in any higher dimensions. A typical example is given by the Sine-Gordon regime.

This regime describes the dynamics of a biaxial material in an uniaxial regime with strong planar anisotropy. The numbers λ_{1} and λ_{3} are given by

$$
\lambda_{1}=\sigma \varepsilon \quad \text { and } \quad \lambda_{3}=\frac{1}{\varepsilon}
$$

where $\varepsilon>0$ is a small parameter and $\sigma>0$ is a fixed constant.

Its derivation relies on an hydrodynamical formulation. When the map $\check{m}=m_{1}+i m_{2}$ does not vanish, it may be lifted as

$$
\check{m}=\sqrt{1-m_{3}^{2}}(\sin (\phi)+i \cos (\phi))
$$

The hydrodynamical variables

$$
\left(\phi, u=m_{3}\right)
$$

satisfy the hydrodynamical Landau-Lifshitz equation

$$
\left\{\begin{array}{l}
\partial_{t} \phi=-\operatorname{div}\left(\frac{\nabla u}{1-u^{2}}\right)+\frac{u|\nabla u|^{2}}{\left(1-u^{2}\right)^{2}}-u|\nabla \phi|^{2}+u\left(\lambda_{3}-\lambda_{1} \sin ^{2}(\phi)\right) \\
\partial_{t} u=\operatorname{div}\left(\left(1-u^{2}\right) \nabla \phi\right)-\frac{\lambda_{1}}{2}\left(1-u^{2}\right) \sin (2 \phi)
\end{array}\right.
$$

The long-wave change of variables

$$
\Phi_{\varepsilon}(x, t)=\phi\left(\frac{x}{\sqrt{\varepsilon}}, t\right) \text { and } U_{\varepsilon}(x, t)=\frac{1}{\varepsilon} u\left(\frac{x}{\sqrt{\varepsilon}}, t\right)
$$

leads to the system

$$
\left\{\begin{aligned}
& \partial_{t} \Phi_{\varepsilon}=U_{\varepsilon}\left(1-\varepsilon^{2}\left(\sigma \sin ^{2}\left(\Phi_{\varepsilon}\right)+\left|\nabla \Phi_{\varepsilon}\right|^{2}\right)\right) \\
& \quad-\operatorname{div}\left(\frac{\varepsilon^{2} \nabla U_{\varepsilon}}{1-\varepsilon^{2} U_{\varepsilon}^{2}}\right)+\frac{\varepsilon^{4} U_{\varepsilon}\left|\nabla U_{\varepsilon}\right|^{2}}{\left(1-\varepsilon^{2} U_{\varepsilon}^{2}\right)^{2}} \\
& \partial_{t} U_{\varepsilon}=\operatorname{div}\left(\left(1-\varepsilon^{2} U_{\varepsilon}^{2}\right) \nabla \Phi_{\varepsilon}\right)-\frac{\sigma}{2}\left(1-\varepsilon^{2} U_{\varepsilon}^{2}\right) \sin \left(2 \Phi_{\varepsilon}\right) .
\end{aligned}\right.
$$

($H L_{\varepsilon}$)
When $\varepsilon \rightarrow 0$, the limit function Φ satisfies the Sine-Gordon equation

$$
\begin{equation*}
\partial_{t t} \Phi-\Delta \Phi+\frac{\sigma}{2} \sin (2 \Phi)=0 \tag{SG}
\end{equation*}
$$

Theorem (de Laire and G. [17]). Let $k>N / 2$ and $0<\varepsilon<1$. Consider an initial datum $\left(\Phi_{0}, U_{0}\right)$ such that the quantity

$$
\kappa_{0}=\left\|\nabla \Phi_{0}\right\|_{H^{k+3}}+\varepsilon\left\|\nabla U_{0}\right\|_{H^{k+3}}+\left\|\sin \left(\Phi_{0}\right)\right\|_{H^{k+3}}+\left\|U_{0}\right\|_{H^{k+3}}
$$

satisfies the condition $C \varepsilon \kappa_{0} \leq 1$ for a positive number C. There exists a number

