Estimations d'énergie discrètes pour un modèle hyperbolique d'équations dispersives

Arnaud Duran

Institut Camille Jordan, Université Claude Bernard Lyon 1 Institut Universitaire de France

CANUM 2024 46e Congrès National d'Analyse Numérique lle de Ré, 27 - 31 mai 2024

- 日本 本語 本 本 田 本 田 本 田 本

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Outline

Framework

Introduction - Context and issues

The LcT model

Annex

Results and outlook

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Results and outlook

◆□ → ◆□ → ◆三 → ◆三 → ◆□ →

Framework

Collaboration with the SHOM (*Service Hydrographique et Océanographie de la Marine*).

Tolosa : Open source simulation platform for free-surface models, applications in coastal and large-scale oceanography (Shallow Water, multilayer SW and dispersive models).

Contributors :

R. Baraille, M. Ciavaldini, F. Couderc, P. Noble, J.P. Vila -Toulouse

- 日本 本語 本 本 田 本 田 本 田 本

- B. Fabrèges, K. Msheik Lyon
- F. Marche Montpellier
- M. Kazakova, Y. C. Hung Chambéry
- G.L. Richard Grenoble
- V. Duchêne Rennes

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Outline

Framework

Introduction - Context and issues

The LcT model

Annex

Results and outlook

Governing

Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

The LcT model

Framework Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

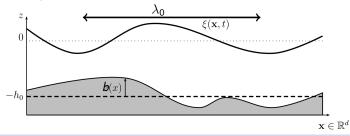
Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Results and outlook

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

On dispersive models



Free surface Euler equations

$$\begin{aligned} \nabla \mathbf{.v} &= \mathbf{0} \,, \\ \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} . \nabla) \, \mathbf{v} &= -\nabla P \,. \end{aligned}$$

$$\begin{split} \mathbf{v} &= \mathbf{v}(\mathbf{x}, z, t) \in \mathbb{R}^{d+1} \times \mathbb{R}^+.\\ \Omega_t &= \big\{ (\mathbf{x}, z) \in \mathbb{R}^{d+1}, \, -h_0 + b(\mathbf{x}) < z < \xi(\mathbf{x}, t) \big\}. \end{split}$$

Framework

Introduction -Context and issues

On dispersive models : derivation

Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

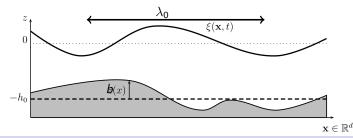
Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Results and outlook

うせん 山 ふ 山 きょう かん うちょう

On dispersive models



Depth-averaging

Integration along the vertical coordinate + BC :

$$\mathbf{u}(\mathbf{x},t) = rac{1}{h} \int_{z(\mathbf{x})}^{\xi(\mathbf{x},t)} \mathbf{v}_h(\mathbf{x},z,t) dz$$
 .

$$\mu = \left(\frac{h_0}{\lambda_0}\right)^2 \ll 1$$

▷ D. Lannes, The Water Waves problem : mathematical analysis and asymptotics, 2013.

Framework

Introduction -Context and issues

On dispersive models : derivation

Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Results and outlook

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

Resulting equations

Shallow Water and SGN equations

$$\begin{cases} \partial_t h + \partial_x (hu) = 0, \\ \partial_t hu + \partial_x \left(hu^2 + \frac{1}{2}gh^2 + \underbrace{\frac{1}{3}h^2\ddot{h} + \prod}_{\mathcal{O}(\mu)} \right) = -gh\partial_x b - \underbrace{f}_{\mathcal{O}(\mu)}. \end{cases}$$

Notations

$$\dot{h} = \frac{Dh}{Dt} = \partial_t h + u \partial_x h \qquad , \qquad \ddot{h} = \frac{D\dot{h}}{Dt} .$$
$$\Pi = \frac{h^2}{2} \frac{D[u \partial_x b]}{Dt} \qquad , \qquad f = h \partial_x b \left(\frac{\ddot{h}}{2} + \frac{D[u \partial_x b]}{Dt}\right) .$$

Framework

Introduction -Context and issues

On dispersive models : derivation

Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Results and outlook

ション ふゆ ア キョン キョン ヨー もくの

Elliptic operator

$$\begin{cases} \partial_t h + \partial_x(hu) = 0, \\ (I + \mathcal{T}[h, b]) \left(\partial_t hu + \partial_x(hu^2) \right) + gh \partial_x \xi + h \mathcal{Q}[h, u, b] = 0 \end{cases}$$

$$\mathcal{T}[h,b]w = -\frac{h^2}{3}\partial_x^2 w - h\partial_x h\partial_x w + f(b)w.$$

