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Saddle point problems
Structure of linear systems that is encountered in many
different fields:
A BT
-B C
with

® As = 3(A+ A") SPD (hereafter, A SPD)
B Bfull rank
® C SPsD (hereafter C = 0)
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Saddle point problems

Structure of linear systems that is encountered in many

different fields:
A BT
-B C

with
® As = 3(A+ A") SPD (hereafter, A SPD)
B Bfull rank
B C SPsD (hereafter C = 0)

Examples:

B (Navier-)Sokes equations
B Constrained optimisation problems
B linear elasticity
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Saddle point in industrial context

Challenges:

B positive and negative eigenvalues = classical iterative methods
struggle

B modern applications require large systems = direct solvers impractical

Active field of research: robust and efficient preconditioners
B (implicit) hypotheses: regular grid, M-matrices, ...
B theorems and convergence bounds

Industrial context: problems often outside the hypotheses
= hope for the best.
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Classical approach for 2 x 2 saddle point problems

Ideal block preconditioner:

(—AB BCT> - (A s) /

where S = C + BA~'BT leads to optimal convergence.

Difficulty: efficient approximation of both A and S. ]

Stokes:
B A: discrete Laplacian = AMG
B S: BA™'B” = pressure mass matrix M

= Ideal preconditioner

N
e
§z
N———
=
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Classical approach for 2 x 2 saddle point problems

Ideal block preconditioner:

<—AB BCT> - <A s> ’

where S = C + BA~'BT leads to optimal convergence.

Difficulty: efficient approximation of both A and S. ]

Navier-Stokes:
B A: convection-diffusion operator = specific AMG

B S: BA~'B” = no robust approximation with the Reynolds number

= currently no robust preconditioner for incompressible
Navier-Stokes.
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PolyMAC: General principle

PolyMAC: Finite Volume (FV) generalization of the MAC
scheme to polyhedral meshes. The main unknowns are then:

® normal component of the velocity at the faces
B pressure at the cells
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PolyMAC: General principle

PolyMAC: Finite Volume (FV) generalization of the MAC
scheme to polyhedral meshes. The main unknowns are then:

® normal component of the velocity at the faces
B pressure at the cells

V4

V2 ep OV3 =

4

PolyMAC - Bacq 30 mai 2024 8



Meshes

(a) Cartesian (c) Triangles

(d) Hexahedra (e) Kershaw (f) Tetrahedras
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Towards industrial cases

Figure 2: Sodium fast reactor Assembly mesh

® More complex than FVCA meshes
B Spacer => poor cells
B No satisfactory method without efficient linear solver
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Incompressible Navier-Stokes equations

Find U and p such that

Qi+ (U-V)i—vAG+Vp = f inQ,

V-u=0 inQ,

u: fluid velocity
p: pressure
v > 0: viscosity

Q c RY: unit square in 2D (unit cube in 3D)
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PolyMAC

Reformulation of Equation (1) with the vorticity:

Momentum:  9;i+ V- (U® U)+vV x&+Vp
Vorticity: Vxi—-&
Divergence: V-

B Mimetic finite volumes (Bonelle (2014), Beltman (2018))

B Stability (star-shaped mesh) and discrete conservation law
B |ntroduction of a dual mesh
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PolyMAC: Linear System

Resulting linear system:

Wricve) R G\ [ VEY
AT im0 o] (vl =
G’ 0 0/ \ [N

C([v]%): convection = NS linearised at each time step
Without convection, symmetric matrix
Saddle-point system

M®: not diagonally dominant on deformed meshes
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Prediction-correction method

Currently, the solving step is implemented as a
correction-prediction method:

Prediction: Momentum equation on its own to find first approximation of
u

Correction: Poisson equation on pressure to enforce V-4 =0

Linear system for the prediction:

My * Myt
~N+F RN (u\ _ (Fu'—Gp
< tRT -C W - t p (4)

Solved by GMRES preconditioned by a block ILU method i.e.
both the velocity block and the Schur complement are
preconditioned by ILU.