$$
T_{\varepsilon} \geq \frac{1}{C \kappa_{0}^{2}}
$$

such that the corresponding solutions $\left(\Phi_{\varepsilon}, U_{\varepsilon}\right)$ to $\left(H L L_{\varepsilon}\right)$, and (Φ, U) to (SG), satisfy

$$
\begin{aligned}
\| \sin \left(\Phi_{\varepsilon}(\cdot, t)\right. & -\Phi(\cdot, t))\left\|_{L^{2}}+\right\| \nabla \Phi_{\varepsilon}(\cdot, t)-\nabla \Phi(\cdot, t) \|_{H^{k-1}} \\
& +\left\|U_{\varepsilon}(\cdot, t)-U(\cdot, t)\right\|_{H^{k}} \leq C \varepsilon^{2} \kappa_{0}\left(1+\kappa_{0}\right)^{3} e^{C\left(1+\kappa_{0}\right)^{2} t}
\end{aligned}
$$

for any $0 \leq t \leq T_{\varepsilon}$.
(see also Shatah and Zeng [06], Chiron [14], Germain and Rousset [16], and de Laire and G. [21])

II. Stability of solitons for the Landau-Lifshitz equation with an easy-plane anisotropy

1. Link with the Gross-Pitaevskii equation

For $\lambda_{1}=0$ and $\lambda_{3}=1$, the Landau-Lifshitz equation with an easy-plane anisotropy writes as

$$
\partial_{t} m+m \times\left(\Delta m-m_{3} e_{3}\right)=0
$$

with $e_{3}=(0,0,1)$.
When the map $\check{m}:=m_{1}+i m_{2}$ is lifted as $\check{m}=\sqrt{1-m_{3}^{2}} e^{i \varphi}$, the variables $v:=m_{3}$ and $w:=\nabla \varphi$ solve the hydrodynamical system

$$
\left\{\begin{array}{l}
\partial_{t} v=-\operatorname{div}\left(\left(1-v^{2}\right) w\right) \tag{HLL}\\
\partial_{t} w=-\nabla\left(v-v|w|^{2}-\frac{\Delta v}{1-v^{2}}-\frac{v|\nabla v|^{2}}{\left(1-v^{2}\right)^{2}}\right)
\end{array}\right.
$$

This system is very similar to the one corresponding to the Gross-Pitaevskii equation

$$
i \partial_{t} \Psi+\Delta \Psi+\Psi\left(1-|\Psi|^{2}\right)=0
$$

given for a function $\Psi: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{C}$.

When this function is indeed lifted as $\psi:=\sqrt{\rho} e^{i \varphi}$, the variables $\eta:=1-\rho$ and $v:=-\nabla \varphi$ solve the hydrodynamical GrossPitaevskii equation

$$
\left\{\begin{array}{l}
\partial_{t} \eta=-2 \operatorname{div}((1-\eta) v) \\
\partial_{t} v=-\nabla\left(\eta-|v|^{2}-\frac{\Delta \eta}{2(1-\eta)}-\frac{|\nabla \eta|^{2}}{4(1-\eta)^{2}}\right)
\end{array}\right.
$$

2. Travelling-wave solutions

Travelling waves are special solutions of the form

$$
m(x, t)=m_{c}\left(x_{1}-c t, \ldots, x_{N}\right)
$$

Their profile m_{c} is solution to the nonlinear elliptic equation

$$
\Delta m_{c}+\left(\left|\nabla m_{c}\right|^{2}+\left[m_{c}\right]_{3}^{2}\right) m_{c}-\left[m_{c}\right]_{3} e_{3}+c m_{c} \times \partial_{1} m_{c}=0
$$

In dimension $N=1$, (non-constant) travelling waves are called dark solitons. For any speed $|c|<1$, there exists a unique soliton (up to the geometric invariances), whose expression is explicit.

