
Stabilization
of

dissipative
cat qubits

Motivations

Quantum
mechanics
and cat
qubit

Dissipative
cat qubit

Conclusion

1/23

Stabilization of dissipative cat qubits

Rémi Robin,

joint work with Pierre Rouchon and Lev-Arcady Sellem

Quantic team, Mines Paris, Inria, ENS-PSL, CNRS, Université PSL

CANUM24, Île de Ré, May 30th, 2024



Stabilization
of

dissipative
cat qubits

Motivations
Quantum
error
correction

Quantum
feedback

Quantum
mechanics
and cat
qubit

Dissipative
cat qubit

Conclusion

2/23

1 Motivations
Quantum error correction
Quantum feedback

2 Quantum mechanics and cat qubit

3 Dissipative cat qubit



Stabilization
of

dissipative
cat qubits

Motivations
Quantum
error
correction

Quantum
feedback

Quantum
mechanics
and cat
qubit

Dissipative
cat qubit

Conclusion

3/23

Toward a quantum computer

• A qubit is a two-level quantum-mechanical system (∼= unit sphere of C2)
• spin of a particle, polarization of a photon . . .
• a 2 dimensional subset of a higher dimensional system

=⇒ We encode a qubit in (a subset of) a physical system.
• Current experiments on qubits : 10−3 is the typical error probability
during elementary gates (for classical computer ≤ 10−18 ). Shor on
2048-bit integer ∼ 1012 gates.
• Quantum Error Corrections (QEC): Use many physical qubits to encode a
single logical qubit. Very costly overhead + threshold.
=⇒ Protection against noise is critical and reduction by several orders
of magnitude is required.
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Two kinds of quantum feedback1

quantum
system

classical
controller 

quantum world

classical world y

u

decoherence

Measurement-based feedback: controller
is classical; measurement back-action on
the quantum system of Hilbert space H is
stochastic.

QUANTUM WORLD

CLASSICAL WORLD

Hilbert space 

       quantum
       controller
Hilbert space

Hilbert space
   system S

decoherence

decoherence

quantum
interaction

Coherent/autonomous feedback and
reservoir/dissipation engineering: the
system of Hilbert space Hs is coupled to
another quantum system.

1Wiseman/Milburn: Quantum Measurement and Control, 2009, Cambridge University Press.
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Time evolution of open quantum systems

Closed system
H: Hilbert space,

|ψ〉 ∈ H, ‖|ψ〉‖ = 1, |ψ〉 ∼ e iθ |ψ〉;

(Schrödinger/Liouville)

d
dt |ψ〉 = −iH |ψ〉 ⇔ d

dt ρ = −i [H, ρ]

where ρ = |ψ〉 〈ψ| and
[H, ρ] = Hρ− ρH

Open system
ρ ∈ K1(H),

ρ = ρ† ≥ 0,Tr(ρ) = 1

(Lindblad)

d
dt ρ = −i [H, ρ] +

∑
ν

D[Lν ](ρ)

where
D[L](ρ) = LρL† − 1

2

(
L†Lρ+ ρL†L

)

H hermitian operator on H, Lν : (unbounded) operator on H.
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Functional setting
• The set of bounded operators on H denoted B(H) is a von Neumann

algebra.
• The predual of B(H) can be identified with the set K1(H) of trace-class

operators using the trace as duality:

Tr :B(H)×K1(H) →C
(X , ρ) 7→Tr(Xρ)

• K1(H) is a Banach space for the norm

‖ρ‖1 = Tr (|ρ|) = Tr
(√

ρ†ρ
)

• The dual equation of

d
dt ρ = −i [H, ρ] +

∑
j

LjρL†j −
1
2 (L†j Ljρ+ ρL†j Lj )

is
d
dt X = i [H,X] +

∑
j

L†j XLj −
1
2 (L†j LjX + XL†j Lj ).
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QDS

A quantum dynamical semigroup (Tt)t≥0 is a family of operators acting on
B(H) which satisfies the following properties:
• T0(X) = X for all X ∈ B(H),
• Tt+s(X) = Tt(Ts(X)) for all t, s ≥ 0 and X ∈ B(H),
• Tt(1) ≤ 1 for all t ≥ 0,
• Tt is a completely positive map for all t ≥ 0. This means that for any

finite sequences (X j )1≤j≤n and (Yj )1≤j≤n of element of B(H), we have∑
1≤j,l≤n

Y†l Tt(X†l X j ) Yj ≥ 0

• (normality) for every weakly converging sequence (Xn)n ⇀ X in B(H),
the sequence (Tt(Xn))n converges weakly towards Tt(X).

