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Framework
Collaboration with the SHOM (Service Hydrographique et
Océanographie de la Marine).

Tolosa : Open source simulation platform for free-surface models,
applications in coastal and large-scale oceanography (Shallow
Water, multilayer SW and dispersive models).

Contributors :
. R. Baraille, M. Ciavaldini, F. Couderc, P. Noble, J.P. Vila -

Toulouse
. B. Fabrèges, K. Msheik - Lyon
. F. Marche - Montpellier
. M. Kazakova, Y. C. Hung - Chambéry
. G.L. Richard - Grenoble
. V. Duchêne - Rennes
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On dispersive models
λ0

b

Free surface Euler equations

∇.v = 0 ,
∂v
∂t

+ (v.∇) v = −∇P .

v = v(x, z , t) ∈ Rd+1 × R+.

Ωt =
{

(x, z) ∈ Rd+1 , −h0 + b(x) < z < ξ(x, t)
}
.
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On dispersive models
λ0

b

Depth-averaging
Integration along the vertical coordinate + BC :

u(x, t) =
1
h

∫ ξ(x,t)

z(x)
vh(x, z , t)dz .

I O(1) : Shallow Water
I O(µ) : Boussinesq, Serre-Green-Naghdi,... µ =

(
h0

λ0

)2
� 1

. D. Lannes, The Water Waves problem : mathematical analysis and
asymptotics, 2013.
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Resulting equations

Shallow Water and SGN equations
∂th + ∂x(hu) = 0 ,

∂thu + ∂x

(
hu2 +

1
2
gh2 +

1
3
h2ḧ + Π︸ ︷︷ ︸
O(µ)

)
= −gh∂xb − f︸︷︷︸

O(µ)

.

I Notations

ḣ =
Dh

Dt
= ∂th + u∂xh , ḧ =

Dḣ

Dt
.

Π =
h2

2
D[u∂xb]

Dt
, f = h∂xb

(
ḧ

2
+

D[u∂xb]

Dt

)
.
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Reformulation of the SGN equations (1)
Elliptic operator{

∂th + ∂x(hu) = 0 ,

(I + T [h, b])
(
∂thu + ∂x(hu2)

)
+ gh∂xξ + hQ[h, u, b] = 0 .

T [h, b]w = −h2

3
∂2
xw − h∂xh∂xw + f (b)w .

I We set :

D = gh∂xξ − (I + T [h, b])−1 (gh∂xξ + hQ) .

I Shallow Water with source term :{
∂th + ∂(hu) = 0 ,
∂thu + ∂x(hu2) + gh∂xξ = D .

. P. Bonneton et al., A splitting approach for the fully nonlinear and weakly
dispersive Green-Naghdi model, 2011.
. D. Lannes, F. Marche, A new class of fully nonlinear and weakly dispersive
Green–Naghdi models for efficient 2D simulations, 2015.
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Reformulation of the SGN equations (2)
Hyperbolic problem with constraint ∂th + ∂x(hu) = 0 ,

∂thu + ∂x

(
hu2 +

1
2
gh2 +

1
3
h2ḧ
)

= 0 .

I We set p = hḧ.

∂thw + ∂x(huw) = p ,

where w = −h∂xu  constraint.

I The system is rewritten under the form :

∂tV + ∂xA(V ) = Ψ(p) ,

with V = (h, u,w)T and V ∈ Ah :=
{

t(h, u,w) ∈ L2(Ω) , w = −h∂xu
}

. E.D. Fernandez-Nieto, M. Parisot, Y. Penel, J. Sainte-Marie, A hierarchy of
dispersive layer-averaged approximations of Euler equations for free surface
flows, 2018.
. C. Escalante, T. Morales de Luna, M.J. Castro, Non-hydrostatic pressure shallow
flows : GPU implementation using finite volume and finite difference scheme, 2018.
. S. Noelle, M. Parisot, T. Tscherpel, A class of boundary conditions for
time-discrete Green–Naghdi equations with bathymetry, 2022.
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)

= 0 .

