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Introduction

The Landau-Lifshitz equation

∂tm+m×
(
∆m− J(m)

)
= 0,

describes an Hamiltonian dynamics for the magnetization

m = (m1,m2,m3) : RN × R → S2,

in a ferromagnetic material (Landau and Lifshitz [35]). In this
equation, the diagonal matrix

J =

j + λ1 0 0
0 j 0
0 0 j + λ3

 ,

gives account of the anisotropy of the material.



In dimension N = 1, the Landau-Lifshitz equation is integrable
by means of the inverse scattering method (Sklyanin [79]) :

- this equation owns a form of universality (see e.g. Faddeev
and Takhtajan [87]) in the sense that it contains other integrable
equations in suitable asymptotic regimes.

- its long-time dynamics is governed by the propagation of a
train of solitons plus a dispersive part.



I. Asymptotic models in higher dimensions

Deriving well-known nonlinear dispersive models from the Lan-
dau-Lifshitz equation remains possible in any higher dimensions.
A typical example is given by the Sine-Gordon regime.

This regime describes the dynamics of a biaxial material in an
uniaxial regime with strong planar anisotropy. The numbers λ1
and λ3 are given by

λ1 = σε and λ3 =
1

ε
,

where ε > 0 is a small parameter and σ > 0 is a fixed constant.



Its derivation relies on an hydrodynamical formulation. When
the map m̌ = m1+im2 does not vanish, it may be lifted as

m̌ =
√
1−m2

3

(
sin(ϕ) + i cos(ϕ)

)
.

The hydrodynamical variables

(ϕ, u = m3),

satisfy the hydrodynamical Landau-Lifshitz equation∂tϕ = −div
(

∇u
1−u2

)
+ u|∇u|2

(1−u2)2
− u|∇ϕ|2 + u

(
λ3 − λ1 sin

2(ϕ)
)
,

∂tu = div((1− u2)∇ϕ)− λ1
2 (1− u2) sin(2ϕ).



The long-wave change of variables

Φε(x, t) = ϕ

(
x
√
ε
, t

)
and Uε(x, t) =

1

ε
u

(
x
√
ε
, t

)
,

leads to the system
∂tΦε = Uε

(
1− ε2

(
σ sin2(Φε) + |∇Φε|2

))
−div

(
ε2∇Uε
1−ε2U2

ε

)
+ ε4Uε|∇Uε|2

(1−ε2U2
ε )2

,

∂tUε = div
(
(1− ε2U2

ε )∇Φε

)
− σ

2(1− ε2U2
ε ) sin(2Φε).

(HLLε)
When ε → 0, the limit function Φ satisfies the Sine-Gordon equa-
tion

∂ttΦ−∆Φ+
σ

2
sin(2Φ) = 0. (SG)



Theorem (de Laire and G. [17]). Let k > N/2 and 0 < ε < 1.
Consider an initial datum (Φ0, U0) such that the quantity

κ0 = ∥∇Φ0∥Hk+3 + ε∥∇U0∥Hk+3 + ∥ sin(Φ0)∥Hk+3 + ∥U0∥Hk+3,

satisfies the condition C εκ0 ≤ 1 for a positive number C. There
exists a number

Tε ≥
1

Cκ20
,

such that the corresponding solutions (Φε, Uε) to (HLLε), and
(Φ, U) to (SG), satisfy

∥ sin(Φε(·, t)−Φ(·, t))∥L2 + ∥∇Φε(·, t)−∇Φ(·, t)∥Hk−1

+∥Uε(·, t)− U(·, t)∥Hk ≤ C ε2 κ0(1 + κ0)
3 eC(1+κ0)

2 t,

for any 0 ≤ t ≤ Tε.

(see also Shatah and Zeng [06], Chiron [14], Germain and Rous-
set [16], and de Laire and G. [21])



II. Stability of solitons for the Landau-Lifshitz equation
with an easy-plane anisotropy

1. Link with the Gross-Pitaevskii equation

For λ1 = 0 and λ3 = 1, the Landau-Lifshitz equation with an
easy-plane anisotropy writes as

∂tm+m×
(
∆m−m3e3

)
= 0,

with e3 = (0,0,1).