Framework

Introduction -Context and issues On dispersive

models : derivation

Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Elliptic operator

$$\begin{cases} \partial_t h + \partial_x(hu) = 0, \\ (I + \mathcal{T}[h, b]) \left(\partial_t hu + \partial_x(hu^2) \right) + gh \partial_x \xi + h \mathcal{Q}[h, u, b] = 0 \end{cases}$$

$$\mathcal{T}[h,b]w = -\frac{h^2}{3}\partial_x^2 w - h\partial_x h\partial_x w + f(b)w.$$

▶ We set :

$$\mathcal{D} = gh\partial_x \xi - (I + \mathcal{T}[h, b])^{-1} (gh\partial_x \xi + h\mathcal{Q}) .$$

Shallow Water with source term :

 $\begin{cases} \partial_t h + \partial(hu) = 0, \\ \partial_t hu + \partial_x (hu^2) + gh \partial_x \xi = \mathcal{D}. \end{cases}$

▷ P. Bonneton et al., A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model, 2011.

 \triangleright D. Lannes, F. Marche, A new class of fully nonlinear and weakly dispersive Green–Naghdi models for efficient 2D simulations, 2015. (Apple 1 = 1 = 1) = 1 = 1

Framework

Introduction -Context and issues On dispersive

models : derivation

Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Hyperbolic problem with constraint

$$\begin{cases} \partial_t h + \partial_x (hu) = 0, \\ \partial_t hu + \partial_x \left(hu^2 + \frac{1}{2}gh^2 + \frac{1}{3}h^2\ddot{h} \right) = 0. \end{cases}$$

Framework

Introduction -Context and issues On dispersive models :

derivation

Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Results and outlook

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Hyperbolic problem with constraint

$$\begin{cases} \partial_t h + \partial_x (hu) = 0, \\ \partial_t hu + \partial_x \left(hu^2 + \frac{1}{2}gh^2 + \frac{1}{3}h^2\ddot{h} \right) = 0. \end{cases}$$

• We set $p = h\ddot{h}$.

くりゃく 前・ 本田・ 本田・ オロ・

Framework

Introduction -Context and issues On dispersive models :

derivation

Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Hyperbolic problem with constraint

$$\begin{cases} \partial_t h + \partial_x (hu) = 0, \\ \partial_t hu + \partial_x \left(hu^2 + \frac{1}{2}gh^2 + \frac{1}{3}hp \right) = 0. \end{cases}$$

• We set $p = h\ddot{h}$.

$$\partial_t hw + \partial_x (huw) = p$$

where $w = -h\partial_x u \quad \rightsquigarrow \quad \text{constraint.}$

E.D. Fernandez-Nieto, M. Parisot, Y. Penel, J. Sainte-Marie, A hierarchy of dispersive layer-averaged approximations of Euler equations for free surface flows, 2018.

 ▷ C. Escalante, T. Morales de Luna, M.J. Castro, Non-hydrostatic pressure shallow flows : GPU implementation using finite volume and finite difference scheme, 2018.
 ▷ S. Noelle, M. Parisot, T. Tscherpel, A class of boundary conditions for time-discrete Green-Naghdi equations with bathymetry, 2022.

Framework

Introduction -Context and issues On dispersive models : derivation

Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Hyperbolic problem with constraint

$$\begin{cases} \partial_t h + \partial_x (hu) = 0, \\ \partial_t hu + \partial_x \left(hu^2 + \frac{1}{2}gh^2 + \frac{1}{3}hp \right) = 0. \end{cases}$$

• We set $p = h\ddot{h}$.

$$\partial_t hw + \partial_x (huw) = \mathbf{p},$$

where $w = -h\partial_x u \quad \rightsquigarrow \quad \text{constraint.}$

▶ The system is rewritten under the form :

$$\partial_t V + \partial_x A(V) = \Psi(\mathbf{p}),$$

with $V = (h, u, w)^T$ and $V \in \mathbb{A}_h := \left\{ {}^t(h, u, w) \in L^2(\Omega), w = -h\partial_x u \right\}$

E.D. Fernandez-Nieto, M. Parisot, Y. Penel, J. Sainte-Marie, A hierarchy of dispersive layer-averaged approximations of Euler equations for free surface flows, 2018.

