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@ Need accurate dispersive model: Boussinesg-type systems

@ Boundary conditions are difficult to deal with
Recently: Perfectly Matched Layer, source function method — costly
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Boussinesq-Abbott system with varying bottom

Boussinesq-Abbott model written in (¢, g)-coordinates

{ 01{+0xq=0
(1 + hp75)0:q + Oxfnsw = —ghoxb

under generating boundary conditions
4(t,0) = go(t),  4(t,€) = ge(t),
with h, = Hy — b (depth at rest) and

in (0,¢), (BA)

Tol) = —iax(hzax%) O gep, (1)

3h, )

Rigid bottom
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Problematic

How to account for boundary conditions? How to recover q,_ ,?
@ Hyperbolic case (h,7p = 0): Riemann invariants
@ Dispersive case: need to invert (1 + hy7) — requires knowledge on d:q,
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Problematic

How to account for boundary conditions? How to recover q,_ ,?
@ Hyperbolic case (h,7}, = 0): Riemann invariants
@ Dispersive case: need to invert (1 + hy7) — requires knowledge on d:q,

Lannes and Weynans 2020

Equivalent writing of Boussinesq-Abbott
with flat bottom over (0, o)

@ substitute (1 + h,75) for nonlocal flux
& dispersive boundary layer

@ ODEon g,
@ local existence and unicity
@ 1st order scheme
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Problematic

How to account for boundary conditions? How to recover q,_ ,?

@ Hyperbolic case (h,7}, = 0): Riemann invariants

@ Dispersive case: need to invert (1 + hy7) — requires knowledge on d:q,

Lannes and Weynans 2020
Equivalent writing of Boussinesq-Abbott
with flat bottom over (0, o)

@ substitute (1 + h,75) for nonlocal flux
& dispersive boundary layer

@ ODEon g,
@ local existence and unicity
@ 1st order scheme

Outline of the talk

@ Reformulation over bounded domain
@ General boundary cond. & scheme
@ Varying bathymetry

© Some perspectives
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Reformulation of the model (flat bottom)

Flat bottom case (b = Cst): discharge eq. simplifies to

(1 - K205)0:q + dhsw(, @) =0 in (0,0)

Fix 0 <t < T, then y(x) = d:q(t, x) satisfies an ODE of the form
y = 12y" = $(x)
y(0) =g, y(6) =q,

Yn— &2y =0 Yo — K2y) = ¢(X)

Equivalently: y =y, +yp, with : . an
o Yh(0) = dos Va0 = G, ¥6(0) = ¥5(6) = 0
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Reformulation of the model (flat bottom)

Flat bottom case (b = Cst): discharge eq. simplifies to

(1 - K205)0:q + dhsw(, @) =0 in (0,0)

Fix 0 <t < T, then y(x) = d:q(t, x) satisfies an ODE of the form

y -y = ¢(x)
y(©0) =G, Yy =4q,

— 2y = _ 2y —
Equivalently: y =yn+Yy, with Yo = 1) v and {PTFW $(x)
¥n(0) = Q. Yn(6) = G, ¥6(0) = y5(£) = 0

Define R° as the inverse of (1 — k292,) with homogeneous Dirichlet conditions at x = 0, £

= 0iq = —R%xfusw + 50) Gy + 54,
— —

Yb Yh

(1 - K28, )50) =0 { (1 -#20%)s5¢) =0
where X and x . 2
{ 5(0)(0) = 1, 5(0)(5) =0 S([)(O) = O, S([)(f) =1 ( )
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Reformulation of the model (flat bottom)

Note R’ the inverse of (1 — «?62,) with homogeneous Neumann conditions at x = 0, ¢

= R%, = R’
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Reformulation of the model (flat bottom)

Note R’ the inverse of (1 — «?62,) with homogeneous Neumann conditions at x = 0, ¢

= R%, = R’

Proposition 1 (D. Lannes, R.)

