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Incompressible Navier-Stokes system

Owv+v-Vv—vAv=—-Vp, inR, xRY
divv =0,

V|t:0 = .

Unknowns: velocity v(t,x) € RY, and pressure p(t,x) € R.
Viscosity v > 0.

Scaling invariance: for A > 0, ()\v()\zt Ax), A2p(\t, Ax)).
ij=1 0i0; A~ Lvivh).
Fundamental results: Leray (Weak global solution if

vo € L?(R9), uniqueness when d = 2) and Fujita-Kato
(Unique strong local solution if vy € H%_l, global solution for
small data).

Pressure and velocity: p = — Z
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Presentation of the model

@ Geophysical fluids: Rotation of the Earth, vertical
stratification of the density.

@ Scales, Rossby and Froude numbers.
e Small parameters Ro = ¢, Fr = ¢F (F > 0)

Primitive system

o Us(t,x) = (ve, 0c) = (v}, v2,2,0c),
o Velocity: v.(t,x), (t,x) € Ry x R3,

o Scalar potential temperature: 6.(t, x),

o Geopotential: ¢.(t, x).
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Primitive system

Primitive system

OeUs + ve - VU: — LU- + L AU. = L(-V9,,0),
divv. =0, (PE.)
U&“tZO = U07g.

0 -1 0 0
def def| 1 0 0 0

LU. = (vAv.,V'DG.), A= 0 o0 0 -1
0 0 —F1 o
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Rotating fluids system

Rotating fluids system

Otve + ve - Vv — VAV, + e3/\vg = *%Vpsv
divv. =0, (RFe)

VS‘t:O = Vo

Frédéric Charve Hidden asymptotics for the weak solutions of the strongly stratifi



Introduction, presentation of the model and results
Previous results
Aim of our approach

Remarks

@ The terms AU: et (V®,,0) are said to be penalized and lead
the asymptotics together with the divergence-free condition.

o A skewsymmetric, energy methods easily adapted to obtain
Leray and Fujita-Kato results in the spaces (s € R,
T €]0, 0]):

Es = C([0, T], H) N L3([0, T], H5*Y),

def .
= 170 e + min(e, ) 117

L%_ Hs+1°

I£11%,
s

Homogeneous Sobolev space HS(R3) endowed with the norm

113 = (Jrs [€IF(OI2dE) "

Frédéric Charve Hidden asymptotics for the weak solutions of the strongly stratifi



Introduction, presentation of the model and results

Previous results
Aim of our approach

Study of the asymptotics when ¢ — 0

Procedure

@ The penalized terms impose a limit system and a special
structure/decomposition linked with it,

@ Notion of "well-/ill-prepared” initial data,
@ Globally well-posed limit system (strong solutions),

@ Better results for the lifespan of strong solutions (for strong
enough rotation /stratification i.-e. ¢ — 0),

o Convergence rates.
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First approach: well-prepared initial data

e J.-L. Lions, R. Temam, S. Wang ('92, '94),

e T. Beale, A. Bourgeois ('94),

e P. Embid, A. Majda ('96, '98),

e E. Grenier ('97)

e B. Desjardins, E. Grenier ('98),

o |. Gallagher ('98),

e A. Babin, A. Mahalov, B. Nicolaenko ('96, '99, '01).
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Dispersive approach: ill-prepared initial data for (RF.)

@ J.-Y. Chemin, B. Desjardins, |. Gallagher, and E. Grenier ('00,
'02, '02 (Ekman),’06),

A. Dutrifoy ('05),

V.-S. Ngo (v — 0) ('09),

M. Hieber, Y. Shibata ('10),

T. lwabuchi, R. Takada ('15, '13, '14),
@ Y. Koh, S. Lee, R. Takada (Littman) ('14)
o FC ('23)

see also:
o |. Gallagher, L. Saint Raymond ('06, '06),
o |. Gallagher ('08)
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Dispersive approach: ill-prepared initial data for (PE.)