I We set p = hḧ.
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Reformulation of the SGN equations (3)

Hyperbolic problem with constraint
∂th + ∂xhu = 0 ,

∂thu + ∂x

(
hu2 +

1
2
gh2 +

1
3
hp

)
= 0 ,

∂thw + ∂x(huw) = p ,

w = −h∂xu  constraint

. N. Favrie, S. Gavrilyuk, A rapid numerical method for solving Serre–Green–Naghdi
equations describing long free surface gravity waves, 2017.
. C. Escalante et al., On high order ADER Discontinuous Galerkin schemes for first
order hyperbolic reformulations of nonlinear dispersive systems, 2019.
. G. Richard, An extension of the Boussinesq-type models to weakly compressible
flows, 2021.
. J.L. Guermond et. al. , Robust explicit relaxation technique for solving the
Green-Naghdi equations, 2019.
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Reformulation of the SGN equations (3)

Hyperbolic system with relaxation term
∂th + ∂xhu = 0 ,

∂thu + ∂x

(
hu2 +

1
2
gh2 +

1
3
hp

)
= 0 ,

∂thw + ∂x(huw) = p ,

∂thp + ∂x(hup) = −λ (w + h∂xu) , λ� 1 .

. N. Favrie, S. Gavrilyuk, A rapid numerical method for solving Serre–Green–Naghdi
equations describing long free surface gravity waves, 2017.
. C. Escalante et al., On high order ADER Discontinuous Galerkin schemes for first
order hyperbolic reformulations of nonlinear dispersive systems, 2019.
. G. Richard, An extension of the Boussinesq-type models to weakly compressible
flows, 2021.
. J.L. Guermond et. al. , Robust explicit relaxation technique for solving the
Green-Naghdi equations, 2019.
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The Leucothéa model (LcT) - G.L. Richard, 2021

1d version, flat bottom

(LcT )



∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2 +
1
2
gh2 + hP) = 0 ,

∂t(hW ) + ∂x(huW ) =
3
2
P ,

∂t(hP) + ∂x(huP) = −a2(2W + h∂xu) .

a : acoustic speed
W : depth-averaged vertical speed
P : depth-averaged non-hydrostatic pressure

. G. Richard, An extension of the Boussinesq-type models to weakly compressible
flows, 2021.
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Model features
I Hyperbolicity

∂tV + A(V )∂xV = S(V ) ,

λ1,2 = u , λ3,4 = u ±
√
gh + P + a2 .

I Energy

∂tE + ∂x

(
(E +

1
2
gh2 + hP)u

)
= 0 ,

E =
1
2
hu2 +

1
2
gh2 +

2
3
hW 2 +

1
2a2 hP

2 .

I Dispersion relation

h2
0

3a2ω
4 − ω2

(
1 +

k2h2
0

3

(
1 +

gh0

a2

))
+ k2gh0 = 0 .

. a→ +∞ : dispersion relation :

ω2
GN(k) = gk2h0

(
1

1 + (kh0)2/3

)
.
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Numerical scheme

Hyperbolic / acoustic splitting

∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2 +
1
2
gh2 + hP) = 0 ,

∂t(hW ) + ∂x(huW ) =
3
2
P ,

∂t(hP) + ∂x(huP) = −a2(2W + h∂xu) .


∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2 +
1
2
gh2) = 0 ,

∂t(hW ) + ∂x(huW ) = 0 ,

∂t(hP) + ∂x(huP) = 0 .

∂tE + ∂x

(
(E +

1
2
gh2)u

)
= 0 .


∂th = 0 ,

∂t(hu) = −∂x(hP) ,

∂t(hW ) =
3
2
P ,

∂t(hP) = −a2(2W + h∂xu) .

∂tE + ∂x (hPu) = 0 .
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Hyperbolic step
Shallow Water with passive transport

∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2 +
1
2
gh2) = 0 ,

∂t(hW ) + ∂x(huW ) = 0 ,
∂t(hP) + ∂x(huP) = 0 .

∂tE + ∂x

(
(E +

1
2
gh2)u

)
= 0 .