Assume a flat bottom b = 0 and let (£, q);,_, = (£, g"). The two assertions are equivalent:
@ The pair (£, q) satisfies (BA) with generating conditions (-,0) = go and (-, €) = g,
© The pair (£, q) satisfies

0 0xq = .
Lotgot @0, )
0:q + 0x(R" fnsw) = 509G, + 504,
with the trace ODEs
(520)(0) 5{{)(0)) (%) _1 ((R1 —id)j, stw) B (Qo) ()
S0 sp@)\a,) @ \(R"—id),fusw) \&¢
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Reformulation of the model (flat bottom)

Note R’ the inverse of (1 — «?62,) with homogeneous Neumann conditions at x = 0, ¢

= R%, = R’

Proposition 1 (D. Lannes, R.)

Assume a flat bottom b = 0 and let (£, q);,_, = (£, g"). The two assertions are equivalent:
@ The pair (£, q) satisfies (BA) with generating conditions (-,0) = go and (-, €) = g,
© The pair (£, q) satisfies

{6'5 +0xq=0 in (0, 0), 3)

01 + 0x(R" fsw) = 50) Gl + 504,
with the trace ODEs

(520)(0) 5{{)(0)) (%) _1 ((R1 —id)j, stw) B (Qo) ()
S0 sp@)\a,) @ \(R"—id),fusw) \&¢

Proof: d,[discharge eq. (3)] =  0%q + (0 R fusw) = S(oy 0 + 5 Qe
—_——  ———

0 F(R'-d)sw
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More general boundary conditions

Possibility to enforce general boundary conditions

é‘a(éo’ Q|0)(t) = gO(t)» ftj(é/l(v q\/)(t) = g{’(t) (5)

For instance, £* given by g or Saint-Venant Riemann invariants

R.(U) = u+2+/gh
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More general boundary conditions

Possibility to enforce general boundary conditions
&0 (o> o)) = Go(t), &7 (g, a1 )(D) = ge(D). (5)
For instance, £* given by g or Saint-Venant Riemann invariants

R.(U) = u+2+/gh

Adapt trace ODE in terms of missing data (outgoing information &, and &;)

(sgo)(O) sgg)(0>) d (q(fa,fa))z 1 ((R' —id)|0stw)_ & (4(53,55))
2

S0 s,(0) dt\a.&)) T @\(R' —id), hew) ~ A \¢(E7. )

& & & &
—_— — —_— —
| |
0 4
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Numerical schemes for the reformulated system

Discretize (0, ¢) as follows:

X1 X2 XN-1 XN
0 Ax - Ax V4
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Numerical schemes for the reformulated system

Discretize (0, ¢) as follows:

I B B I T S B
0 Ax - Ax V4
Xi1/2
Note U" = (£, q")" the approximation of — (g) (1", s)ds.
Xi-1/2
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Numerical schemes for the reformulated system

Discretize (0, ¢) as follows:

1 Xi+1/2
Note U" = (£, q")" the approximation of — (g“

Ax q) (t", s)ds.

Xi-1/2

Time stepping procedure

Step 1: Define R' 7, as the vector v € R satisfying

2 Vi1 — 2V + Vi
Ax?
Vo — Vy VN — VN-1

= =0
Ax Ax

= stw(Ui") for ZSIS N-1

i —

Similar definition for boundary layer functions s and s.
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Numerical schemes for the reformulated system

Time stepping procedure

Step 2: Approx. trace ODEs using FD scheme to update output functions (£;)™", (,g—“;)"+1
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Numerical schemes for the reformulated system

Time stepping procedure

Step 2: Approx. trace ODEs using FD scheme to update output functions (£;)™", (7)™

Step 3: Recover border elevation and discharge from change of variables

n+1 é«( n+1 (f_) +1) 4\7/“ = é«((é_- )n+1)’ ;+1)
q?” q(g”*1 &) av’ =™, g
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Numerical schemes for the reformulated system

Time stepping procedure

Step 2: Approx. trace ODEs using FD scheme to update output functions (£;)™", (7)™