e A. Dutrifoy ('04),
FC ('05, '04, '06, '08, '16, '18, '18, '20, '23),
FC, V.-S. Ngo ('11),
H. Koba, A. Mahalov, T. Yoneda (v =/, '12),
T. Iwabuchi, A. Mahalov, R. Takada (v =/, '17),
S. Scrobogna (T3, '18),
Special case: F=1, v ~ 1/
e J.-Y. Chemin ('97, v = v),
e D. Iftimie (F=1, v =1¢' =0) ('99)
e FC (18, general case)
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Asymptotics for the Rotating fluids

Limit system: 2D-NS with 3 components (Global strong solutions)

Otlip + Up - Vpip — VAR = =V pp,
Otz + Op - Vpiz — vApiz = 0,

(2D — NS)
div pia, = 0,

ﬁ‘tzo = Uup.

Asymptotics (Chemin, Desjardins, Gallagher, Grenier, 2002)

® Vi = vo(x) + do(xn).
@ Direct study of v. — o — W,, where W, solves

OW. — VAW, + 1P(e3 A W) =0,
We =0 = wo.
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Asymptotics for the Rotating fluids

e Taylor-Proudman (Physical) theorem which states for strong
rotation a column structure (that is a limit velocity
independant of x3).

@ We have to consider special initial data to reach such limit (for
classical initial data vy € L2(R3) or H2(R3), the limit is zero)
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Asymptotics for the Primitive system

Limit system: Quasi-geostrophic system

(QG)

8:Q0c + Voc.VQoe — Mo =0,
Ugc = (Vac,0qc) = (—82,01,0,—Fd3) A Qqq,

Special structure: from the potential vorticity:

Q(U) & 912 — ovt — Fose,

we define the quasi-geostrophic and oscillating/oscillatory parts of
a 4-components function U:
— 0
Uge & d(l) AFQU), and Upee & U~ Ugs. (1)
—F03
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Asymptotics for the Primitive system

@ Global strong solutions for the limit system (no stretching)
° Us\t:O = UO,S,QG + UO,E,osc-
@ Direct study of U, — UQG — W, where W. solves

OWe — LW, + IPAW, = -GP — G/,
WE\t:O = UO,E,osc

Frequency truncation when v # /.
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Strongly stratified Boussinesq model without rotation

Strongly stratified Boussinesq model without rotation

OeUs + ve - VU: — LU: + 1BU. = L(-V9,,0),

E3
divv. =0, (S:)
U€|t:0 = UO,E-
00 0 O
def def | 0O 0O 0 O
LU. = (vAv., V' D0.), BE 00 o0 1
00 -1 0
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Weak and strong solutions

For any fixed € > 0

Theorem (J. Leray, 1933)

If Upe € L?(R3), then there exists a Leray solution
U € L2(Ry, L2(R3)) N L2(Ry, HY(R?)) (+energy).

No uniqueness (d = 3).

Theorem (H. Fujita and T. Kato, 1963,

If Upc € H%(R3), then there exists a unique maximal lifespan
T > 0 and a unique solution U, € CTH%(R3) N LzTHg(R3)) for
all T < T7.

+ blow-up criteria and weak-strong uniqueness.
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Link with the classical Boussinesq system

Our system is related to:

The classical Boussinesq system

Oiv +v-Vv —vAv + k’pes = —VP,

Otp+v-Vp—1v'»Ap=0, (2)
div v = 0.
— — - 2
Explicit stationary solution (V;, P:): P.( POE — K2 P0,eX3 + 252

B 82,‘{2
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Change of variable, solutions near (V., P.): (V., P.) solves (2) if,
and only if, (Ue, ®.) solves (S;), where we have denoted:

Velx) = ( ;8 ) - < ,ag<x:§(i)es<z> ) ’

ER

ve(x - 1
000 = () P = P + 2ot
Put differently, aside from its own geophysical interest, studying

(S5:) provides solutions for the Boussinesq system (2) near the
explicit vertically stratified solution (V;, P.).
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Previous results, inviscid case v =1/ =0

e K. Widmayer (CMS 2018): if U: is a regular bounded
solution, it converges to (ii(x),0,0) where 7 : Ry x R3 — R2
solves (P, orthogonal projector onto horizontal divergence free
vectorfields):

