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Vector-born Diseases

Vector Borne Diseases involve at least 3 components :

Vectors: usually bloodsucking arthropods like mosquitoes (malaria, dengue,
chikungunya, yellow fever, west Nile fever), ticks (Lyme disease), fleas (Black
Death)....

Hosts (Humans)

Pathogens: plasmodium (malaria), virus (dengue, chikungunya, Zika), bacteria
(Yersinia pestis for the Black Death)

Other species can be involved, for instance as reservoir (like birds for the west
Nile fever or rodents for the Black Death)
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Targeting sexual reproduction: SIT

3/24



Mosquito life cycle

Aquatic phase: egg (few days to
several months) larvae (3 days to
several weeks) pupa (1-3 days)

Adult phase: (1 month)
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Mosquito life cycle

Eggs E

Females F

Males M

ννE

δEνE

δF

δM

(1− ν)νE

βE

• βE birth rate;

• νE transition rate;

• δE , δM , δF death rates.
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Mosquito life cycle

Ė = βEF

(
1− E

K

)
−

(
νE + δE

)
E, (1)

Ṁ = (1− ν)νEE − δMM, (2)

Ḟ = ννEE − δFF, (3)
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SIT mathematical model

Sterile Insect Technique (SIT): releases of sterilized male mosquitoes. The release
function is denoted by u. Introduce a new compartment for sterilized males, denoted
Ms. Probability for a female to meet a non-sterilized male is proportional to the
proportion of them, with a preferential parameter, denoted γs

Ė = βEF

(
1− E

K

)
−

(
νE + δE

)
E, (4)

Ṁ = (1− ν)νEE − δMM, (5)

Ḟ = ννEE
M

M + γsMs
− δFF, (6)

Ṁs = u− δsMs, (7)
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Backstepping feedback stabilization result
We defined for θ > 0 and α > 0

u((xT ,Ms)
T ) := max

(
0, G((xT ,Ms)

T )
)
. (8)

G((xT ,Ms)
T ) : =

γsψE(θM +Ms)
2

α(M + γsMs)(3θM +Ms)
+

1

α
(θM −Ms)

+
((1− ν)νEθE − θδMM)(θM + 3Ms)

3θM +Ms
+ δsMs, (9)

R(θ) :=
βEννE

δF (1 + γsθ)(νE + δE)
. (10)

Theorem

Assume that Rθ < 1, then 0 is globally asymptotically stable in D = R4
+ for the

system (4)-(7) with the feedback law (8).

1
1

Agbo Bidi, Kala and Almeida, Luis and Coron, Jean-Michel (2023)

Global stabilization of sterile insect technique model by feedback laws

arXiv, 2307.00846

8/24



Numerical simulation

The parameters we use are given in the following table.

Parameter name Typical intervalValue Unit

βE Effective fecundity [7.46, 14.85] 8 Day−1

νE Hatching parameter [0.005, 0.25] 0.25 Day−1

δE Aquatic phase death rate [0.023, 0.046] 0.03 Day−1

δF Female death rate [0.033, 0.046] 0.04 Day−1

δM Males death rate [0.077, 0.139] 0.1 Day−1

δs Sterilized male death rate - 0.12 Day−1

ν Probability of emergence - 0.49
K Environmental capacity for eggs - 22200

The condition Rθ < 1 is θ > 60, 25.

We take θ = 290 and α = 90.
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Numerical simulation
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Reinforcement Learning (RL) for Control design

We denote by Fs(t) =
F (t)Ms(t)

M(t)
the non-fecondated female density and

MT (t) =M(t) +Ms(t) −→ total males (11)

FT (t) = F (t) + Fs(t) −→ total females (12)

Mathematical open question: find u(t) = f(MT (t), FT (t)) where f ∈ L∞(R2)
such that (0, 0, 0) is globally asymptotically stable and Ms is asymptotically small, i.e

lim
t→+∞

∥E(t),M(t), F (t)∥ = 0, and lim
t→+∞

Ms(t) = ε (13)

where ε can be chosen arbitrarily small (with f depend on ε) 2

2

Agbo bidi, Kala and Coron, Jean-Michel and Hayat, Amaury and Lichtlé, Nathan (2023)

Reinforcement Learning in Control Theory: A New Approach to Mathematical Problem
Solving

The 3rd Workshop on Mathematical Reasoning and AI at NeurIPS’23
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RL for control design

U∗ :=
KβEν(1− ν)ν2Eδs
4(δE + νE)δF δM

(
1− δF (νE + δE)

βEννE

)2

(14)

Theorem (Almeida et al.2022)

If u(t) = U > U∗, then (0, 0, 0, U∗/δs) is globally asymptotically stable for the system
(Σ).