When $c \neq 0$, the soliton m_{c} can be identified in the hydrodynamical formulation with the pair

$$
\mathfrak{v}_{c}(x):=\left(v_{c}(x)=\frac{\sqrt{1-c^{2}}}{\cosh \left(\sqrt{1-c^{2}} x\right)}, w_{c}(x)=\frac{c v_{c}(x)}{1-v_{c}(x)^{2}}\right)
$$

A train of solitons is then defined as a perturbation of a sum of solitons

$$
S_{\mathfrak{c}, \mathfrak{a}, \mathfrak{s}}(x):=\sum_{j=1}^{N} s_{j} \mathfrak{v}_{c_{j}}\left(x-a_{j}\right)
$$

for parameters $\mathfrak{a} \in \mathbb{R}^{N}, \mathfrak{c} \in(-1,1)^{N}$ and $\mathfrak{s} \in\{ \pm 1\}^{N}$.
3. Asymptotic stability of well-prepared trains of solitons

Theorem (Bahri [18]). Let $\mathfrak{s}_{0} \in\{ \pm 1\}^{N}$ and $\mathfrak{c}_{0} \in(-1,1)^{N}$ with

$$
\left[c_{0}\right]_{1}<\cdots<0<\cdots<\left[c_{0}\right]_{N}
$$

There exist two numbers $\alpha_{*}>0$ and $L_{*}>0$, such that, if an initial datum $\mathfrak{v}_{0}=\left(v_{0}, w_{0}\right) \in H^{1}(\mathbb{R}) \times L^{2}(\mathbb{R})$ satisfies

$$
\left\|\mathfrak{v}_{0}-S_{\mathfrak{c}_{0}, \mathfrak{a}_{0}, \mathfrak{s}_{0}}\right\|_{H^{1} \times L^{2}}=\alpha_{0}<\alpha_{*},
$$

for positions $\mathfrak{a}_{0} \in \mathbb{R}^{N}$ such that

$$
\min _{1 \leq k \leq N-1}\left(\left[a_{0}\right]_{k+1}-\left[a_{0}\right]_{k}\right)=L_{0}>L_{*}
$$

then there exist positions $a_{k} \in \mathcal{C}^{1}\left(\mathbb{R}_{+}, \mathbb{R}\right)$, with $a_{k}(0)=\left[a_{0}\right]_{k}$, and speeds $\sigma_{k} \in(-1,1)$, with $\sigma_{k} \neq 0$, and,

$$
a_{k}^{\prime}(t) \underset{t \rightarrow+\infty}{\rightarrow} \sigma_{k}
$$

such that the unique solution \mathfrak{v} of (HLL) with initial datum \mathfrak{v}_{0} satisfies

$$
\mathfrak{v}\left(\cdot+a_{k}(t), t\right) \underset{t \rightarrow+\infty}{\rightharpoonup}\left[s_{0}\right]_{k} \mathfrak{v}_{\sigma_{k}} \quad \text { in } H^{1}(\mathbb{R}) \times L^{2}(\mathbb{R})
$$

for all $1 \leq k \leq N$.
(See also Martel, Merle and Tsai [02], Bethuel, G. and Smets [14, 14], G. and Smets [15], de Laire and G. [15], Bahri [16]).
4. In higher dimensions

In dimensions $N=2$ and $N=3$, Papanicolaou and Spathis [99] numerically exhibited a branch of travelling waves with speeds $|c|<1$.

Lin and Wei [10] proved the existence of small speed travelling waves in dimension $N=2$.

There are much more theoretical results concerning the existence and orbital stability of branches of travelling waves for the Gross-Pitaevskii equation.
(See e.g. Jones, Putterman and Roberts [82, 86], Bethuel, G. and Saut [09], Maris [13], Chiron and Pacherie [21, 23, 23], ...).

In order to improve the dynamical description of the LandauLifshitz equation, it is interesting to investigate numerically :

- the existence of multiple branches of travelling waves in \mathbb{R}^{2} or in \mathbb{R}^{3} (in the spirit of Chiron and Scheid $[16,18]$),
- the dynamical interactions between travelling waves in \mathbb{R}^{2} or in \mathbb{R}^{3} (in the spirit of the description of the vortex motion for the Gross-Pitaevskii equation).

Thank you very much !