Ord+ - Vi = —Vpp,
div po = 0, (3)
Oje—0 = (P2Uo)",

e R. Takada (ARMA 2019): Existence result and convergence
rate: 1
HU€ - (E7 07 O)HL‘;_Wl,oo < Cea.
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@ S. Lee, R. Takada (IUMJ 2017): (v =1/)
Let s €]3, 2]. There exists 61,8, > 0 such that for any initial
data Up such that PoUp € H>, and

UO,osc déf (/d — PQ)U() c HS with:

_ Ll 1
HUO,oscHHs < 516 2(s 2), and H]P)QUOHH% < (52,

. , . . ;1
there exists a unique global mild solution U. € L4(W?23).

if | P2 UOHH% is sufficiently small, there exists a global solution for
small enough . J
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@ S. Scrobogna (DCDS 2020): Let Up € H%(R3) with
Ups =Pl € H'(R3). There exists 9 > 0 such that for any

: . . t1
€ < gg, there exists a unique global solution U, € E2.
Moreover, U. converges to (v/,0,0), where v/ is the unique
global solution of the two-component Navier-Stokes system:

OV + V. Vvl — AV = VRO,
div ,vh = 0, (4)
V‘IZ:O - IP>2 UOa
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Extensions and questions

Question: why does the previous limit not depend on v/ ?

Before answering this question, let us precisely see how is obtained
the limit system. J
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the limit system

Formal approach for the limit: rewriting the pressure

Taking the divergence of the velocity part of (S;) we can separate
the geopotential into ®, % P1 + ePY, where:

{P§ = ~A71030, )

PSZ_Z/,J 180A (Vévé),

leading to the following rewriting:

(0:v2 +v. - Vvl —vAVr = —9,P% — %81.’31
OV2 4+ ve - VV2 —vAVZE = —0,P — %32/351,
OV3 4+ ve - VV2 —vAVS = —03P% — %(63P51 +6.), (6)
0:0. + v, - VO, — V' AD, ivg,
div v, =0.
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Formal approach for the limit

Formal approach for the limit: dealing with the penalized
terms

Assuming that (v., 0., P%, P1) " (v, 9~, ISO, 51) in a sufficiently
e—

strong way (for derivatives and nonlinear terms...) we first obtain:

83/31 s 0. P! and 0 = —8351 only depend on x3,

nP=0,P =0, {~
B =0.
B0 v

- (7)
Additionnally, PO = — 3% | A=19;0;(v'¥/) and defining
vh EF(71,72), we have:

. ~p def ~ ~
div v E vt + V2 =
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Formal approach for the limit

Formal approach for the limit: How to obtain the limit

If we ask in addition that:

19 pl X _1 1 >

i81!’3E H—S{? 15(63PE+05) 3{7 (8)
1
—582135 (;)) Y, gvg ;)) T,
we end up with the following limit system:

(O + V" Vvt — VAV = —01 PO + X,
V2 + V. V2 — AV = —9,PO 4 Y,
0 = —93P° + Z, (9)
0 — V628 _7
div hV = U
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Formal approach for the limit

Formal approach for the limit: How to get rid of
parameters 7

Using once more the divergence-free (and 2d-divergence-free)
conditions and the vorticity, we obtain that:

8124—82\74-632:0.
MY — X =0,

wich formally leads to (we recall that Z = d5P°):

(X,Y) = —V,020, PO
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Formal approach for the limit

Writing the limit system

Gathering the previous informations, the formal limit is written as:

Avh +vh .V vh —vAV" = -V, 70,
div ,v" = 0,
where 70 = A;lAﬁo = — Z%j:l Aglaiaj(gigj) and
3t§— V/a§§: %,

where V3 =0, = —9;P, Z = 95P°, 51,5, T only depending on
(t,X3).
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Writing the limit system

Limit system

o We will consider the case T = 0 and initial data according to:
Ueje=o(x) = Uoe(x) +(0,0,0, Oo.(x3)).

e Vorticity formulation: if & = w(V) = 91v2 — 02v! we rewrite
the velocity part as follows:

O + VM- Vi — vAG = 0,
vh=viagte.
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Formal approach for the limit

Writing the limit system

The vorticity formulation suggests the following structure:

Stratified /Oscillating decomposition

If fis a R*valued function, its vorticity is defined by:
w(f) = 012 — Do fL.

