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Motivation

Studying nonlinear, dispersive phenomenon and bathymetric effects in
shallow wave dynamics is challenging.

Figure: Tsunami wave train approaching the Japanese coastline after the 2011 Tohoku
earthquake (Photo by Douglas Sprott is licensed under CC BY-NC 2.0).

Their understanding is essential to obtain information about extreme
wave phenomena such as, storm waves or tsunamis, and what makes
them more destructive than other ocean waves.
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Governing equations

Objective: Introduce the governing equations of the water-wave problem

Means: Simplifying assumptions on the nature of the fluid.
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Governing equations

Horizontal dimension d = 1, flat topography.

Incompressible, irrotational, inviscid and homogeneous fluid.

Impenetrable surface and bottom, fluids at rest at infinity.

There is no surface tension and the external pressure is constant.

Irrotationality ⇒ V = ∇x,zφ, (potential) ⇒ ∆x,zφ = 0 in Ωt (Laplace
equation).
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The full Euler system: complex problem

Large number of equations and unknowns.

Non linear system of equations.

Variable domain.

6/34



Zakharov/Craig-Sulem formulation

The system can be rewritten as two coupled evolution equations in

ζ and ψ ≡ φ|z=ζ

using Dirichlet-Neumann operators. [Zakharov ’68; Craig, Sulem ’93]
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The full Euler system

The Zakharov/Craig-Sulem formulation
∂tζ − G[ζ]ψ = 0,

∂tψ + gζ +
1
2
|∂xψ|2 −

(
G[ζ]ψ + ∂xζ∂xψ

)2

2(1 + |∂xζ|2)
= 0.

(FE)

where the Dirichlet-Neumann operator G[ζ]ψ is defined by

G[ζ]ψ ≡
√

1 + |∂xζ|2
(
∂nφ

)
|z=ζ

with φ solution to:
∆x,zφ = 0 in Ωt,
∂zφ = 0 on {(x, z) ∈ R2, z = −h0},
φ = ψ on {(x, z) ∈ R2, z = ζ}.

Reduced system of two scalar evolution equations.

Large-time existence result for the water-waves equations (FE).
[Alvarez-Samaniego, Lannes ’08]
The description of the solutions from a qualitative and quantitative point
of view remains very complex.
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Construction of asymptotic models

Objective: Construct simplified asymptotic models.

Means: Looking for approximation solutions.

Difficulties: Asymptotic expansions of the DN operators.

Restrictions: Dimensionless parameters, specific physical regime.
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Dimensionless parameters

µ =
h0

2

λ2 , ε =
a
h0
.

Construction of asymptotic models comes from the expansion of the DN
operators, w.r.t the shallowness parameter, µ≪ 1 (shallow-water
regime).
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Dimensionless parameters
A tsunami is an example of wave propagating in a shallow-water regime.
For example, the 2004 Indian ocean tsunami:

Figure: Six weeks after the tsunami hit Banda Aceh on the island of Sumatra,
Indonesia (Feb. 12, 2005). http://www.navy.mil/view_image.asp?id=21836

160 km ≤ λ ≤ 240 km, 1 km ≤ h0 ≤ 4 km and a = 60 cm

The nonlinearity and shallowness parameters are thus estimated by:

1.7 × 10−5 ≤ µ ≤ 6.2 × 10−4 and 1.5 × 10−4 ≤ ε ≤ 6 × 10−4
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Asymptotic models: state of the art

✵ The Shallow-water regime (µ≪ 1):
Large amplitude models: 0 ≤ ε ≤ 1
→ At first order (w.r.t µ): the Nonlinear Shallow Water (or Saint-Venant) equations.

[Saint-Venant ’1871]

→ At second order: the Green-Naghdi [Green, Naghdi ’76], or Serre [Serre ’53], or
fully nonlinear Boussinesq) equations [Wei et al. ’95].

→ At third order: the higher-ordered/extended Green-Naghdi (eGN).
[Gobbi ’00, Matsuno ’15, ’16, Khorbatly et al. ’18]

Long wave models: ε ∼ µ
The Green-Naghdi equations can be simplified into the Boussinesq
equations.

– At second order: the weakly nonlinear Boussinesq equations.
[Boussinesq ’1871, ’1872]

– At third order: the higher-ordered/extended Boussinesq (eB) equations.
[Dingemans ’73, Kirby ’96, Madsen and Schaffer ’98 ’99, Khorbatly et al. ’21]
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The higher-ordered/extended Boussinesq equations

We are interested in the numerical resolution of the eB equations.