Discrete counterpart of the energy equation :

E n+1
K − E n

K

∆t
+
GSWK+1/2 − G

SW
K−1/2

∆x
≤ 0 .

E n+1
K ≤ E n

K −
∆t

∆x

(
GSWK+1/2 − G

SW
K−1/2

)
.

Requirements :
I Explicit methods.
I Inclusion of topography terms.
I Minimize diffusion.
I Extension in 2d on unstructured meshes.
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The CPR approach - Continuous frame

Back to the Shallow Water equations{
∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2) + h∂xφ = 0 ,
φ = g(h + b) .

I Energy equation : E =
1
2
hu2 +

1
2
gh2 + gb.

∂tE + ∂x

((
E +

1
2
gh2
)
u

)
= 0 .

I Energy dissipation :

u∗ = u − δu , δu = γ∂xφ .

. N. Grenier et al., An accurate low-Mach cheme for a compressible two-fluid model
applied to free-surface flows, 2013.
. M. Parisot, J.P. Vila, Centered-potential regularization for the advection upstream
splitting method, 2016.
. F. Couderc et. al., An explicit asymptotic preserving low Froude scheme for the
multilayer shallow water model with density stratification, 2017.
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The CPR approach - Continuous frame

Back to the Shallow Water equations{
∂th + ∂x(h(u − δu)) = 0 ,
∂t(hu) + ∂x(hu(u − δu)) + h∂xφ = 0 ,

φ = g(h + b) .

I Energy equation : E =
1
2
hu2 +

1
2
gh2 + gb.

∂tE + ∂x

((
E +

1
2
gh2
)

(u − δu)

)
= − h∂xφδu .

I Energy dissipation :

u∗ = u − δu , δu = γ∂xφ .

. N. Grenier et al., An accurate low-Mach cheme for a compressible two-fluid model
applied to free-surface flows, 2013.
. M. Parisot, J.P. Vila, Centered-potential regularization for the advection upstream
splitting method, 2016.
. F. Couderc et. al., An explicit asymptotic preserving low Froude scheme for the
multilayer shallow water model with density stratification, 2017.
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The CPR approach - Continuous frame
Back to the Shallow Water equations{

∂th + ∂x(h(u − δu)) = 0 ,
∂t(hu) + ∂x(hu(u − δu)) + h∂xφ = 0 ,

φ = g(h + b) .

I Energy equation : E =
1
2
hu2 +

1
2
gh2 + gb.

∂tE + ∂x

((
E +

1
2
gh2
)

(u − δu)

)
= −h∂xφδu︸ ︷︷ ︸
−γ(∂xφ)2

.

I Energy dissipation :

u∗ = u − δu , δu = γ∂xφ .

. N. Grenier et al., An accurate low-Mach cheme for a compressible two-fluid model
applied to free-surface flows, 2013.
. M. Parisot, J.P. Vila, Centered-potential regularization for the advection upstream
splitting method, 2016.
. F. Couderc et. al., An explicit asymptotic preserving low Froude scheme for the
multilayer shallow water model with density stratification, 2017.
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The CPR approach
Continuous level{

∂th + ∂x(h(u − δu)) = 0 ,
∂t(hu) + ∂x(hu(u − δu)) + h∂xφ = 0 ,

φ = g(h + b) .

Energy

∂tE + ∂x

((
E +

1
2
gh2
)

(u − δu)

)
= −h∂xφδu︸ ︷︷ ︸
−γ(∂xφ)2

.

Discrete level (u∗ = ū − γδφ)

hn+1
K = hnK −∆t∂K (hu∗)

(hu)n+1
K = (hu)nK −∆t∂upK (u, hu∗)−∆thn+1

K ∂cKφ .

Energy

E n+1
K − E n

K

∆t
+

1
∆x

(
GK+1/2 − GK−1/2

)
≤ (1− γ)

(
∆t

∆x

)2

h̄ (δKφ)2
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Numerical scheme

Hyperbolic / acoustic splitting

∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2 +
1
2
gh2 + hP) = 0 ,

∂t(hW ) + ∂x(huW ) =
3
2
P ,

∂t(hP) + ∂x(huP) = −a2(2W + h∂xu) .


∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2 +
1
2
gh2) = 0 ,

∂t(hW ) + ∂x(huW ) = 0 ,

∂t(hP) + ∂x(huP) = 0 .

∂tE + ∂x

(
(E +

1
2
gh2)u

)
= 0 .


∂th = 0 ,

∂t(hu) = −∂x(hP) ,

∂t(hW ) =
3
2
P ,

∂t(hP) = −a2(2W + h∂xu) .

∂tE + ∂x (hPu) = 0 .
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Including dispersion

Acoustic system (flat bottom)
∂th = 0 ,
∂t(hu) = −∂x(hP) ,

∂t(hW ) =
3
2
P ,

∂t(hP) = −a2(2W + h∂xu) .

I Energy equation :

∂tE + ∂x (hPu) = 0 .

I Discrete counterpart :

E n+1
K ≤ E n

K −
∆t

∆x

(
GacK+1/2 − G

ac
K−1/2

)
.
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Acoustic step (1)

Reformulation



∂th = 0 ,

∂t(hu) = −∂x(hP) ,

∂t(hW ) =
3
2
P ,

∂t(hP) = −a2(2W + h∂xu) .

⇔



∂th = 0 ,

∂tu = −1
h
∂x(hP) ,

∂tW =
3
2
P

h
,

∂tP = −a2
(

2
W

h
+ ∂xu

)
.

Numerical scheme

un+1
K − un

K

∆t
= − 1

hK
∂c
K (hPn+1) ,

W n+1
K −W n

K

∆t
=

3
2
Pn+1
K

hK
,

Pn+1
K − Pn

K

∆t
= −a2

(
2
W n+1

K

hK
+ ∂∗

Ku

)
.
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Acoustic step (2)

Numerical scheme

un+1
K − un

K

∆t
= − 1

hK
∂c
K (hPn+1) ,

W n+1
K −W n

K

∆t
=

3
2
Pn+1
K

hK
,

Pn+1
K − Pn

K

∆t
= −a2

(
2
W n+1

K

hK
+ ∂∗

Ku

)
.

∂∗
Ku =

1
∆x

(
u∗
K+1/2 − u∗

K−1/2
)
, u∗

K+1/2 = ūK+1/2 − β
∆t

∆x
[hP]nK+1/2 .

I Step 1 : Explicit resolution of W and P.
I Step 2 : Evolution of u.

Stability under the CFL condition :
∆t

∆x
a ≤ 1/2.
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On dispersive properties - Motivation
Equations SGN{

∂th + ∂x(hu) = 0 ,
(I + T [h, z ])

(
∂thu + ∂x(hu2)

)
+ gh∂xξ + hQ = 0 .

I Dispersion relation :

ω2
GN(k) = gk2h0

(
1

1 + (kh0)2/3

)
.

I ωGN vs. linear theory (Stokes) : ω2
S(k) = gk tanh(kh0).

Beji & Battjes test case

. S. Beji, J. Battjes, Numerical simulation of nonlinear wave propagation over a
bar, 1994.
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Improvement of dispersive properties

Equations SGN
∂th + ∂xhu = 0 ,(
I + T [h, z ]︸ ︷︷ ︸

O(µ)

) (
∂thu + ∂x(hu2)

)
+ gh∂xξ + hQ︸︷︷︸

O(µ)

= 0 .

I ∂thu = −∂x(hu2)− gh∂xξ +O(µ).

I Introduction of the parameter α

∂thu = α∂thu + (1− α)
(
− ∂x(hu2)− gh∂xξ

)
+O(µ) .

I Momentum equation

(
I + αT [h, z ]

)(
∂thu + ∂x(hu2) +

α− 1
α

gh∂xξ

)
+

1
α
gh∂xξ + hQ1 = 0 .