Framework

Introduction -Context and issues On dispersive models : derivation

Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Hyperbolic problem with constraint

$$\partial_t h + \partial_x h u = 0,$$

$$\partial_t h u + \partial_x \left(h u^2 + \frac{1}{2}gh^2 + \frac{1}{3}hp \right) = 0,$$

$$\partial_t h w + \partial_x (h u w) = p,$$

$$w = -h\partial_x u \qquad \rightsquigarrow \text{ constraint}$$

Framework

Introduction -Context and issues On dispersive models :

derivation

Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Results and outlook

ション ふゆ ア キョン キョン ヨー もくの

Hyperbolic system with relaxation term

$$\begin{aligned} \partial_t h + \partial_x h u &= 0 \,, \\ \partial_t h u + \partial_x \left(h u^2 + \frac{1}{2} g h^2 + \frac{1}{3} h p \right) &= 0 \,, \\ \partial_t h w + \partial_x (h u w) &= p \,, \\ \partial_t h p + \partial_x (h u p) &= -\lambda \left(w + h \partial_x u \right) \,, \qquad \lambda \gg 1 \,. \end{aligned}$$

▷ **N. Favrie, S. Gavrilyuk**, A rapid numerical method for solving Serre–Green–Naghdi equations describing long free surface gravity waves, 2017.

▷ **C. Escalante et al.**, On high order ADER Discontinuous Galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive systems, 2019.

▷ G. Richard, An extension of the Boussinesq-type models to weakly compressible flows, 2021.

▷ J.L. Guermond et. al. , Robust explicit relaxation technique for solving the Green-Naghdi equations, 2019.

Framework

Introduction -Context and issues On dispersive models :

derivation

Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Outline

Framework

Introduction - Context and issues

The LcT model

Annex

Results and outlook

< □ > < □ > < 臣 > < 臣 > < 臣 > ○ < ♡ < ♡

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

The Leucothéa model (LcT) - G.L. Richard, 2021

1d version, flat bottom

$$(LcT) \quad \begin{cases} \partial_t h + \partial_x (hu) = 0, \\ \partial_t (hu) + \partial_x (hu^2 + \frac{1}{2}gh^2 + hP) = 0, \\ \partial_t (hW) + \partial_x (huW) = \frac{3}{2}P, \\ \partial_t (hP) + \partial_x (huP) = -a^2(2W + h\partial_x u) \end{cases}$$

- a : acoustic speed
- W : depth-averaged vertical speed
- P : depth-averaged non-hydrostatic pressure

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

[▷] G. Richard, An extension of the Boussinesq-type models to weakly compressible flows, 2021.

Model features

► Hyperbolicity

$$\partial_t V + A(V)\partial_x V = S(V),$$

$$\lambda_{1,2} = u$$
 , $\lambda_{3,4} = u \pm \sqrt{gh + P + a^2}$.

The LcT model

Governing equations

Framework Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Results and outlook

くしゃ (四)・(日)・(日)・(日)

Model features

► Hyperbolicity

$$\partial_t V + A(V)\partial_x V = S(V),$$

$$\lambda_{1,2} = u$$
 , $\lambda_{3,4} = u \pm \sqrt{gh + P + a^2}$.

• Energy

$$\partial_t E + \partial_x \left(\left(E + \frac{1}{2}gh^2 + hP \right) u \right) = 0,$$

$$E = \frac{1}{2}hu^2 + \frac{1}{2}gh^2 + \frac{2}{3}hW^2 + \frac{1}{2a^2}hP^2.$$

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Results and outlook

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Model features

► Hyperbolicity

$$\partial_t V + A(V)\partial_x V = S(V),$$

$$\lambda_{1,2} = u$$
 , $\lambda_{3,4} = u \pm \sqrt{gh + P + a^2}$.

Energy

$$\partial_t E + \partial_x \left((E + \frac{1}{2}gh^2 + hP)u \right) = 0,$$

 $E = \frac{1}{2}hu^2 + \frac{1}{2}gh^2 + \frac{2}{3}hW^2 + \frac{1}{2a^2}hP^2.$

► Dispersion relation

$$rac{h_0^2}{3a^2}\omega^4 - \omega^2\left(1 + rac{k^2h_0^2}{3}\left(1 + rac{gh_0}{a^2}
ight)
ight) + k^2gh_0 = 0\,.$$

$$ightarrow a
ightarrow +\infty$$
 : dispersion relation :

$$\omega_{GN}^2(k) = gk^2h_0\left(\frac{1}{1+(kh_0)^2/3}\right).$$

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Numerical scheme

Hyperbolic / acoustic splitting

$$\begin{aligned} \langle \partial_t h + \partial_x (hu) &= 0, \\ \partial_t (hu) + \partial_x (hu^2 + \frac{1}{2}gh^2 + hP) &= 0, \\ \partial_t (hW) + \partial_x (huW) &= \frac{3}{2}P, \\ \langle \partial_t (hP) + \partial_x (huP) &= -a^2(2W + h\partial_x u). \end{aligned}$$

