Motivations

Quantum mechanics and cat qubit

Dissipative cat qubit

Conclusion

Stabilization of dissipative cat qubits

Rémi ROBIN,

joint work with Pierre $\operatorname{ROUCHON}$ and Lev-Arcady Sellem

PSL 😿

Quantic team, Mines Paris, Inria, ENS-PSL, CNRS, Université PSL

CANUM24, Île de Ré, May 30th, 2024

Motivations

Quantum error correction Quantum feedback

Quantum mechanics and cat qubit

Dissipative cat qubit

Conclusion

1 Motivations

Quantum error correction Quantum feedback

2 Quantum mechanics and cat qubit

Oissipative cat qubit

Motivations

Quantum error correction

- Quantum feedback
- Quantum mechanics and cat qubit
- Dissipative cat qubit
- Conclusion

Toward a quantum computer

- A qubit is a two-level quantum-mechanical system (\cong unit sphere of \mathbb{C}^2)
 - spin of a particle, polarization of a photon ...
 - a 2 dimensional subset of a higher dimensional system
 - \implies We encode a qubit in (a subset of) a physical system.
- Current experiments on qubits : 10^{-3} is the typical error probability during elementary gates (for classical computer $\leq 10^{-18}$). Shor on 2048-bit integer $\sim 10^{12}$ gates.
- Quantum Error Corrections (QEC): Use many physical qubits to encode a single logical qubit. Very costly overhead + threshold.

 \implies Protection against noise is critical and reduction by several orders of magnitude is required.

Motivations

Quantum error correction

Quantum feedback

Quantum mechanics and cat qubit

Dissipative cat qubit

Conclusion

Two kinds of quantum feedback¹

Measurement-based feedback: controller is classical; measurement back-action on the quantum system of Hilbert space \mathcal{H} is stochastic.

Coherent/autonomous feedback and reservoir/dissipation engineering: the system of Hilbert space \mathcal{H}_s is coupled to another quantum system.

 1 Wiseman/Milburn: Quantum Measurement and Control, 2009, Cambridge University Press. $_{4/23}$

Motivations

Quantum mechanics and cat qubit

> Time evolution of open quantum systems

Quantum harmonic oscillator

Coherent and cat states

Dissipative cat qubit

Conclusion

Motivations

2 Quantum mechanics and cat qubit

Time evolution of open quantum systems Quantum harmonic oscillator Coherent and cat states

Dissipative cat qubit

Motivations

Quantum mechanics and cat qubit

Time evolution of open quantum systems

Quantum harmonic oscillator

Coherent and cat states

Dissipative cat qubit

Conclusion

Time evolution of open quantum systems

 $\begin{array}{c|c} \text{Closed system} \\ \mathcal{H}: \text{ Hilbert space,} \\ |\psi\rangle \in \mathcal{H}, \||\psi\rangle\| = 1, |\psi\rangle \sim e^{i\theta} |\psi\rangle; \\ \text{(Schrödinger/Liouville)} \\ \frac{d}{dt} |\psi\rangle = -iH |\psi\rangle \Leftrightarrow \frac{d}{dt}\rho = -i[H,\rho] \\ \text{where } \rho = |\psi\rangle \langle \psi| \text{ and} \\ [H,\rho] = H\rho - \rho H \end{array}$

H hermitian operator on \mathcal{H} , L_{ν} : (unbounded) operator on \mathcal{H} .

Motivations

Quantum mechanics and cat qubit

Time evolution of open quantum systems

Quantum harmonic oscillator

Coherent and cat states

Dissipative cat qubit

Conclusion

Functional setting

- The set of bounded operators on \mathcal{H} denoted $B(\mathcal{H})$ is a von Neumann algebra.
- The predual of $B(\mathcal{H})$ can be identified with the set $\mathcal{K}^1(\mathcal{H})$ of trace-class operators using the trace as duality:

$$egin{array}{lll} \mathsf{Fr}: & \mathcal{B}(\mathcal{H}) imes \mathcal{K}^1(\mathcal{H}) & o \mathbb{C} \ & (oldsymbol{X},
ho) & \mapsto \mathsf{Tr}(oldsymbol{X}
ho) \end{array}$$