. P. Bonneton et al., A splitting approach for the fully nonlinear and weakly
dispersive Green-Naghdi model, 2011.
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Improvement of dispersive properties

Equations SGN
∂th + ∂xhu = 0 ,(
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I Introduction of the parameter α
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)(
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Improvement of dispersive properties
I Dispersion relation :

ω2
α(k) = gk2h0

(
1 + (1− α)(kh0)2/3

1 + α(kh0)2/3

)
.

. P. Bonneton et al., A splitting approach for the fully nonlinear and weakly
dispersive Green-Naghdi model, 2011.
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The LcT model with improved dispersive
properties and exact energy conservation
Final system

∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2 +
1
2
gh2 + hP) = 0 ,

∂t(hW ) + ∂x(huW ) =
3
2
P +

α− 1
2α

gh3/2∂xB ,

∂t(hP) + ∂x(huP) = −a2(2W + αh∂xu) ,

∂t(hB) + ∂x(huB) = ∂x(2h3/2W ) .

Energy equation

∂tE + ∂x

(
(E +

1
2
gh2 + hP + ΠB)u

)
= 0 ,

E =
1
2
hu2 +

1
2
gh2 +

2
3α

hW 2 +
1

2αa2 hP
2 +

α− 1
6α2 ghB2 ,

ΠB = −2
3
α− 1
α2 gh3/2WB .
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Justification of the LcT model
Symmetrizable systems

S0(U)∂tU +
d∑

i=1

Si (U)∂xiU + aLδ.U = G (U) .

I Classical frame : control of the solution in Hs .

I Singular limit problem - three scales : 1, a, δ, (δ =
√
µ).

Uniform control of :

Es(U) =
m∑
j=0

‖∂jtU‖2Hs−j +
s∑

j=m+1

(aδ)m−j‖∂jtU‖2Hs−j .

with respect to 0 < 1/a ≤ δ.
. V. Duchêne, Rigorous justification of the Favrie– Gavrilyuk approximation to the
Serre– Green–Naghdi model, 2019.

Objectives : (with K. Msheik and V. Duchêne)
I Application to the 2d LcT model with topography.
I Relax conditions on the initial data.

Ẽs(U) =
s∑

i+j=0

α−2
i,j ‖∂

j
tU‖2H i .



Framework

Introduction -
Context and issues
On dispersive
models :
derivation
Numerical
treatment of the
SGN equations

The LcT model
Governing
equations
Tolosa-sw :
Hyperbolic step
Tolosa-LcT :
including
dispersion

Annex
Annex 1 :
Improvement of
dispersive
properties
Annex 2 :
Justification of
the LcT model

Results and
outlook

Justification of the LcT model
Symmetrizable systems

S0(U)∂tU +
d∑

i=1

Si (U)∂xiU + aLδ.U = G (U) .

I Classical frame : control of the solution in Hs .
I Singular limit problem - three scales : 1, a, δ, (δ =

√
µ).

Uniform control of :

Es(U) =
m∑
j=0

‖∂jtU‖2Hs−j +
s∑

j=m+1

(aδ)m−j‖∂jtU‖2Hs−j .

with respect to 0 < 1/a ≤ δ.
. V. Duchêne, Rigorous justification of the Favrie– Gavrilyuk approximation to the
Serre– Green–Naghdi model, 2019.

Objectives : (with K. Msheik and V. Duchêne)
I Application to the 2d LcT model with topography.
I Relax conditions on the initial data.
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Perspectives on the Tolosa code
Numerical analysis and schemes

∂xb = 0 mild slope full system
1D (LcT ) X X X

(LcT )consα X X 7

2D NS (LcT ) X (X) 7
(LcT )consα (X) (X) 7

Work in progress
I Numerical validations (with F. Couderc).
I Comparaisons SGN vs LcT (with F. Marche).
I Justification of the LcT model (with V. Duchêne, K. Msheik).
I Two-layer extension (with G. Richard, K. Msheik, ...).
I Wave-breaking (PHD of Y. C. Hung, Chambéry).
I High order extension (with L. Emerald, D. Le Roux).
I Multilayer SW (with L. Emerald, P. Noble) .

MERCI !
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