$$\begin{cases} \partial_t h + \partial_x (hu) = 0, \\ \partial_t (hu) + \partial_x (hu^2 + \frac{1}{2}gh^2) = 0, \\ \partial_t (hW) + \partial_x (huW) = 0, \\ \partial_t (hP) + \partial_x (huP) = 0. \end{cases} \begin{cases} \partial_t h = 0, \\ \partial_t (hu) = -\partial_x (hP), \\ \partial_t (hW) = \frac{3}{2}P, \\ \partial_t (hP) = -a^2(2W + h\partial_x u). \end{cases}$$

$$\partial_t E + \partial_x \left((E + \frac{1}{2}gh^2)u \right) = 0.$$

$$\partial_t E + \partial_x \left(h P u \right) = 0 \, .$$

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Hyperbolic step

Shallow Water with passive transport

$$\begin{cases} \partial_t h + \partial_x(hu) = 0, \\ \partial_t(hu) + \partial_x(hu^2 + \frac{1}{2}gh^2) = 0 \\ \partial_t(hW) + \partial_x(huW) = 0, \\ \partial_t(hP) + \partial_x(huP) = 0. \end{cases}$$

$$\partial_t E + \partial_x \left((E + \frac{1}{2}gh^2)u \right) = 0.$$

Discrete counterpart of the energy equation :

$$\frac{E_{K}^{n+1}-E_{K}^{n}}{\Delta t}+\frac{\mathcal{G}_{K+1/2}^{SW}-\mathcal{G}_{K-1/2}^{SW}}{\Delta x}\leq 0.$$

$$E_{K}^{n+1} \leq E_{K}^{n} - \frac{\Delta t}{\Delta x} \left(\mathcal{G}_{K+1/2}^{SW} - \mathcal{G}_{K-1/2}^{SW} \right) \,.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including

dispersion Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Hyperbolic step

Shallow Water with passive transport

$$\begin{cases} \partial_t h + \partial_x(hu) = 0, \\ \partial_t(hu) + \partial_x(hu^2 + \frac{1}{2}gh^2) = 0 \\ \partial_t(hW) + \partial_x(huW) = 0, \\ \partial_t(hP) + \partial_x(huP) = 0. \end{cases}$$

$$\partial_t E + \partial_x \left((E + \frac{1}{2}gh^2)u \right) = 0.$$

Discrete counterpart of the energy equation :

$$\frac{E_{\mathcal{K}}^{n+1}-E_{\mathcal{K}}^{n}}{\Delta t}+\frac{\mathcal{G}_{\mathcal{K}+1/2}^{SW}-\mathcal{G}_{\mathcal{K}-1/2}^{SW}}{\Delta x}\leq 0\,.$$

$$E_{K}^{n+1} \leq E_{K}^{n} - \frac{\Delta t}{\Delta x} \left(\mathcal{G}_{K+1/2}^{SW} - \mathcal{G}_{K-1/2}^{SW} \right) \,.$$

Requirements :

- Explicit methods.
- Inclusion of topography terms.
- ▶ Minimize diffusion.

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT :

including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

The CPR approach - Continuous frame

Back to the Shallow Water equations

$$\begin{cases} \partial_t h + \partial_x (hu) = 0, \\ \partial_t (hu) + \partial_x (hu^2) + h \partial_x \phi = 0, \end{cases} \qquad \phi = g(h+b). \end{cases}$$

.

• Energy equation :
$$E = \frac{1}{2}hu^2 + \frac{1}{2}gh^2 + gb$$
.

$$\partial_t E + \partial_x \left(\left(E + \frac{1}{2}gh^2 \right) u \right) = 0.$$

▷ N. Grenier et al., An accurate low-Mach cheme for a compressible two-fluid model applied to free-surface flows, 2013.

M. Parisot, J.P. Vila, Centered-potential regularization for the advection upstream splitting method, 2016.

▷ **F. Couderc et. al.**, An explicit asymptotic preserving low Froude scheme for the multilayer shallow water model with density stratification, 2017.

<ロト <回ト < 三ト < 三ト = - のへの

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT :

including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

The CPR approach - Continuous frame

Back to the Shallow Water equations

 $\begin{cases} \partial_t h + \partial_x (h(u - \delta u)) = 0, \\ \partial_t (hu) + \partial_x (hu(u - \delta u)) + h \partial_x \phi = 0, \end{cases} \qquad \phi = g(h + b). \end{cases}$

• Energy equation :
$$E = \frac{1}{2}hu^2 + \frac{1}{2}gh^2 + gb$$

$$\partial_t E + \partial_x \left(\left(E + \frac{1}{2}gh^2 \right) (u - \delta u) \right) = -h \partial_x \phi \delta u.$$

▷ N. Grenier et al., An accurate low-Mach cheme for a compressible two-fluid model applied to free-surface flows, 2013.