• $\mathcal{K}^1(\mathcal{H})$ is a Banach space for the norm

$$\|
ho\|_1 = \mathsf{Tr}\left(|
ho|
ight) = \mathsf{Tr}\left(\sqrt{
ho^\dagger
ho}
ight)$$

• The dual equation of

$$rac{d}{dt}
ho = -i[m{H},
ho] + \sum_j m{L}_j
ho m{L}_j^\dagger - rac{1}{2}(m{L}_j^\dagger m{L}_j
ho +
ho m{L}_j^\dagger m{L}_j)$$

is

$$\frac{d}{dt}\boldsymbol{X} = i[\boldsymbol{H}, \boldsymbol{X}] + \sum_{j} \boldsymbol{L}_{j}^{\dagger} \boldsymbol{X} \boldsymbol{L}_{j} - \frac{1}{2} (\boldsymbol{L}_{j}^{\dagger} \boldsymbol{L}_{j} \boldsymbol{X} + \boldsymbol{X} \boldsymbol{L}_{j}^{\dagger} \boldsymbol{L}_{j}).$$

Motivations

Quantum mechanics and cat qubit

Time evolution of open quantum systems

Quantum harmonic oscillator

Coherent and cat states

Dissipative cat qubit

Conclusion

A quantum dynamical semigroup $(\mathcal{T}_t)_{t\geq 0}$ is a family of operators acting on $B(\mathcal{H})$ which satisfies the following properties:

•
$$\mathcal{T}_0(oldsymbol{X}) = oldsymbol{X}$$
 for all $oldsymbol{X} \in B(\mathcal{H})$,

•
$$\mathcal{T}_{t+s}(\boldsymbol{X}) = \mathcal{T}_t(\mathcal{T}_s(\boldsymbol{X}))$$
 for all $t, s \ge 0$ and $\boldsymbol{X} \in B(\mathcal{H})$,

- $\mathcal{T}_t(\mathbb{1}) \leq \mathbb{1}$ for all $t \geq 0$,
- \mathcal{T}_t is a completely positive map for all $t \ge 0$. This means that for any finite sequences $(\mathbf{X}_j)_{1 \le j \le n}$ and $(\mathbf{Y}_j)_{1 \le j \le n}$ of element of $B(\mathcal{H})$, we have

$$\sum_{1 \leq j,l \leq n} \mathbf{Y}_l^{\dagger} \, \mathcal{T}_t(\mathbf{X}_l^{\dagger} \, \mathbf{X}_j) \, \mathbf{Y}_j \geq 0$$

- (normality) for every weakly converging sequence $(\mathbf{X}_n)_n \rightharpoonup X$ in $B(\mathcal{H})$, the sequence $(\mathcal{T}_t(\mathbf{X}_n))_n$ converges weakly towards $\mathcal{T}_t(\mathbf{X})$.
- (ultraweak continuity) for all $ho\in\mathcal{K}^1$ and $\pmb{X}\in\mathcal{B}(\mathcal{H})$, we have

$$\lim_{t\to 0^+} \operatorname{Tr}\left(\rho \mathcal{T}_t(\boldsymbol{X})\right) = \operatorname{Tr}\left(\rho \boldsymbol{X}\right).$$

Motivations

Quantum mechanics and cat qubit

> Time evolution of open quantum systems

Quantum harmonic oscillator

Coherent and cat states

Dissipative cat qubit

Conclusion

 \mathcal{L}^* is formally the adjoint of \mathcal{L} ; for **X** in (a domain in) $B(\mathcal{H})$, it takes the form

$$\mathcal{L}^*(\boldsymbol{X}) = i[\boldsymbol{H}, \boldsymbol{X}] + \sum_j D^*[\boldsymbol{L}_j](\boldsymbol{X}).$$
(1)

