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Vector-born Diseases

@ Vector Borne Diseases involve at least 3 components :

e Vectors: usually bloodsucking arthropods like mosquitoes (malaria, dengue,

chikungunya, yellow fever, west Nile fever), ticks (Lyme disease), fleas (Black
Death)....

e Hosts (Humans)

e Pathogens: plasmodium (malaria), virus (dengue, chikungunya, Zika), bacteria
(Yersinia pestis for the Black Death)
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Vector-born Diseases

@ Vector Borne Diseases involve at least 3 components :

e Vectors: usually bloodsucking arthropods like mosquitoes (malaria, dengue,

chikungunya, yellow fever, west Nile fever), ticks (Lyme disease), fleas (Black
Death)....

e Hosts (Humans)

e Pathogens: plasmodium (malaria), virus (dengue, chikungunya, Zika), bacteria
(Yersinia pestis for the Black Death)

e Other species can be involved, for instance as reservoir (like birds for the west
Nile fever or rodents for the Black Death)
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Targeting sexual reproduction: SIT

Sterile Insect Technique

Mass-rearing of "
insects takes
place in special

facilities. Male and female

insects are separated.
lonizing radiation is
used to sterilize the
male insects.
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The sterile male
insects are released
over towns or
cities...

..where they
compete with
wild males to

mate with
females.
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These females lay
eggs that are
infertile and bear
no offspring,
reducing the
insect population.



Mosquito life cycle
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e Aquatic phase: egg (few days to
several months) larvae (3 days to
several weeks) pupa (1-3 days)

e Adult phase: (1 month)



Mosquito life cycle
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Mosquito life cycle
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. E
FE = BEF (1 — ?) — (I/E + 5E)E,
M = (1—v)vgE — M,

F = I/I/EE — 5FF,



SIT mathematical model

Sterile Insect Technique (SIT): releases of sterilized male mosquitoes. The release
function is denoted by u. Introduce a new compartment for sterilized males, denoted
M. Probability for a female to meet a non-sterilized male is proportional to the
proportion of them, with a preferential parameter, denoted ~s

. E
M= (1—-v)vgE —6uM, (5)
. M
F—T/VEEm —5FF, (6)
M, = u — 0sMs, (7)
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Backstepping feedback stabilization result
We defined for § > 0 and o > 0

w((z", Ms)T) := max (o, G((«7, MS)T)> . (8)

T T Vs E(OM + M,)? 1
Gz, Ms)") = (M + ~.M.)(30M + M,) + 5<9M_ M)

n (1 —=v)vgbE — 06, M) (OM + 3Ms)

30M + M, +0:Ms, (9)

ﬁEI/I/E
R(O) := . 10
() 0r (1 +vs0)(ve + 0r) (10)

Assume that Rg < 1, then 0 is globally asymptotically stable in D = Ri for the
system (4)-(7) with the feedback law (8).

1

1

D Agbo Bidi, Kala and Almeida, Luis and Coron, Jean-Michel (2023)

Global stabilization of sterile insect technique model by feedback laws
arXiv, 2307.00846
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Numerical simulation

The parameters we use are given in the following table.

Parameter name Typical intervalValue| Unit
BE Effective fecundity [7.46, 14.85] 8 [Day "
VE Hatching parameter [0.005, 0.25] 0.25 Day*
0 Aquatic phase death rate [0.023, 0.046] 0.03 Day !
SF Female death rate [0.033, 0.046] | 0.04 [Day*
oM Males death rate [0.077, 0.139] 0.1 [Day!
Os Sterilized male death rate - 0.12 Day_1
v Probability of emergence - 0.49
K Environmental capacity for eggs - 22200

@ The condition Ry < 1 is 6 > 60, 25.
@ We take 6 = 290 and a = 90.
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Numerical simulation
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(c) Females density for robustness test
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Control function
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Reinforcement Learning (RL) for Control design

2

@ Agbo bidi, Kala and Coron, Jean-Michel and Hayat, Amaury and Lichtlé, Nathan (2023)

Reinforcement Learning in Control Theory: A New Approach to Mathematical Problem
Solving

The 3rd Workshop on Mathematical Reasoning and Al at NeurIPS’23
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Reinforcement Learning (RL) for Control design

We denote by Fs(t) = %ﬂé‘;@) the non-fecondated female density and
My (t) = M(t) + Ms(t) — total males (11)
Fr(t) = F(t) 4+ Fs(t) — total females (12)

Mathematical open question: find u(t) = f(Mr(t), Fr(t)) where f € L>(R?)
such that (0,0, 0) is globally asymptotically stable and M; is asymptotically small, i.e

lim ||E(t), M(t),Ft)| =0, and lim M.(t) =e (13)

t— o0 t— o0

where € can be chosen arbitrarily small (with f depend on ¢) ?