M. Parisot, J.P. Vila, Centered-potential regularization for the advection upstream splitting method, 2016.

 \triangleright F. Couderc et. al., An explicit asymptotic preserving low Froude scheme for the multilayer shallow water model with density stratification, 2017.

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including

dispersion Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

The CPR approach - Continuous frame

Back to the Shallow Water equations

$$\begin{cases} \partial_t h + \partial_x (h(u - \delta u)) = 0, \\ \partial_t (hu) + \partial_x (hu(u - \delta u)) + h \partial_x \phi = 0, \end{cases} \qquad \phi = g(h + b). \end{cases}$$

• Energy equation :
$$E = \frac{1}{2}hu^2 + \frac{1}{2}gh^2 + gb^2$$

$$\partial_t E + \partial_x \left(\left(E + \frac{1}{2}gh^2 \right) \left(u - \delta u \right) \right) = \underbrace{-h\partial_x \phi \delta u}_{-\gamma(\partial_x \phi)^2}.$$

Energy dissipation :

$$u^* = u - \delta u$$
 , $\delta u = \gamma \partial_x \phi$.

▷ N. Grenier et al., An accurate low-Mach cheme for a compressible two-fluid model applied to free-surface flows, 2013.

M. Parisot, J.P. Vila, Centered-potential regularization for the advection upstream splitting method, 2016.

 \triangleright F. Couderc et. al., An explicit asymptotic preserving low Froude scheme for the multilayer shallow water model with density stratification, 2017. $\langle \Xi \rangle \models \langle \Xi \rangle = \langle \Xi \rangle$

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

The CPR approach

Continuous level

$$\begin{cases} \partial_t h + \partial_x (h(u - \delta u)) = 0, \\ \partial_t (hu) + \partial_x (hu(u - \delta u)) + h \partial_x \phi = 0, \end{cases} \qquad \phi = g(h + b). \end{cases}$$

$$\partial_t E + \partial_x \left(\left(E + \frac{1}{2}gh^2 \right) \left(u - \delta u \right) \right) = \underbrace{-h\partial_x \phi \delta u}_{-\gamma(\partial_x \phi)^2}.$$

Discrete level ($u^* = \bar{u} - \gamma \delta \phi$)

$$h_{K}^{n+1} = h_{K}^{n} - \Delta t \partial_{K} (h \boldsymbol{u}^{*})$$

$$(h \boldsymbol{u})_{K}^{n+1} = (h \boldsymbol{u})_{K}^{n} - \Delta t \partial_{K}^{u p} (\boldsymbol{u}, h \boldsymbol{u}^{*}) - \Delta t h_{K}^{n+1} \partial_{K}^{c} \phi.$$

Energy

$$\frac{E_{K}^{n+1}-E_{K}^{n}}{\Delta t}+\frac{1}{\Delta x}\left(\mathcal{G}_{K+1/2}-\mathcal{G}_{K-1/2}\right)\leq\left(1-\gamma\right)\left(\frac{\Delta t}{\Delta x}\right)^{2}\bar{h}\left(\delta_{K}\phi\right)^{2}$$

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT :

including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Numerical scheme

Hyperbolic / acoustic splitting

$$\begin{aligned} \langle \partial_t h + \partial_x (hu) &= 0, \\ \partial_t (hu) + \partial_x (hu^2 + \frac{1}{2}gh^2 + hP) &= 0, \\ \partial_t (hW) + \partial_x (huW) &= \frac{3}{2}P, \\ \langle \partial_t (hP) + \partial_x (huP) &= -a^2(2W + h\partial_x u). \end{aligned}$$

$$\begin{cases} \partial_t h + \partial_x (hu) = 0, \\ \partial_t (hu) + \partial_x (hu^2 + \frac{1}{2}gh^2) = 0, \\ \partial_t (hW) + \partial_x (huW) = 0, \\ \partial_t (hP) + \partial_x (huP) = 0. \end{cases} \begin{cases} \partial_t h = 0, \\ \partial_t (hu) = -\partial_x (hP), \\ \partial_t (hW) = \frac{3}{2}P, \\ \partial_t (hP) = -a^2(2W + h\partial_x u). \end{cases}$$

$$\partial_t E + \partial_x \left((E + \frac{1}{2}gh^2)u \right) = 0.$$

$$\partial_t E + \partial_x \left(h P u \right) = 0 \, .$$

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Including dispersion

Acoustic system (flat bottom)

$$\begin{array}{l} \partial_t h = 0, \\ \partial_t (hu) = -\partial_x (hP), \\ \partial_t (hW) = \frac{3}{2}P, \\ \partial_t (hP) = -a^2 (2W + h\partial_x u) \end{array}$$