From this we define (denoting div ,f" ©f onft + Daf?):

VD, w(f)
fs = ]P)2f = 0 ,and
0
Vil tdiv fh
fosc = —fs = (Iy — Pp)f = £3

f4
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of global weak solutions

Statement of the results
Results for the Boussinesq system

Aim of our study

Aim: Prove that for the following initial data
U8|t:0(x) = UO,E,S(X) + UO,z—:,osc(X) +

with (F1 = (f1, ?)):

Uoe,s(x) — (% (x),0,0),
e—0

0o.-(x3) = fo(x3),

the solutions become global and converge (as ¢ — 0) towards
those of the following system:
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obal weak solutions

ol
Statement of the results .
Results for the Boussinesq system

Aim of our study

8ch +vh. thh —vAVh = —vh%o,
div ,v" =0, (10)
f‘7|’;:o =
and ~ ~
0 — V920 = 0,
GV Ry = (11)
g‘t:O = 90.
Remarks:

@ to simplify, we assume in this talk that 5075(X3) = 50()(3) and
Uoe,s(x) = (v,0,0).

e (11) is globally well-posed when 6 € le(R) (for any s € R).

o (10) is globally well-posed when v € Hz1% (R2-valued) with
div v = 0 (for § > 0).
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Statement of the results .
Results for the Boussinesq system

Existence of global weak solutions

Theorem (Leray solutions, FC 2023):

~ 1
Let 6o € B, £ (R) and for all £ > 0, let Up. € L?(R3)
(divergence:free). Then for all € > 0, System (S;) admits a global
weak solution U. € EO(R3)3 x (E°(R3) + Bf%(R)) corresponding
to the following initial data:

0
0
Uoe(x1,x2,x3) + 0

Oo(x3)

Moreover, there exists C = CV ' Bo such that
”UEHEO(Ra)_;_B*%(R) < C([[Uoellz +1)
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Statement of the results
Results for the Boussinesq system

Convergence

Theorem (Convergence, FC 2023):

~ .1
Forany 6 >0, Co > 1, let o € B, 7(R), 7 € HZ™(R3) with
div v = 0 and, for all € > 0, let Up. € L2(R3) (divergence-free),

with:
1% <G,
2,1

supeo [|Uoell2 < Co,

Then U converges in the following sense: if we define

D. & U. — (v",0,6), then:

D. — 0in L3 L7  for any q €]2,6][.
e—0

loc?
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Statement of the results .
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Convergence

e For all g €]2,6], there exist e; = e1(v, v/, q) > 0, kg > 0 and,
for all t > 0, a constant Dy = Dt 5.,/ q.c, such that for all
e €]0,e1]:

HDE,-OSCHLqu = [|(fa — PQ)DEHLqu < Dyes,

@ When v = 1/, the previous estimates can be upgraded into the
following global-in-time estimates: there exists a constant
C = G50, > 0 such that, for any € > 0,

ol

coscllvt ey o = (g —Po)Dell-s .. - . < Ceis.
1De0scllzs gp magg, = N0 = P2)Dellg o 7z < CeT

Frédéric Charve Hidden asymptotics for the weak solutions of the strongly stratifi



Existe of global weak solutions

Conv e

Statement of the results P .
Results for the Boussinesq system

The previous theorems can be rewritten as asymptotics results for
the classical Boussinesq system as follows:

Theorem: Global weak solutions for Boussinesq

With the previous assumptions, for any € > 0, there exists a weak
global solution V. = (v, p;) to the Boussinesq system
corresponding to the following initial data:

’ : B0 + Glose ()
V5|t=0 = 0 I 0 + VO,osc,s(X)
X ) 0 ,osc,s(X)
PO, — ﬁ 02(:23) : eK2
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Results for the Boussinesq system

Moreover, we have an asymptotic expansion of the solution
V. = (vz, pc) when & goes to zero: there exists a four-component
function D. such that for any g €]2, 6],