Step 3: Recover border elevation and discharge from change of variables

n+1 é«( n+1 (f_) +1) é«,rzln = é«((é_- )n+1) ;+1)
q?” q(g”*1 &) av’ =™, g

Step 4: For 2 < i < N — 1, finite volumes update with Lax-Friedrichs numerical flux

§n+1 évn 1

AT E(Qﬁuz - qln—1/2) =0
qI_n+1 _ qf 1
e —— +

A7 E((E fhsw)ict/2 = (R fisw)ict/2) = (50))i1 5 + (5()i01 G
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Numerical schemes for the reformulated system

Time stepping procedure

Step 2: Approx. trace ODEs using FD scheme to update output functions (£;)™", (7)™

Step 3: Recover border elevation and discharge from change of variables

n+1 é«( n+1 (f_) +1) é«,rzln = é«((é_- )n+1) ;+1)
q?” q(g”*1 &) av’ =™, g

Step 4: For 2 < i < N — 1, finite volumes update with Lax-Friedrichs numerical flux

§n+1 évn 1

AT E(Qﬁuz - qln—1/2) =0
qI_n+1 _ qf 1
e —— +

A7 E((E fhsw)ict/2 = (R fisw)ict/2) = (50))i1 5 + (5()i01 G

Extension to 2" order: Mac-Cormack method (prediction-correction)
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Case of a varying topography (b # Cst)

[(1+hyT5)01q + dufsw = —ghd,b |

Note R? the inverse of (1 + hy7) with homogeneous Dirichlet cond. R%9, =9, ...?
b b
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Case of a varying topography (b # Cst)

[(1+ hoT5)3q + duhusw = —ghdsb |

Note R{j the inverse of (1 + h,7}) with homogeneous Dirichlet cond. Rg(‘)X =0y...7

Lemma 1 (generalization of R°3, = 9yR")

We can construct a nonlocal operator R}, such that
hy,=Hy—b
dya\[hE : )
RO, () = (ax +B+ 7) [;" R;(L—Z)] - Rg((.)/s) with o =1+ 1(3,b)?
b B=2h"9,b
v
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Case of a varying topography (b # Cst)

[(1+ hoT5)3q + duhusw = —ghdsb |

Note R{j the inverse of (1 + h,7}) with homogeneous Dirichlet cond. Rg(’)x =0y...7

Lemma 1 (generalization of R%9, = d,R")

We can construct a nonlocal operator R}, such that

0 dar\ [ FE 0 . . hp, =Hy— b
Rbax(-)=(ax+/3+7)[;&(’7—5)]-&((.)/3) with o =1+ 1(3,b)?

Definition 1 (Nonlocal flux and source terms)

Fe _bR1(fh;782W ) B = RY( - ghdb +Bhsw) — (
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Case of a varying topography (b # Cst)

Proposition 2 (D. Lannes, R.)

Let (£,q),, = (£™, ™). The two assertions are equivalent:
@ The pair (£, q) satisfies (BA) with generating conditions (-,0) = go and (-, €) = g,
@ The pair (£, q) satisfies

0l +0xq =0,
, ) in (0, ¢) (6)
0:q + 9xi(£, ) = B(Z, q) + 6.0\ + 56,0,

and the trace equations

55.0)(0) 5.0 (0)) (G ol
(b.0) b.6) lo VAN _|¥0
(Szb,o)(f) Szb,{)(f)) (qlz + Vboundary(gm Q> 9e» Q|g) = Vlnterlor[é" q] Q[ . (7)

where Vboundary; Vinterior are known.
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Numerical schemes

@ Standard finite differences for nonlocal terms and trace ODEs
@ Finite volumes for interior equations (Lax-Friedrichs or MacCormack)