The eB equations
∂tζ + ∂x(hv) = 0,

J (∂tv + εv∂xv) + ∂xζ +
2

45
ε2∂5

x ζ ++ε2 2
3
∂x((∂xv)2) = O(ε3) ,

where h = 1 + εζ is the non-dimensionalised height of the fluid and

J = 1 + εT [h]− ε2T (coercive), T [h]w = − 1
3h
∂x
(
h3∂xw

)
, Tw = − 1

45
∂4

x w.

Existence and uniqueness of solution on a relevant time scale of order
1/

√
ε. [Khorbatly et al.’21]

This system is more accurate then the 2nd order Boussinesq system
containing only weak dispersion.

Small length comparing to the eGN system.
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Numerical resolution of the eB system

Objective: Numerical resolution, surface waves over flat bottom model.

Means: Suitable reformulation, same order of precision.

Novelty: Improved frequency dispersion, extended range of applicability.

Difficulties: Time dependency, high order derivatives computations.

References: [Lannes, Marche ’15, Bourdarias, Gerbi, RL ’16] .
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Reformulation of the model for numerical resolution

Reformulation of the eB model


∂tζ + ∂x

(
hv
)

= 0,(
1 + εαT [0]− ε2αT

)(
∂tv + εv∂xv +

α− 1
α

∂xζ
)
+

1
α
∂xζ +

7 − 5α
45

ε2∂5
x ζ

+ε2 2
3
∂x((∂xv)2) + ε2 2

3
ζ∂3

x ζ + ε2∂xζ∂
2
x ζ = O(ε3).

(eB)

where h = 1 + εζ, T [0]w = −1
3
∂2

x w and Tw = − 1
45
∂4

x w.

The new reformulation has the same order of precision O(ε3):

Time-independent invertible operator → moderate reduction of
computational time.

A newly added dispersion correction parameter α to improve dispersive
properties.

– Does this formulation enjoy improved dispersive properties in large wave
numbers regime?

– How to treat high order derivatives that may induce high frequency
instability?
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Dispersive properties of the eB model

→ The dispersion relation associated to (eB) is (for plane waves ei(kx−wt)):

w2
α,eB =

gh0k2
(

1 +
(α− 1)

3
k2 +

(6 − 4α)
45

k4
)

(
1 +

α

3
k2 +

α

45
k4
) . (1)

→ The exact dispersion relation for the dimenisonalized FE system is:

w2
F.E = gh0|k| tanh(|k|). (2)

→ For k ≪ 1, the Taylor expansions of (1) and (2) are equivalent provided
that α = 1.

→ Linear phase and group velocities associated to (1) are defined as:

Cp
eB(k) =

wα,eB(k)
|k| and Cg

eB(k) =
dwα,eB(k)

dk
.

→ To find αopt for k ∈ [0,K] ⇒ Minimize squared relative weighted error:√∫ K

0

1
k

(Cp
eB − Cp

S

Cp
S

+
Cg

eB − Cg
S

Cg
S

)2
dk. (3)
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Dispersive properties of the eB model

→ The dispersion relation associated to (eB) is (for plane waves ei(kx−wt)):

w2
α,eB =

gh0k2
(

1 +
(α− 1)

3
k2 +

(6 − 4α)
45

k4
)

(
1 +

α

3
k2 +

α

45
k4
) . (1)

→ The exact dispersion relation for the dimenisonalized FE system is:

w2
F.E = gh0|k| tanh(|k|). (2)
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Dispersive properties of the eB model

(a) 0 ≤ k ≤ 1.

(b) 0 ≤ k ≤ 2.

Figure: Phase and group velocities weighted averaged error as a function of α for
the (eB) model

→ Good dispersion properties in small wave-numbers regime. Error starts
to grow rapidly when k > 1.