@ PolyMAC - Bacq 30 mai 2024 16



Prediction-correction method

Currently, the solving step is implemented as a
correction-prediction method:

Prediction: Momentum equation on its own to find first approximation of
u

Correction: Poisson equation on pressure to enforce V- i =0

Linear system for the correction:

(% o) () = (o) @

Solved by a direct solver = bottleneck of the approach.
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Classical Approach for Saddle-Point problems

Block preconditioner for a Krylov subspace method:

SRR G

® fy: approximation of My
® S: approximation of S = G' M " G (typically: G' D' G).
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Classical Approach for Saddle-Point problems

Block preconditioner for a Krylov subspace method:

My My

s = (s ®)
® fy: approximation of My
® S: approximation of S = G' M " G (typically: G' D' G).

Size lterations

Cartesian | Kershaw 2D | Assembly
1 8 66 NO
2 8 82 NO
3 8 93 NO
4 8 110 /
5 10 140 /
6 10 131 /
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An algebraic transformation

Algebraic transformation of the system to give it a more suitable
structure:

® Change of variables:

G-( ) 6)
p I B/’
where Dy is the diagonal of M. The transformed system
becomes:
My (I-MyD;")G
-GT G'Dpj'G
Advantages:

® More weight on the diagonal blocks

® Pressure block has a Laplacian-like structure: C = G'D;'G
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Preconditioning the transformed system

Stokes-like system if reorder the transformed system (u «> p):

G'p,'éG -GT
(I-MyD;" G My

State-of-the-art block preconditioner:

" C= G' D" G: similar to a discrete Laplacian = AMG preconditioner
® My: mass matrix spectrally equivalent to Schur complement = 2My
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Numerical Results

Size Cartesian Kershaw 2D Assembly

Class. | Transf. || Class. | Transf. | Class. | Transf.
1 8 5 66 35 NO 88
2 8 4 82 42 NO 49
3 8 4 93 49 NO 25
4 8 4 110 54 NO 28
5 10 4 140 56 NO 33
6 10 4 131 55 NO 33
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Conclusions

Overview:

B General FV scheme for Navier-Stokes equations

B |mplemented for compressible multi-phasic flows

B Key issue identified: iterative solver

B Robust iterative solver for Correction step = full iterative process
Perspectives:

B [imitations due to the splitting approach

B [terative solver for the full 3 x 3 system

[ Thank you! Any questions? ]
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PolyMAC Control Volumes N

. P O

(a) Primal Vertex s (b) Primal Edge a (c) Primal Face f (d) Primal Cell e

(a) Dual Edge a (b) Dual Face f (c) Dual Cell e
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Mimetic methods for PolyMAC

Use of mimetic methods:

® Control volumes chosen so that differential operators have
representation based on integral theorems such as

/v-vz / V- Tioe
e e

In terms of discrete unknowns, if the divergence is discretized at the
cells and the velocity at the faces:

[V-v], |Z|f|[v1f = (D[Vlp)e

fve
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Mimetic methods for PolyMAC

Use of mimetic methods:

® Control volumes chosen so that differential operators have
representation based on integral theorems such as

/v-vz / V- Tioe
e e

In terms of discrete unknowns, if the divergence is discretized at the
cells and the velocity at the faces:

[V-v], |Z|f|[v1f = (D[Vlp)e

fve

B Approximation introduced to link primal to dual mesh
B the primal edges A to the dual edges A:
Wiz = (M) [w]y)
B the primal faces F to the dual faces F:
[Vig ~ (M® [vif).
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Choice of Control Volumes
For PolyMAC |, the control volumes are

® Velocity at the faces f and momentum at the dual faces f
B Time derivative [0;V]z = M@, [v]g

B Vorticity curl [vV x &Sl = M@AR" [w],
B Pressure gradient [Vpl= Glplg
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Choice of Control Volumes
For PolyMAC |, the control volumes are

® Velocity at the faces f and momentum at the dual faces f

B Vorticity at the edges a and its definition at the dual edges a

B Velocity curl [V x V] = A*M® [v]g

B Vorticity [wl; = MM [w],

—
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Choice of Control Volumes
For PolyMAC |, the control volumes are
® Velocity at the faces f and momentum at the dual faces f
B Vorticity at the edges a and its definition at the dual edges a

B Pressure at the dual cells e and continuity at the cells e
B Divergence [V - V], = D[vlg
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2D and 3D test problems

In 2D: rotation Navier-Stokes problem for a right-hand-side of

the form:
P y
i- (%) ©

with p(x, y) = &9

W=

In 3D: Taylor-Green vortex problem (dependence in the
viscosity).

(Extensively used in FVCA benchmarks)
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