When the map m̌ := m1 + im2 is lifted as m̌ =
√
1−m2

3 e
iφ, the

variables v := m3 and w := ∇φ solve the hydrodynamical system
∂tv = −div

(
(1− v2)w

)
,

∂tw = −∇
(
v − v|w|2 −

∆v

1− v2
−

v|∇v|2

(1− v2)2

)
.

(HLL)



This system is very similar to the one corresponding to the
Gross-Pitaevskii equation

i∂tΨ+∆Ψ+Ψ(1− |Ψ|2) = 0,

given for a function Ψ : RN × R → C.

When this function is indeed lifted as Ψ :=
√
ρ eiφ, the vari-

ables η := 1− ρ and v := −∇φ solve the hydrodynamical Gross-
Pitaevskii equation

∂tη = −2div
(
(1− η)v

)
,

∂tv = −∇
(
η − |v|2 − ∆η

2(1−η) −
|∇η|2

4(1−η)2

)
.



2. Travelling-wave solutions

Travelling waves are special solutions of the form

m(x, t) = mc(x1 − c t, . . . , xN).

Their profile mc is solution to the nonlinear elliptic equation

∆mc +
(
|∇mc|2 + [mc]

2
3

)
mc − [mc]3 e3 + cmc × ∂1mc = 0.

In dimension N = 1, (non-constant) travelling waves are called
dark solitons. For any speed |c| < 1, there exists a unique soliton
(up to the geometric invariances), whose expression is explicit.



When c ̸= 0, the soliton mc can be identified in the hydrody-
namical formulation with the pair

vc(x) :=
(
vc(x) =

√
1− c2

cosh
(√

1− c2x
), wc(x) =

c vc(x)

1− vc(x)2

)
.

A train of solitons is then defined as a perturbation of a sum of
solitons

Sc,a,s(x) :=
N∑

j=1

sj vcj(x− aj),

for parameters a ∈ RN , c ∈ (−1,1)N and s ∈ {±1}N .



3. Asymptotic stability of well-prepared trains of solitons

Theorem (Bahri [18]). Let s0 ∈ {±1}N and c0 ∈ (−1,1)N with

[c0]1 < · · · < 0 < · · · < [c0]N .

There exist two numbers α∗ > 0 and L∗ > 0, such that, if an
initial datum v0 = (v0, w0) ∈ H1(R)× L2(R) satisfies∥∥∥v0 − Sc0,a0,s0

∥∥∥
H1×L2 = α0 < α∗,

for positions a0 ∈ RN such that

min
1≤k≤N−1

(
[a0]k+1 − [a0]k

)
= L0 > L∗,



then there exist positions ak ∈ C1(R+,R), with ak(0) = [a0]k,
and speeds σk ∈ (−1,1), with σk ̸= 0, and,

a′k(t) →
t→+∞

σk,

such that the unique solution v of (HLL) with initial datum v0
satisfies

v(·+ ak(t), t) ⇀
t→+∞

[s0]k vσk in H1(R)× L2(R),

for all 1 ≤ k ≤ N .

(See also Martel, Merle and Tsai [02], Bethuel, G. and Smets
[14, 14], G. and Smets [15], de Laire and G. [15], Bahri [16]).



4. In higher dimensions

In dimensions N = 2 and N = 3, Papanicolaou and Spathis [99]
numerically exhibited a branch of travelling waves with speeds
|c| < 1.

Lin and Wei [10] proved the existence of small speed travelling
waves in dimension N = 2.

There are much more theoretical results concerning the exis-
tence and orbital stability of branches of travelling waves for the
Gross-Pitaevskii equation.

(See e.g. Jones, Putterman and Roberts [82, 86], Bethuel, G.
and Saut [09], Maris [13], Chiron and Pacherie [21, 23, 23], ...).



In order to improve the dynamical description of the Landau-
Lifshitz equation, it is interesting to investigate numerically :

- the existence of multiple branches of travelling waves in R2 or
in R3 (in the spirit of Chiron and Scheid [16, 18]),

- the dynamical interactions between travelling waves in R2 or
in R3 (in the spirit of the description of the vortex motion for
the Gross-Pitaevskii equation).



Thank you very much !