→ In large wave-numbers regime (Err=60% for 0 ≤ k ≤ 10) with α = 1.
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Reformulation of the model for numerical resolution
The idea is to factorize the high order derivatives on ζ.
Using the approximation ∂xζ = (1 + εαT [0])−1(∂xζ) +O(ε), one gets:

Improved eB formulation with factorized high order derivatives



∂tζ + ∂x
(
hv
)

= 0,(
1 + εαT [0]− ε2αT

)(
∂tv + εv∂xv +

α− 1
α

∂xζ
)
+

1
α
∂xζ

+
7 − 5α

45
ε2∂4

x

(
(1 + εαT [0])−1(∂xζ)

)
+ ε2 2

3
∂x((∂xv)2)

+ε2 2
3
ζ∂2

x

(
(1 + εαT [0])−1(∂xζ)

)
+ ε2∂xζ∂x

(
(1 + εαT [0])−1(∂xζ)

)
= O(ε3).

(eB-f)

where h = 1 + εζ, T [0]w = −1
3
∂2

x w and Tw = − 1
45
∂4

x w.

Avoid the direct calculation of high order derivatives on ζ while keeping
the same order of precision O(ε3).

Extend the range of applicability to high frequency regimes while
remaining stable.
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Dispersive properties of the eB-f model
The dispersion relation associated to (eB-f) is:

w̃2
α,eB−f =

gh0k2
(

1 +
(α− 1)

3
k2 +

k4

45
(α− 1 + 7−5α

1+αk2
3

)
)

(
1 +

α

3
k2 +

α

45
k4
) . (4)

Figure: Phase and group velocities weighted averaged error as a function of α for
0 ≤ k ≤ 10. The (eB-f) model is in solid line, the GN-CH model [Bourdarias, Gerbi,
Lteif ’16] is in dots .
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Dispersive properties of the eB-f model

Figure: Errors on linear phase velocity (red) and group velocity (blue). The reference
from Stokes theory (black solid line), the (eB-f) model (α = 1.0610) in solid lines,
the (eB-f) model (α = 1) in dashes.

Significant improvement in the dispersive properties of model (eB-f) with
an appropriate choice of αopt in the large frequency regime.
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Stability in high frequency regime
We investigate the linear behavior of small perturbation to a constant
state solution.

Figure: Comparison at different times between the solutions of the models (eB) (blue
line), (eB-f) (red line) and (eB) with just 5th order derivative factorization (green line).
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Numerical methods: Splitting scheme
Strang splitting scheme separating the hyperbolic conservative part and
dispersive part of (eB-f). [Bonneton et al. ’11, Lannes, Marche ’15]

S(∆t) = S1(∆t/2)S2(∆t)S1(∆t/2).

• S1(t) is the solution operator related to the hyperbolic NSWE:{
∂tζ + ∂x

(
hv
)

= 0,

∂tv + ∂x

( ε
2

v2 + ζ
)
= 0,

where h = 1 + εζ.

• S2(t) is the solution operator related to the dispersive part of the equations.



∂tζ = 0,(
1 + εαT [0]− ε2αT

)(
∂tv −

1
α
∂xζ

)
+

1
α
∂xζ

+
7 − 5α

45
ε2∂4

x

(
(1 + εαT [0])−1(∂xζ)

)
+ ε2 2

3
∂x((∂xv)2)

+ε2 2
3
ζ∂2

x

(
(1 + εαT [0])−1(∂xζ)

)
+ ε2∂xζ∂x

(
(1 + εαT [0])−1(∂xζ)

)
= 0,

where T [0]w = −1
3
∂2

x w and Tw = − 1
45
∂4

x w.
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Numerical methods: Splitting scheme

Spatial discretization of the hyperbolic system using FV method:

VFRoe method [Gallouet, Hérard, Seguin ’02 ’03] (approximate
Godunov scheme). Exact resolution of a linearized Riemann problem.

- Low dissipation MUSCL reconstruction method is employed [Camarri et
al.’04] (minimize numerical dissipation and dispersion):

Un,+
i = Un

i +
1
2
δUn,+

i and Un,−
i = Un

i −
1
2
δUn,−

i .

where:
δUn,+

i =
2
3
(Un

i+1 − Un
i ) +

1
3
(Un

i − Un
i−1)−

1
10

(−Un
i−1 + 3Un

i − 3Un
i+1 + Un

i+2)

−
1

15
(−Un

i−2 + 3Un
i−1 − 3Un

i + Un
i+1),

δUn,−
i =

2
3
(Un

i − Un
i−1) +

1
3
(Un

i+1 − Un
i )−

1
10

(−Un
i−2 + 3Un

i−1 − 3Un
i + Un

i+1)

1
15

(−Un
i−1 + 3Un

i − 3Un
i+1 + Un

i+2).