T T 0.04 T
02 Initial condition| |
e Small domain
Bathymetry 0.02 7\ A 1
= ~\ I\ \
= 0 = -~ / / I
£ g 0F > // \ \ \ \ 1
4 g \Y / \ / \ 1 \ /
£ 02 i 5 oozl \/ \ ! \ -
3 g - WV \ [ /
o 2 {7 \ /
g T 8 004f (. A
F € Vol /
? 5 / \
$ 06 1 ® 0.06 \ \ |
I o J /
[
08 F 1 ’ L Reference |
0.08 Lax-Friedrichs
— ~ MacCormack
1 ! . 0.1 -
L 0 L 2L 0 L2 L
X position (L =25 [m] X position (L = 25 [m], Ax = 2.30E-02 [m]
P P

Figure: Gaussian over bump (left: initial time, right: t = 15 [s])
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Numerical schemes

Question: starting from a wrong initial condition, can we recover the reference solution by
enforcing appropriate boundary conditions?

Mathieu Rigal

0.5 1
E °f
~
s
S 051 8
> Reference init. cond|
© = Wrong init. cond.
©
§ ERs —— Bathymetry 4
i
2
[
L 15 1
[
2r m |
-L 0 L 2L
x position (L = 25 [m], Ax = 3.26E-02 [m])
Figure: Sine over bump
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Numerical schemes

Question: starting from a wrong initial condition, can we recover the reference solution by
enforcing appropriate boundary conditions?

05 1

Free surface elevation Z [m]

1.5+ = Reference |-
O Enforcing R*

Enforcing
2 r Enforcingq | -
—— Bathymetry

-L 0 L 2L
x position (L = 25 [m], Ax = 3.26E-02 [m])

Figure: Sine over bump
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Perspectives: coupling with the shallow water model

Motivation: wave breaking with dispersive models — non physical oscillations.

NSW
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Perspectives: coupling with the shallow water model

Motivation: wave breaking with dispersive models — non physical oscillations.

NSW

0L +0xqL=0 in (0, ¢;)
h? . . . in (0,
9qu + 3x(i R;(hlg stw)) = G({L. qu) + 50) Qi + 5(er) Qlheer, 1
0 0xgr =0 .
t{r + OxQR in (61, £2)
01qr + Oxfusw(Ur) = —ghrdxb

Coupling conditions: &7 (Ury,) = &/, (U, ), &, (Uy,,) =&, (Ur,)

Boussinesg-Abboit 2 NSW A

Or11
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Perspectives: coupling with the shallow water model

Preliminary observations and ideas

@ Artifacts near coupling interface — improved with a spatial overlapping...
@ ... but difficult to interpret at continuous level

[ Fo----- 1 --------------il
(l)‘ Boussinesg-Abboit KE 2 J+ - NSW A

1 2 3 1 5 6
x position m] (Az = 0.025 [ml)

Figure: Canal & houle du LEGI (Grenoble) ; comparaison données expérimentales/simulation gl
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Perspectives: extreme waves statistics

@ Random wave generation from boundary conditions (with Philippe Bonneton)
@ |Implement method in DGFEM code (C++, with Fabien Marche & Lisl Weynans)

Time evolution of the free surface elevation
T T T

T
taat x = 0 [m
ox. data at x = 50 [m]

0.8 F ‘

06}
0.4
|

0.2

: w J ! \ fq\fm" ’W.’WHU jv

Free surface elevation ¢ [m]

0 50 100 150 200 250
Time [s]

Figure: Random signal for the elevation
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Conclusion

Boussinesq-Abbott model is accurate, but boundary conditions are challenging
Reformulation strategy allows to recover missing data

°
°
@ Extension to varying bathymetries + general boundary conditions
o Efficient 1st and 2nd order schemes

°

Numerical experiments (asymptotic stability, coupling with shallow water eq.)

\. J

Perspective: high order DGFEM code, study of extreme waves
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Conclusion

Boussinesq-Abbott model is accurate, but boundary conditions are challenging
Reformulation strategy allows to recover missing data

°
°
@ Extension to varying bathymetries + general boundary conditions
o Efficient 1st and 2nd order schemes

°

Numerical experiments (asymptotic stability, coupling with shallow water eq.)

\. J

Perspective: high order DGFEM code, study of extreme waves

Thank you for your attention!
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