We introduce $\mathbf{G} = -i\mathbf{H} - \frac{1}{2}\sum_{j} \mathbf{L}_{j}^{\dagger}\mathbf{L}_{j}$ and assume that \mathbf{G} is the generator of a strongly continuous semigroup of contractions for the Hilbert norm on \mathcal{H} . We say that the quantum dynamical semigroup $(\mathcal{T}_{t})_{t\geq 0}$ is solution of Eq. (1) if and only if the following equation is satisfied:

$$egin{aligned} &\langle m{v} | \, \mathcal{T}_t(m{X}) \, | u
angle = \langle m{v} | \, m{X} \, | u
angle + \int_0^t ig(\, \langle m{v} | \, \mathcal{T}_s(m{X}) m{G} \, | u
angle \ &+ \langle m{v} | \, m{G}^\dagger \mathcal{T}_s(m{X}) \, | u
angle + \sum_j \langle m{v} | \, m{L}_j^\dagger \, \mathcal{T}_s(m{X}) \, m{L}_j \, | u
angle ig) ds \end{aligned}$$

for all $\ket{u}, \ket{v} \in D(\mathbf{G})$, $\mathbf{X} \in B(\mathcal{H})$ and $t \geq 0$.

Under a property known as conservativity of the minimal semigroup, there exists a unique semigroup solution of Eq (1) and we have $\mathcal{T}_t(\mathbb{1}) = \mathbb{1}$ for all $t \ge 0$. In this case, we say that the equation is well-posed and (\mathcal{T}_t) is a **Quantum Markov semigroup**.

Motivations

Quantum mechanics and cat qubit

Time evolution of open quantum systems

Quantum harmonic oscillator

Coherent and cat states

Dissipative cat qubit

Conclusion

Quantum harmonic oscillator

Classical	harmonic	oscillator
	$(x, p) \in \mathbb{R}^2$	

Quantum harmonic oscillator $\mathcal{H} = L^2(\mathbb{R}, \mathbb{C})$

 $\frac{d}{dt}x = \omega p = \frac{\partial H}{\partial p}$ $\frac{d}{dt}p = -\omega x = -\frac{\partial H}{\partial x}$ with $H(x, p) = \frac{\omega}{2}(x^2 + p^2)$. $\frac{d}{dt}\psi = -iH|\psi\rangle \text{ or } \frac{d}{dt}\rho = -i[H, \rho]$ with $H = \omega \left(\mathbf{X}^2 + \mathbf{P}^2\right)$ and $\mathbf{X} = \frac{x}{\sqrt{2}}, \ \mathbf{P} = -\frac{i}{\sqrt{2}}\partial_x.$

The hamiltonian H satisfies $\sigma(H) = \omega(\mathbb{N} + \frac{1}{2})$ with a (Fock) basis of eigenstates $(|n\rangle)_{n\in\mathbb{N}}$. $|0\rangle(x) = \left(\frac{\omega}{\pi}\right)^{1/4} e^{-\frac{\omega}{2}x^2}$ Define $\mathbf{a} = \mathbf{X} + i\mathbf{P} = \frac{x+\partial_x}{\sqrt{2}}$, then $\mathbf{a}^{\dagger} = \mathbf{X} - i\mathbf{P}$, $[\mathbf{a}, \mathbf{a}^{\dagger}] = I$ and $H = \omega(\mathbf{a}^{\dagger}\mathbf{a} + \frac{1}{2}I)$. In the Fock basis : $\mathbf{a} |n\rangle = \sqrt{n} |n-1\rangle$, $\mathbf{a}^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$, $\mathbf{a}^{\dagger} \mathbf{a} |n\rangle = n |n\rangle$.

Motivations

Quantum mechanics and cat qubit

Time evolution of open quantun systems

Quantum harmonic oscillator

Coherent and cat states

Dissipative cat qubit

Conclusion

Coherent states and cat states

Coherent states $|\alpha\rangle, \alpha \in \mathbb{C}$

$$\begin{split} |\alpha\rangle &= \mathrm{e}^{-|\alpha|^{2}/2}\sum_{n=0}^{\infty}\frac{\alpha^{n}}{\sqrt{n!}}\,|n\rangle\\ \mathrm{a}\,|\alpha\rangle &= \alpha\,|\alpha\rangle \end{split}$$

at states
$$\ket{+}_{\alpha}, \ket{-}_{\alpha}$$

$$\begin{split} |+\rangle_{\alpha} &= \frac{|\alpha\rangle + |-\alpha\rangle}{\mathcal{N}_{+}} \\ |-\rangle_{\alpha} &= \frac{|\alpha\rangle - |-\alpha\rangle}{\mathcal{N}_{-}} \end{split}$$