- To reduce spurious oscillations near discontinuities a limitation procedure is
employed.

Spatial discretization of the dispersive system using FD method:
- The first, second and fourth order derivatives are discretized using classical

fourth order centered formulas.
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Numerical methods: Splitting scheme

Switching values:

FV-FD mix ⇒ Classical Taylor expansions of order four are used to
switch between the FV unknowns (Un

i )i=1,N and the FD unknowns
(Ũn

i )i=1,N+1.

Time discretization:

Classical fourth order Runge-Kutta methods.

Boundary conditions:

Periodic boundary conditions are treated.

CFL condition:

CFL-based time step restriction in the first FV sub-step ensures stability
for the entire method, overcoming restrictions from high-order
derivatives.
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Numerical validations: Solitary wave solution

Solitary waves were initially discovered in shallow water by J.S. Russell.
[Russell ’1844]

Many pdes have been derived in the literature to model the solitary wave
observed by Russell. (scalar: KdV, coupled: Boussinesq and GN).
[Serre ’53, Chen ’98]
Means: Look for traveling-wave solutions by setting a reference one ⇒
Replace the PDE into an ODE.

Examination: Third order nonlinear ODE associated to (eB) model does
not admit an explicit solution in any appropriate method. [Khorbatly et
al. ’21].
Alternatives: Numerical solution (Matlab Solver ode45).
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Numerical validations: Solitary wave solution

Comparison of the numerical solution of the ODE associated to (eB)
model using the ode45 Matlab Solver with:
- The water-waves problem (FE) (Matlab script of [Clamond, Dutykh ’13]).

- The original Green-Naghdi (GN) system, ζGN = (c2 − 1) sech2
(√

3(c2−1)
4c2 x

)
.

- The Boussinesq system, ζB = ζGN
c2 .

(a) Re-sized waves, c = 1.025, 1.01, 1.002 (b) Zoom in

The (FE) system (water-waves) solution is in better agreement with the
solution of the extended Boussinesq model rather than the GN one.

26/34



Numerical validations: Solitary wave solution

Figure: Normalized l2-norm of the errors as a function of c − 1 (log-log plot).

The (eB) model exhibit a better convergence rate (quadratic) when
compared to the original GN model (linear). This highlight the fact that
the (eB) model have a better approximate solution.
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Numerical simulations
Breaking of a regular heap of water with large wave-number:

Figure: Comparison of the numerical solutions of (eB-f) model (top) and (eB) model
(bottom) with the “improved" GN model and the GN-CH model at t = 3.

Factorizing ‘h.o’ derivatives + appropriate αopt ⇒ Improved frequency in
large wave-numbers regime.
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Numerical simulations
Dam-break problem:

Figure: Dam break: wave shape at different times, comparison between the numerical
solution of the (eB) model (solid red line) and sB model (dashed blue lines)

Larger and higher amplitude oscillations of the dispersive tail generated
by the eB model due to the ‘h.o’ nonlinear dispersive terms.
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Numerical simulations

Favre waves [Favre ’35, Treske ’94, Frazao et al. ’02]:

Figure: A sketch of Favre waves.

Due to dispersion, the uniform free surface flow impacting a wall reflects
and free surface undulations appear.

A relation between the Froude number and the upstream and
downstream water depths can be obtained [Gavrilyuk ’16]:

h0 + am

h0
=

√
1 + 8F2 − 1

2
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Numerical simulations

Figure: Comparison of Favre waves obtained by the (eB-f) model at time t = 54 s for
the Froude number F = 1.16.

Convergence is guaranteed.

The first wave amplitude is well estimated with a finer mesh.

Accurate prediction of the jump height am is provided by the eB model.
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Numerical simulations
Comparison of amplitudes of undular bores with experimental data of [Favre
’35] and [Trekse ’94].

Figure: Amplitude of undular bores for different Froude numbers from the interval
F ∈ [1.02, 1.36]

Good agreement with exp. data until the wave breaking occurs
(F ≈ 1.25). After this critical value our numerical scheme is no more valid
since it does not handle wave breaking.

32/34



Perspectives

Perspectives:
The explicit solution of the eB model remains an open problem.

Numerical resolution of the (eB-f) model in a configuration of variable
topography to seriously discriminate high order models.

Two dimensional extension to study more real-life cases.

33/34



Thank you for your attention!
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