• (ultraweak continuity) for all ρ ∈ K1 and X ∈ B(H), we have

lim
t→0+

Tr (ρTt(X)) = Tr (ρX) .
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L∗ is formally the adjoint of L; for X in (a domain in) B(H), it takes the form

L∗(X) = i [H,X] +
∑

j

D∗[Lj ](X). (1)

We introduce G = −iH − 1
2
∑

j L†j Lj and assume that G is the generator of a
strongly continuous semigroup of contractions for the Hilbert norm on H.
We say that the quantum dynamical semigroup (Tt)t≥0 is solution of Eq. (1)
if and only if the following equation is satisfied:

〈v | Tt(X) |u〉 = 〈v |X |u〉+
∫ t

0

(
〈v | Ts(X)G |u〉

+ 〈v |G†Ts(X) |u〉+
∑

j

〈v |L†j Ts(X) Lj |u〉
)
ds

for all |u〉 , |v〉 ∈ D(G), X ∈ B(H) and t ≥ 0.
Under a property known as conservativity of the minimal semigroup, there
exists a unique semigroup solution of Eq (1) and we have Tt(1) = 1 for all
t ≥ 0. In this case, we say that the equation is well-posed and (Tt) is a
Quantum Markov semigroup.
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Quantum harmonic oscillator

Classical harmonic oscillator
(x , p) ∈ R2

d
dt x = ωp = ∂H

∂p
d
dt p = −ωx = −∂H

∂x

with H(x , p) = ω
2 (x2 + p2).

Quantum harmonic oscillator
H = L2(R,C)

d
dt |ψ〉 = −iH |ψ〉 or d

dt ρ = −i [H, ρ]

with H = ω
(
X2 + P2) and

X = x√
2 , P = − i√

2∂x .

The hamiltonian H satisfies σ(H) = ω(N + 1
2 ) with a (Fock) basis of

eigenstates (|n〉)n∈N.
|0〉 (x) =

(
ω
π

)1/4 e−ω
2 x2

Define a = X + iP = x+∂x√
2 , then a† = X − iP, [a, a†] = I and

H = ω(a†a + 1
2 I).

In the Fock basis : a |n〉 =
√

n |n − 1〉, a† |n〉 =
√

n + 1 |n + 1〉,
a†a |n〉 = n |n〉.
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Coherent states and cat states

Coherent states
|α〉 , α ∈ C

|α〉 = e−|α|
2/2

∞∑
n=0

αn
√

n!
|n〉

a |α〉 = α |α〉

e−ia†aωt |α〉 =
∣∣e iωtα

〉

Cat states
|+〉α , |−〉α

|+〉α = |α〉+ |−α〉
N+

|−〉α = |α〉 − |−α〉N−

Animations from Wikipedia
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• Quantum computers are noisy.
• Open quantum systems obey the Lindblad equation.
• The states of a quantum harmonic oscillator : L2(R,C) (infinite

dimensional).
• Cat states (|+〉α , |−〉α).
• Cat qubit: the linear submanifold Span(|+〉α , |−〉α).

Image from AWS
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A first model

Idea : Use dissipation to stabilize the code space
C = Span(|+〉α , |−〉α) ⊂ L2(R,C).

d
dt ρ = D[L](ρ) = LρL† − 1

2 (L†Lρ+ ρL†L) (2)

with L = a2 − α2 Id.

Theorem (Azouit, Sarlette, Rouchon, 2016)
For every density operator ρ0 smooth enough, Equation (2) is well posed and
there exists ρ∞ with support on C such that ρ(t) −−−→

t→∞
ρ∞.

Main idea of the proof
Tr(L†Lρ(t)) is a strict Lyapunov function.
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Formally

d
dt (L†L) = D∗[L](L†L)

= L†L†LL− 1
2
(
L†LL†L + L†LL†L

)
= L†[L†, L]L.

Besides

[L†, L] = [(a†)2 − α2, a2 − α2] = [(a†)2, a2] = −2a†a − 2.