Animations from Wikipedia

 $\mathbf{e}^{-i\mathbf{a}^{\dagger}\mathbf{a}\omega t}\left|\alpha\right\rangle =\left|\mathbf{e}^{i\omega t}\alpha\right\rangle$

- Motivations
- Quantum mechanics and cat qubit
- Time evolution of open quantum systems
- Quantum harmonic oscillator
- Coherent and cat states
- Dissipative cat qubit
- Conclusion

- Quantum computers are noisy.
- Open quantum systems obey the Lindblad equation.
- The states of a quantum harmonic oscillator : L²(ℝ, ℂ) (infinite dimensional).
- Cat states $(\ket{+}_{\alpha}, \ket{-}_{\alpha}).$
- Cat qubit: the linear submanifold $\text{Span}(|+\rangle_{\alpha}, |-\rangle_{\alpha}).$

Motivations

Quantum mechanics and cat qubit

Dissipative cat qubit

Motivations

Sketch of proof

Conclusio

1 Motivations

2 Quantum mechanics and cat qubit

3 Dissipative cat qubit

Motivations Theorem Sketch of proof

A first model

Motivations

Stabilization of dissipative

cat gubits

Quantum mechanics and cat qubit

Dissipative cat qubit

Motivations

Theorem Sketch of proof

Conclusion

Idea : Use dissipation to stabilize the code space
$$\mathcal{C} = \text{Span}(|+\rangle_{\alpha}, |-\rangle_{\alpha}) \subset L^{2}(\mathbb{R}, \mathbb{C}).$$

$$\frac{d}{dt}\rho = D[L](\rho) = L\rho L^{\dagger} - \frac{1}{2}(L^{\dagger}L\rho + \rho L^{\dagger}L)$$
(2)

with $L = a^2 - \alpha^2 \operatorname{Id}$.

Theorem (Azouit, Sarlette, Rouchon, 2016)

For every density operator ρ_0 smooth enough, Equation (2) is well posed and there exists ρ_{∞} with support on C such that $\rho(t) \xrightarrow[t \to \infty]{} \rho_{\infty}$.

Main idea of the proof

 $Tr(L^{\dagger}L\rho(t))$ is a strict Lyapunov function.

Motivation

Quantum mechanics and cat qubit

Dissipative cat qubit

Motivations

Theorem Sketch of proof

Conclusion

$\begin{aligned} \frac{d}{dt}(L^{\dagger}L) &= D^{*}[L](L^{\dagger}L) \\ &= L^{\dagger}L^{\dagger}LL - \frac{1}{2}\left(L^{\dagger}LL^{\dagger}L + L^{\dagger}LL^{\dagger}L\right) \\ &= L^{\dagger}[L^{\dagger}, L]L. \end{aligned}$

Besides

Formally

$$[L^{\dagger}, L] = [(a^{\dagger})^2 - \alpha^2, a^2 - \alpha^2] = [(a^{\dagger})^2, a^2] = -2a^{\dagger}a - 2.$$

Thus formally,

$$\frac{d}{dt}\operatorname{Tr}\left(L^{\dagger}L\rho_{t}\right)\leq-2\operatorname{Tr}\left(L^{\dagger}L\rho_{t}\right).$$

Interest

Motivations

Quantum mechanics and cat qubit

Dissipative cat qubit

Motivations

Theorem Sketch of proof

Conclusion

Important features of dissipative cat qubits

- Typical noise in the cavity : $\epsilon_a D[a]$, $\epsilon_{th} D[a^{\dagger}]$, $\epsilon_d D[a^{\dagger}a]$...
- Bit-flips (|0\rangle \approx |\alpha\rangle \rightarrow |1\rangle \approx |-\alpha\rangle) are exponentially suppressed in $|\alpha|^2$
- Nevertheless, phase-flips ($|+\rangle_{\alpha} \rightarrow |-\rangle_{\alpha}$) increases linearly in $|\alpha|^2$.
- \Rightarrow bias noise.