Energy equation :

$$\partial_t E + \partial_x \left(h P u \right) = 0 \, .$$

Discrete counterpart :

$$E_{K}^{n+1} \leq E_{K}^{n} - \frac{\Delta t}{\Delta x} \left(\mathcal{G}_{K+1/2}^{ac} - \mathcal{G}_{K-1/2}^{ac} \right) \,.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Acoustic step (1)

Reformulation

$$\begin{cases} \partial_t h = 0, \\ \partial_t (hu) = -\partial_x (hP), \\ \partial_t (hW) = \frac{3}{2}P, \\ \partial_t (hP) = -a^2 (2W + h\partial_x u). \end{cases} \Leftrightarrow \begin{cases} \partial_t h = 0, \\ \partial_t u = -\frac{1}{h} \partial_x (hP), \\ \partial_t W = \frac{3}{2} \frac{P}{h}, \\ \partial_t P = -a^2 \left(2\frac{W}{h} + \partial_x u \right). \end{cases}$$

Numerical scheme

$$\begin{cases} \frac{u_{K}^{n+1}-u_{K}^{n}}{\Delta t}=-\frac{1}{h_{K}}\partial_{K}^{c}(hP^{n+1}),\\ \frac{W_{K}^{n+1}-W_{K}^{n}}{\Delta t}=\frac{3}{2}\frac{P_{K}^{n+1}}{h_{K}},\\ \frac{P_{K}^{n+1}-P_{K}^{n}}{\Delta t}=-a^{2}\left(2\frac{W_{K}^{n+1}}{h_{K}}+\partial_{K}^{*}u\right). \end{cases}$$

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Results and outlook

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Acoustic step (2)

Numerical scheme

$$\begin{cases} \frac{u_{K}^{n+1} - u_{K}^{n}}{\Delta t} = -\frac{1}{h_{K}} \partial_{K}^{c} (hP^{n+1}), \\ \frac{W_{K}^{n+1} - W_{K}^{n}}{\Delta t} = \frac{3}{2} \frac{P_{K}^{n+1}}{h_{K}}, \\ \frac{P_{K}^{n+1} - P_{K}^{n}}{\Delta t} = -a^{2} \left(2 \frac{W_{K}^{n+1}}{h_{K}} + \partial_{K}^{*} u\right). \end{cases}$$

$$\partial_{K}^{*} u = \frac{1}{\Delta x} \left(u_{K+1/2}^{*} - u_{K-1/2}^{*} \right) , \ u_{K+1/2}^{*} = \bar{u}_{K+1/2} - \beta \frac{\Delta t}{\Delta x} \left[h P \right]_{K+1/2}^{n}$$

Step 1 : **Explicit** resolution of W and P.

Step 2 : Evolution of u.

Stability under the CFL condition :
$$\frac{\Delta t}{\Delta x} a \leq 1/2$$
.

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Results and outlook

うせん 山 ふ 山 きょう かん うちょう

Outline

Framework

Introduction - Context and issues

The LcT model

Annex

Results and outlook

くりゃく 前・ 本田・ 本田・ オロ・

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

On dispersive properties - Motivation

Equations SGN

$$\left(\begin{array}{c} \partial_t h + \partial_x(hu) = 0, \\ (I + \mathcal{T}[h, z]) \left(\partial_t hu + \partial_x(hu^2) \right) + gh \partial_x \xi + h \mathcal{Q} = 0. \end{array} \right.$$

Dispersion relation :

$$\omega_{GN}^2(k) = gk^2h_0\left(rac{1}{1+(kh_0)^2/3}
ight)\,.$$

• ω_{GN} vs. linear theory (Stokes) : $\omega_S^2(k) = gk \tanh(kh_0)$.

Beji & Battjes test case 234567 0.02 Waves Still water level 0.01 7 (II) 0.00 0.40 m -0.010.30 m -0.02104.5 105.0 105.5 106.0 2 m 3 m 6 m 6 m t(s)

▷ S. Beji, J. Battjes, Numerical simulation of nonlinear wave propagation over a bar, 1994.

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties

Annex 2 : Justification of the LcT model

Results and outlook

106.5

Equations SGN $\partial_t h + \partial_x h u = 0,$ $(I + \mathcal{T}[h, z]) (\partial_t h u + \partial_x (h u^2)) + g h \partial_x \xi + h \mathcal{Q} = 0.$

▷ P. Bonneton et al., A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model, 2011.

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties

Annex 2 : Justification of the LcT model

Equations SGN $\partial_t h + \partial_x h u = 0,$ $(I + \underbrace{\mathcal{T}[h, z]}_{\mathcal{O}(\mu)}) (\partial_t h u + \partial_x (h u^2)) + gh \partial_x \xi + \underbrace{h \mathcal{Q}}_{\mathcal{O}(\mu)} = 0.$

 $\triangleright \ \partial_t h u = -\partial_x (h u^2) - g h \partial_x \xi + \mathcal{O}(\mu).$

▷ P. Bonneton et al., A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model, 2011.