1Pz (.19, @3 3 0> and
DI(t,x) + V"(t, x)
Vg(t,X) = D3(t X)
( )+ 1.'X3)+g) (t X)

which means that:
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Ideas of the proofs: rewriting the limit system

Setting U = (v",0,6),

Final recast of the limit system:

~ ~ ~ ~ - = pl
&U+U-VU—LU+§BU:—G—(V()“”)—;(VO )

divv =0,
U|t:0 = (Vga 0, 00)
v
where
81%0 0102A71A; 50
=~ 02%0 (9202A 1A qo ~h ~h
_p _ h ~h.
G 0 C0sA14, v'-Vv
0 0
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Ideas of the proofs: what system to study 7

The cIassiczzII ;cheoremNS are not fitted for such initial data and
putting D. = U. — U, we are reduced to study:

What system to study ?

,

-
0:D. — LD. + 1BD. = G — O‘k >

D.-Vvh
—|D.- VD, + 0 +vh. VD, (12)
D3 . 050
div V. =0,

D6| t=0 — UO,s,osc .
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Ideas of the proofs

@ Products of the form a(x) x b(x3) (+Friedrichs'scheme).

@ We first study the convergence of D; os.

@ D, is bounded, extraction and weak limit D.

@ As D osc — 0 and DE’S‘t:O =0, the weak limit D satisfies :
Vh

D —vAD=-P,|D-VD+D-V| 0 |+v"-v,D|,

5|t=0 = 07

which implies D=0,
e Convergence upgrade.
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Convergence of the oscillating part, general v, 2/

e Frequency truncation of D, osc on
Cr.r. = {6 € R3[| <R and [€4] > 1}, for
(re, R:) = (5’”,5*’\/’).

@ Strichartz estimates.
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Thank you for your attention !

email: frederic.charve@u-pec.fr
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Convergence of the oscillating part, general v, 2/

The third part is dealt thanks to Strichartz estimates. Consider:

{atf - ( - %]P)B)f = Fexta

(13)
f\t:O = fo.

If v £/, for all m, M > 0 with 3M + m < 1, there exists €1 > 0
such that for all ¢ < 1 for all { € C,_ g., the matrix

—

B(,e)=L— %IP)B is diagonalizable and its eigenvalues satisfy:

)\1(57£) = 07

/\2(€7£) = _V"’g’zy

Na(e,€) = —LBEIERP + i — ieD(e, €), ()
/\4(€7£) = )‘3(576)7
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Strichartz estimates, general v,/

Foranyd €R, r>2,g>1and p €1, 1%] there exists a
constant C,,/  » > 0 such that for any ¢ E]b,sl] (where

1
e1 = (V2/|lv — v/|)-C"m ) and any f solving (13) with
div fo = div Fexr = 0 and w(fy) = w(Fext) = 0, then for k = 3,4,

DI, o, Fllzess

11_2
< Cowipr g <||77r5,R5f0||ng + \|7>,E,REFext||LIB§,q) .

(15

v
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Strichartz estimates, v = v/

ForanydeR, r>2,¢g>1,0€[0,1] and p € [1,0(%%)], there

exists a constant C = C, , ¢ such that for any f solving (13) for
initial data fy and external force Fg,: both with zero divergence
and vorticity (that in the kernel of P3), then

Coro
Ddf~' <L
1101 Flzzey, < =50

6 2
*(1”)( . . )
e 0 (16l + I Foclan)

where01:d+%—§—2+%( — 2y,
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For 0 < o < R, and 8 > 0, let us define, for any x € R,

ax
fo(x) = ———,
(x2 + a?)2
and —
IR (o) % / o dx (16)
P 0 1+ o(fa(x) = B)?
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Proposition (FC, 2023)

2
V3¢

There exists a constant Cy > 0 such that for any o > 0, R >

R" .
sup Ioﬁﬁ(a) < Co— min(1,0~
BERL a2

IS
N

(17)

Moreover, the exponent —1 is optimal in the sense that there exist
co, 00 > 0 such that for any R > ya and o > og,

INT
Q
NIw

sup lRﬂ( ) > coo
BER

.
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