Motivations

Quantum mechanics and cat qubit

Dissipative cat qubit

Motivations

Theorem Sketch of proof

Conclusion

How can we engineer the dissipator $D[a^2 - \alpha^2]$?

Main tool is reservoir engineering, based on an hamiltonian coupling with a quantum controller system.

- Use a second (lossy) mode denoted by $\mathcal{H}_b \implies \mathcal{H} = L^2(\mathbb{R}, \mathbb{C}) \otimes L^2(\mathbb{R}, \mathbb{C}).$
- Engineer the hamiltonian coupling $L \otimes b^{\dagger} + L^{\dagger} \otimes b$.
- We obtain the equation

$$rac{d}{dt}
ho = -ig[Lb^{\dagger} + L^{\dagger}b,
ho] + \kappa_b D[b](
ho)$$

Using adiabatic elimination (T fixed, Dim(\mathcal{H}) $< \infty$, $\kappa_b \to \infty$), we retrieve a reduced system on \mathcal{H}_a with $\frac{g^2}{4\kappa_b}D[L]$.

Exponential suppression of bit-flips in a qubit encoded in an oscillator,

R. Lescanne et al, 2020, Nature Physics.

Motivations

Quantum mechanics and cat qubit

Dissipative cat qubit

Motivatio

Theorem

Sketch of proof

Conclusio

Theorem (R., Rouchon, Sellem, 2023)

For any $g, \kappa_b > 0$, and any density operator ρ_0 , the equation

$$\begin{cases} \frac{d}{dt}\rho &= -ig[Lb^{\dagger} + L^{\dagger}b, \rho] + \kappa_b D[b](\rho) \\ \rho(t=0) &= \rho_0 \end{cases}$$
(3)

with $L = a^2 - \alpha^2 \, \text{Id}$ is well-posed and there exists ρ_∞ with support on $\mathcal{C} \otimes |0\rangle$ such that

$$\rho(t) \xrightarrow[t \to \infty]{t \to \infty} \rho_{\infty}$$

Motivations

Quantum mechanics and cat qubit

Dissipative cat qubit

Motivatio

Sketch of proof

Conclusion

Tool: A LaSalle's like invariance principle

Assume

- (Tightness) for any density operator ρ₀ and ε > 0, there exists a finite dimensional linear manifold E such that the orthogonal projector P_E on E satisfies Tr (P_Eρ_t) > 1 − ε for any t ≥ 0.
- (Density) The span of

 $\left\{ P(G^{\dagger}, b^{\dagger}) \ket{v} \otimes \ket{0} \mid \mathsf{P} \text{ non-commutative polynomial, } v \in \mathsf{Ker}\left(L
ight)
ight\}$

is dense
$$(G = -igH - \frac{\kappa_b}{2}b)$$

then

$$\operatorname{Tr}\left(\Pi_L \rho(t)\right) \xrightarrow[t \to \infty]{} 1$$

with $\Pi_L = \Pi_{\text{Ker}(L)} \otimes |0\rangle \langle 0|$.

Motivations

Quantum mechanics and cat qubit

Dissipative cat qubit

Thereas

Sketch of proof

Conclusion

Ideas of proof of the new Lasalle principle

Using the density assumption, we can prove that: For any t > 0, there exist a positive self-adjoint operator $S \ge 0$ such that

$$\begin{cases} \mathcal{T}_t(\Pi_L) \ge \Pi_L + \mathbf{S}, \\ \mathbf{S}|_{\mathcal{H}_L} = 0, \quad \mathbf{S}|_{\mathcal{H}_L^{\perp}} > 0. \end{cases}$$
(4)