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties

Annex 2 : Justification of the LcT model

Equations SGN

$$\partial_t h + \partial_x h u = 0,$$

$$\left(I + \underbrace{\mathcal{T}[h, z]}_{\mathcal{O}(\mu)}\right) \left(\partial_t h u + \partial_x (h u^2)\right) + g h \partial_x \xi + \underbrace{h \mathcal{Q}}_{\mathcal{O}(\mu)} = 0.$$

$$\triangleright \ \partial_t h u = -\partial_x (h u^2) - g h \partial_x \xi + \mathcal{O}(\mu).$$

 \blacktriangleright Introduction of the parameter α

$$\partial_t h u = \alpha \partial_t h u + (1 - \alpha) (-\partial_x (h u^2) - g h \partial_x \xi) + \mathcal{O}(\mu).$$

▷ P. Bonneton et al., A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model, 2011.

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties

Annex 2 : Justification of the LcT model

Equations SGN

$$\partial_t h + \partial_x h u = 0,$$

$$\left(I + \underbrace{\mathcal{T}[h, z]}_{\mathcal{O}(\mu)}\right) \left(\partial_t h u + \partial_x (h u^2)\right) + g h \partial_x \xi + \underbrace{h \mathcal{Q}}_{\mathcal{O}(\mu)} = 0.$$

$$\triangleright \ \partial_t hu = -\partial_x (hu^2) - gh\partial_x \xi + \mathcal{O}(\mu).$$

 \blacktriangleright Introduction of the parameter α

$$\partial_t h u = \alpha \partial_t h u + (1 - \alpha) (-\partial_x (h u^2) - g h \partial_x \xi) + \mathcal{O}(\mu).$$

Momentum equation

$$(I + \alpha \mathcal{T}[h, z]) \left(\partial_t h u + \partial_x (h u^2) + \frac{\alpha - 1}{\alpha} g h \partial_x \xi \right) + \frac{1}{\alpha} g h \partial_x \xi + h \mathcal{Q}_1 = 0.$$

▷ P. Bonneton et al., A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model, 2011.

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

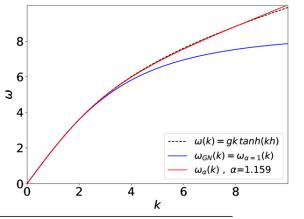
Annex

Annex 1 : Improvement of dispersive properties

Annex 2 : Justification of the LcT model

▶ Dispersion relation :

$$\omega_{\alpha}^{2}(k) = gk^{2}h_{0}\left(\frac{1+(1-\alpha)(kh_{0})^{2}/3}{1+\alpha(kh_{0})^{2}/3}\right)$$



 ▷ P. Bonneton et al., A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model, 2011.

 < □ ▷ < ⊡ ▷ < ⊡ ▷ < ⋮ ▷ < ⋮ ▷</td>

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties

Annex 2 : Justification of the LcT model

Results and outlook

э

The LcT model with improved dispersive properties and exact energy conservation

Final system

$$\begin{split} \partial_t h + \partial_x (hu) &= 0, \\ \partial_t (hu) + \partial_x (hu^2 + \frac{1}{2}gh^2 + hP) &= 0, \\ \partial_t (hW) + \partial_x (huW) &= \frac{3}{2}P + \frac{\alpha - 1}{2\alpha}gh^{3/2}\partial_x B, \\ \partial_t (hP) + \partial_x (huP) &= -a^2(2W + \alpha h\partial_x u), \\ \partial_t (hB) + \partial_x (huB) &= \partial_x (2h^{3/2}W). \end{split}$$

Energy equation

$$\partial_t E + \partial_x \left(\left(E + \frac{1}{2}gh^2 + hP + \Pi_B \right) u \right) = 0,$$

$$E = \frac{1}{2}hu^{2} + \frac{1}{2}gh^{2} + \frac{2}{3\alpha}hW^{2} + \frac{1}{2\alpha a^{2}}hP^{2} + \frac{\alpha - 1}{6\alpha^{2}}ghB^{2},$$

$$\Pi_{B} = -\frac{2}{3}\frac{\alpha - 1}{\alpha^{2}}gh^{3/2}WB.$$

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties

Annex 2 : Justification of the LcT model

Justification of the LcT model

Symmetrizable systems

$$S_0(U)\partial_t U + \sum_{i=1}^d S_i(U)\partial_{x_i}U + aL^{\delta}.U = G(U).$$

▶ Classical frame : control of the solution in H^s.