Thus formally,

d
dt Tr

(
L†Lρt

)
≤ −2Tr

(
L†Lρt

)
.
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Interest

Important features of dissipative cat qubits
• Typical noise in the cavity : εaD[a], εthD[a†], εdD[a†a]. . .
• Bit-flips (|0〉 ≈ |α〉 −→ |1〉 ≈ |−α〉) are exponentially suppressed in |α|2

• Nevertheless, phase-flips (|+〉α −→ |−〉α) increases linearly in |α|2.
=⇒ bias noise.

Image from AWS
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How can we engineer the dissipator D[a2 − α2]?
Main tool is reservoir engineering, based on an hamiltonian coupling with a
quantum controller system.
• Use a second (lossy) mode denoted by Hb =⇒
H = L2(R,C)⊗ L2(R,C).

• Engineer the hamiltonian coupling L⊗ b† + L† ⊗ b.
We obtain the equation

d
dt ρ = −ig [Lb† + L†b, ρ] + κbD[b](ρ)

Using adiabatic elimination (T fixed, Dim(H) <∞, κb →∞), we retrieve a
reduced system on Ha with g2

4κb
D[L].

Exponential suppression of bit-flips in a qubit encoded in an oscillator,
R. Lescanne et al, 2020, Nature Physics.
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Theorem (R., Rouchon, Sellem, 2023)
For any g , κb > 0, and any density operator ρ0, the equation{

d
dt ρ = −ig [Lb† + L†b, ρ] + κbD[b](ρ)

ρ(t = 0) = ρ0
(3)

with L = a2 − α2 Id is well-posed and there exists ρ∞ with support on C ⊗ |0〉
such that

ρ(t) −−−→
t→∞

ρ∞



Stabilization
of

dissipative
cat qubits

Motivations

Quantum
mechanics
and cat
qubit

Dissipative
cat qubit
Motivations

Theorem

Sketch of
proof

Conclusion

19/23

Tool: A LaSalle’s like invariance principle

Assume
• (Tightness) for any density operator ρ0 and ε > 0, there exists a finite
dimensional linear manifold E such that the orthogonal projector PE on E
satisfies Tr (PEρt) > 1− ε for any t ≥ 0.

• (Density) The span of{
P(G†, b†) |v〉 ⊗ |0〉 | P non-commutative polynomial, v ∈ Ker (L)

}
is dense (G = −igH − κb

2 b).
then

Tr
(

ΠLρ(t)
)
−−−→
t→∞

1

with ΠL = ΠKer(L) ⊗ |0〉 〈0|.
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Ideas of proof of the new Lasalle principle

Using the density assumption, we can prove that:
For any t > 0, there exist a positive self-adjoint operator S ≥ 0 such that{

Tt(ΠL) ≥ ΠL + S,
S|HL = 0, S|H⊥

L
> 0. (4)

(HL = Ker (L)⊗ |0〉.)

The main tool is the following integral representation formula: for any
|u〉 ∈ D(G∞),

〈u| Tt(ΠL) |u〉 = 〈u| etG†
ΠL etG |u〉+ κ

∫ t

0
〈u| e(t−s)G†

b†Ts(ΠL) b e(t−s)G |u〉 ds
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Tightness

• Introduce V =
(

a†a
2 + b†b

)2

L∗(V ) = ig a†a
2 (b† − b) + ig2b†b(b† − b) + κbb†b

− κb
a†a
2 b†b − 2κb(b†b)2

• Adding µW with W = L∗(a†a) = 2i(a2b† − (a†)2b), we can prove that
there exist C1,C2 > 0 such that

L∗(V + µW ) ≤ C1 − C2(V + µW )

• This (with some functional analysis) shows that if Tr(V ρ0) <∞, then
supt∈R+ Tr (ρ(t)V ) <∞.
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Density

Much harder. . .
A key element is the fact that

Span
{

(L†)j |v〉 | j ∈ N, v ∈ Ker L
}
⊕ Span

{
(L†)j [L, L†] |v〉 | j ∈ N , v ∈ Ker L

}
is dense in L2(R,C).
Tools :
• Segal–Bargmann representation (Holomorphic function in

L2(C, e−|z|
2
dz)).

• Coherent states are the reproducing kernels of this space.
• Decomposition of the space based on zeros of some holomorphic
functions using a theorem of Newman and Shapiro.
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Extension and futur works
The proof works for ’multi-legged cat’ (L = ak − αk).
Some open questions
• Extension to several dissipators (multiple ancillae, time dependent
non-resonant).

• Exponential stability ? Rigorous perturbation analysis.
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