Applying constant control does not consider the population decrease after an
intervention.

By deep learning the SIT model and its evolution, we want the control to adjust
instead of remaining constant.

We want to find the explicit formula of this control
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1 Discretize the equations in a numerical scheme and use those dynamics to
create a training environment by implementing the observations, actions, and
rewards.

2 Train an RL model that learns to maximize the objective function we assign
it through many simulations and obtain a numerical control feedback based on
this numerical scheme.

3 Recover an explicit mathematical control from the numerical control
feedback.

4 Perform several tests using different numerical schemes and discretizations to
ensure that the explicit control is efficient.
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Reinforcement Learning (RL) for Control design

We model the environment using the usual formalism of a partially-observable
Markov decision process (POMDP) M = (S,A, T,R, γ, µ,Ω,O) where

S ⊆ Rn is a set of states,

A ⊆ Rm a set of actions,

T : S ×A → ∆S is the state transition function (ie. T (s′|s, a) is the probability
of transitioning to state s′ given state s and action a),

R : S ×A → R is the reward function,

γ ∈ [0, 1) is the discount factor,

µ ∈ ∆(S) is the initial state distribution,

Ω ⊆ Rp is a set of observations of the hidden state,

O : S → ∆(Ω) is the observation distribution.
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Reinforcement Learning (RL) for Control design

The goal for the agent is to learn a policy πθ : Ω → ∆(A) (stochastic in our case)
mapping observations to actions, where θ are the parameters of the policy (typically
the weights of a neural network in the case of deep RL), which maximizes the
expected discounted sum of rewards

J(πθ) = Eτ∼(πθ,M)

[
∞∑
t=0

γtrt

]
(15)

where the expectation is taken over all trajectories τ = (st, at, rt)t≥0 generated by
the current policy πθ acting in the POMDP M
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Diagram representing the
procedure by which we
simulate our model in an
environment that is used
to train an RL agent,
whose policy we then
convert into an explicit
control.
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Reinforcement Learning (RL) for Control design

J(u) =

∫ T

0

c1∥E(t),M(t), F (t)∥2 + c2(t)∥Ms(t)∥2dt. (16)
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Reinforcement Learning (RL) for Control design
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Learned control

Figure: Heatmap of the model’s action u(M +MS , F + Fs) as a function of total males and
total females, in linear scale (left) and logarithmic scale (right).
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Main result

We approximate this numerical control with the explicit mathematical control

ureg(M +Ms, F + Fs) =

{
uleft
reg (M +Ms, F + Fs) if M +Ms < M∗,

uright
reg (M +Ms, F + Fs) otherwise,

(17)

where u is defined on (0,+∞)2 and

u
left
reg =


umin if I1(F + Fs) > α2,

umax (α2 − I1) if I1 ∈ (α1, α2],

umax otherwise,

u
right
reg =


umin if I2 > α2,

umax (α2 − I2) if I2 ∈ (α1, α2],

umax otherwise.

where I1(x) =
log(M∗)
log(x)

and I2(x, y) =
log(x)
log(y)

, M∗ = 200, α1 = 3, α2 = 4,

umax = 3 · 105 is imposed by physical constraints and umin can be chosen.
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Numerical simulations

Figure: Heatmap of the regression model’s action u(M +Ms, F + Fs) as a function of total
males and total females. A state-space trajectory is plotted in red, with the dot indicating
initial state and the cross final state, for the heatmap only (left) and when a small noise
µ ∼ N (0, 5) is added on top of the action (right)
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Numerical simulations

Final control: Ureg(MT , FT ) =

{
εδs if log(MT )

log(FT )
> 12,

umax otherwise,
(18)
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Numerical simulations

Final control: Ureg(MT , FT ) =

{
εδs if log(MT )

log(FT )
> 12,
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Numerical simulation

Figure: Norm of the states ∥E(t),M(t), F (t)∥2 (blue) and control vreg (red) as a function of
time for different values of umin (0, 0.001, 1, and 5 respectively from top to bottom) and
umax = 300000, over 2000 days and with the same initial condition.
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Conclusion & Perspective

Our results highlight the usefulness of machine learning and control theory in
developing effective control strategies for complex biological systems. Further
research in this field could lead to even more powerful techniques.

Thank you!

24/24



Conclusion & Perspective

Our results highlight the usefulness of machine learning and control theory in
developing effective control strategies for complex biological systems. Further
research in this field could lead to even more powerful techniques.

Thank you!

24/24
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