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties

Annex 2 : Justification of the LcT model

Results and outlook

ション ふゆ ア キョン キョン ヨー もくの

Justification of the LcT model

Symmetrizable systems

$$S_0(U)\partial_t U + \sum_{i=1}^d S_i(U)\partial_{x_i}U + aL^{\delta}.U = G(U).$$

Classical frame : control of the solution in H^s.
 Singular limit problem - three scales : 1, a, δ, (δ = √μ).
 Uniform control of :

$$\mathcal{E}_{s}(U) = \sum_{j=0}^{m} \|\partial_{t}^{j}U\|_{H^{s-j}}^{2} + \sum_{j=m+1}^{s} (a\delta)^{m-j} \|\partial_{t}^{j}U\|_{H^{s-j}}^{2}.$$

with respect to $0 < 1/a \le \delta$.

▷ V. Duchêne, Rigorous justification of the Favrie– Gavrilyuk approximation to the Serre– Green–Naghdi model, 2019.

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties

Annex 2 : Justification of the LcT model

Results and outlook

・ロト ・ 日 ・ モ ・ ・ 日 ・ ・ う く つ ・

Justification of the LcT model

Symmetrizable systems

$$S_0(U)\partial_t U + \sum_{i=1}^d S_i(U)\partial_{x_i}U + aL^{\delta}.U = G(U).$$

Classical frame : control of the solution in H^s.
 Singular limit problem - three scales : 1, a, δ, (δ = √μ).
 Uniform control of :

$$\mathcal{E}_{s}(U) = \sum_{j=0}^{m} \|\partial_{t}^{j}U\|_{H^{s-j}}^{2} + \sum_{j=m+1}^{s} (a\delta)^{m-j} \|\partial_{t}^{j}U\|_{H^{s-j}}^{2}.$$

with respect to $0 < 1/a \le \delta$.

▷ V. Duchêne, Rigorous justification of the Favrie– Gavrilyuk approximation to the Serre– Green–Naghdi model, 2019.

Objectives : (with K. Msheik and V. Duchêne)

- Application to the 2d LcT model with topography.
- Relax conditions on the initial data.

$$\tilde{\mathcal{E}}_{s}(U) = \sum_{i+j=0}^{s} \alpha_{i,j}^{-2} \|\partial_{t}^{j}U\|_{H^{i}}^{2}.$$

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 :

Annex 2 : Justification of the LcT model

Outline

Framework

Introduction - Context and issues

The LcT model

Annex

Results and outlook

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Perspectives on the Tolosa code

Numerical analysis and schemes

		$\partial_x b = 0$	mild slope	full system
1D	(LcT)	\checkmark	\checkmark	~
	$(LcT)^{cons}_{\alpha}$	\checkmark	\checkmark	×
2D NS	(LcT)	\checkmark	(🗸)	×
	$(LcT)^{cons}_{lpha}$	(🗸)	(🗸)	×

Work in progress

- ▶ Numerical validations (with F. Couderc).
- ► Comparaisons SGN vs LcT (with F. Marche).
- ▶ Justification of the LcT model (with V. Duchêne, K. Msheik).
- ► Two-layer extension (with G. Richard, K. Msheik, ...).
- ► Wave-breaking (PHD of Y. C. Hung, Chambéry).
- ▶ High order extension (with L. Emerald, D. Le Roux).
- ▶ Multilayer SW (with L. Emerald, P. Noble) .

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model

Perspectives on the Tolosa code

Numerical analysis and schemes

		$\partial_x b = 0$	mild slope	full system
1D	(LcT)	\checkmark	\checkmark	~
	$(LcT)^{cons}_{\alpha}$	\checkmark	\checkmark	×
2D NS	(LcT)	\checkmark	(🗸)	×
	$(LcT)^{cons}_{lpha}$	(🗸)	(🗸)	×

Work in progress

- ▶ Numerical validations (with F. Couderc).
- ► Comparaisons SGN vs LcT (with F. Marche).
- ▶ Justification of the LcT model (with V. Duchêne, K. Msheik).
- ► Two-layer extension (with G. Richard, K. Msheik, ...).
- ▶ Wave-breaking (PHD of Y. C. Hung, Chambéry).
- ▶ High order extension (with L. Emerald, D. Le Roux).
- ▶ Multilayer SW (with L. Emerald, P. Noble) .

MERCI !

Framework

Introduction -Context and issues On dispersive models : derivation Numerical treatment of the SGN equations

The LcT model

Governing equations Tolosa-sw : Hyperbolic step Tolosa-LcT : including dispersion

Annex

Annex 1 : Improvement of dispersive properties Annex 2 : Justification of the LcT model