 $(\mathcal{H}_L = \operatorname{Ker}(\boldsymbol{L}) \otimes |0\rangle.)$

The main tool is the following integral representation formula: for any $|u\rangle\in D(\mathbf{G}^{\infty}),$

$$\langle u | \mathcal{T}_t(\mathsf{\Pi}_L) | u \rangle = \langle u | e^{t\mathbf{G}^{\dagger}} \mathsf{\Pi}_L e^{t\mathbf{G}} | u \rangle + \kappa \int_0^t \langle u | e^{(t-s)\mathbf{G}^{\dagger}} \mathbf{b}^{\dagger} \mathcal{T}_s(\mathsf{\Pi}_L) \mathbf{b} e^{(t-s)\mathbf{G}} | u \rangle ds$$

Tightness

Motivations

Stabilization of dissipative

cat gubits

Quantum mechanics and cat qubit

Dissipative cat qubit

Motivatio

Theorem

Sketch of proof

Conclusion

- Introduce $V = \left(\frac{a^{\dagger}a}{2} + b^{\dagger}b\right)^2$ $\mathcal{L}^*(V) = ig \frac{a^{\dagger}a}{2}(b^{\dagger} - b) + ig 2b^{\dagger}b(b^{\dagger} - b) + \kappa_b b^{\dagger}b$ $-\kappa_b \frac{a^{\dagger}a}{2}b^{\dagger}b - 2\kappa_b(b^{\dagger}b)^2$
- Adding μW with $W = \mathcal{L}^*(a^{\dagger}a) = 2i(a^2b^{\dagger} (a^{\dagger})^2b)$, we can prove that there exist $C_1, C_2 > 0$ such that

$$\mathcal{L}^*(V + \mu W) \leq C_1 - C_2(V + \mu W)$$

• This (with some functional analysis) shows that if $Tr(V\rho_0) < \infty$, then $\sup_{t \in \mathbb{R}^+} Tr(\rho(t)V) < \infty$.

Density

dissipative cat qubits

Stabilization

Motivations

Quantum mechanics and cat qubit

Dissipative at qubit Motivations

Theorem

Sketch of proof

```
Conclusion
```

```
Much harder...
A key element is the fact that
```

 $\begin{aligned} & \mathsf{Span}\left\{(L^{\dagger})^{j} | v \rangle \mid j \in \mathbb{N}, \, v \in \mathsf{Ker} \, L\right\} \oplus \mathsf{Span}\left\{(L^{\dagger})^{j} [L, L^{\dagger}] | v \rangle \mid j \in \mathbb{N}, \, v \in \mathsf{Ker} \, L\right\} \\ & \mathsf{is dense in } L^{2}(\mathbb{R}, \mathbb{C}). \\ & \mathsf{Tools}: \end{aligned}$

- Segal–Bargmann representation (Holomorphic function in $L^2(\mathbb{C}, e^{-|z|^2}dz)$).
- Coherent states are the reproducing kernels of this space.
- Decomposition of the space based on zeros of some holomorphic functions using a theorem of Newman and Shapiro.

Motivations

- Quantum mechanics and cat qubit
- Dissipative cat qubit
- Conclusion

Extension and futur works

The proof works for 'multi-legged cat' ($L = a^k - \alpha^k$). Some open questions

- Extension to several dissipators (multiple ancillae, time dependent non-resonant).
- Exponential stability ? Rigorous perturbation analysis.
- A few references
 - Rémi Robin, Pierre Rouchon, and Lev-Arcady Sellem. Convergence of bipartite open quantum systems stabilized by reservoir engineering. 2023. DOI: 10.48550/arXiv.2311.10037
 - Mazyar Mirrahimi et al. "Dynamically protected cat-qubits: a new paradigm for universal quantum computation". In: *New Journal of Physics* 16.4 (2014), p. 045014. DOI: 10.1088/1367-2630/16/4/045014
 - Rémi Azouit, Alain Sarlette, and Pierre Rouchon. "Well-posedness and convergence of the Lindblad master equation for a quantum harmonic oscillator with multi-photon drive and damping". In: *ESAIM: Control, Optimisation and Calculus of Variations.* Special Issue in honor of Jean-Michel Coron for his 60th birthday 22.4 (2016), pp. 1353–1369. DOI: 10.1051/cocv/2016050
 - Franco Fagnola. "Quantum Markov Semigroups and Quantum Flows". In: Proyecciones 3 (1999). DOI: 10.22199/S07160917.1999.0003.00004