2

Ij Agbo bidi, Kala and Coron, Jean-Michel and Hayat, Amaury and Lichtlé, Nathan (2023)

Reinforcement Learning in Control Theory: A New Approach to Mathematical Problem
Solving

The 3rd Workshop on Mathematical Reasoning and Al at NeurIPS’23

11/24



RL for control design

U = KBEV(l — I/)I/%;(SS (1 B 5F(VE —|—5E)>2 (14)

A6 + VvE)OFOMm BEVVE

Theorem (Almeida et al.2022)

If u(t) =U > U™, then (0,0,0,U"/ds) is globally asymptotically stable for the system
(%).
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U = KBEV(l — I/)I/%;(SS (1 B 5F(VE —|—5E)>2

14
40 + VE)OrOMm BEVVE (14)

Theorem (Almeida et al.2022)

If u(t) =U > U™, then (0,0,0,U"/ds) is globally asymptotically stable for the system
().

e Applying constant control does not consider the population decrease after an
intervention.
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If u(t) =U > U™, then (0,0,0,U"/ds) is globally asymptotically stable for the system

(%).

e Applying constant control does not consider the population decrease after an
intervention.

@ By deep learning the SIT model and its evolution, we want the control to adjust
instead of remaining constant.
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RL for control design

U = KBEV(l — I/)I/%;(SS (1 B 5F(VE —|—5E)>2 (14)

40 + VE)OrOMm BEVVE

Theorem (Almeida et al.2022)

If u(t) =U > U™, then (0,0,0,U"/ds) is globally asymptotically stable for the system
().

e Applying constant control does not consider the population decrease after an
intervention.

@ By deep learning the SIT model and its evolution, we want the control to adjust
instead of remaining constant.

e We want to find the explicit formula of this control
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Discretize the equations in a numerical scheme and use those dynamics to
create a training environment by implementing the observations, actions, and
rewards.

Train an RL model that learns to maximize the objective function we assign
it through many simulations and obtain a numerical control feedback based on
this numerical scheme.

Recover an explicit mathematical control from the numerical control
feedback.

Perform several tests using different numerical schemes and discretizations to
ensure that the explicit control is efficient.
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Reinforcement Learning (RL) for Control design

We model the environment using the usual formalism of a partially-observable
Markov decision process (POMDP) M = (S, A, T, R,~, i1, 2, O) where

e S CR" is a set of states,
o A CR™ a set of actions,

e T:8x A— AS is the state transition function (ie. T(s’|s,a) is the probability
of transitioning to state s’ given state s and action a),

@ R:S x A — R is the reward function,

~v € [0,1) is the discount factor,
€ A(S) is the initial state distribution,
e (2 C R? is a set of observations of the hidden state,

O :S — A(Q) is the observation distribution.
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Reinforcement Learning (RL) for Control design

The goal for the agent is to learn a policy mp : 2 — A(A) (stochastic in our case)
mapping observations to actions, where 6 are the parameters of the policy (typically
the weights of a neural network in the case of deep RL), which maximizes the
expected discounted sum of rewards

J(76) = Err(mg. M) [Z vtrt] (15)
t=0

where the expectation is taken over all trajectories T = (s¢, as, r+)t>0 generated by
the current policy 7y acting in the POMDP M
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System of
equations

Y410 . .
Diagram representing the

~—>| Environment |s, procedure by which we
) ) simulate our model in an
: environment that is used
action state reward . R
a €A s, €8 r €R to train aI'l agent,
. whose policy we then
convert into an explicit
Agent control.
-/
Explicit
control
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Reinforcement Learning (RL) for Control design

Reinforcement learning framework

We learn a control u(t) = my(s;) that maximizes the expected return E [, v, withy € (0,1).

Observations

We observe a combination of:

= Total males My (t)
= Total females Fr(t)

For better convergence, we provide states
are at several scales then normalize them:

. (min(MT(tj,kj min(FT(tj,k))
t k ? k kel

Reward function

We penalize the norm of the states:

re = ci|| E(t), M(t), F(t)|l2 + ca(8)[| M(2)]]

Around the end of the horizon, we penalize
M,(t) to encourage training convergence.

c ift <0.97,
eft) = { ’
C3+ Cy

otherwise.

J(u) = /0 ci|[E(t), M(t), F(t)|l2 + ca(t)|[ M (2)]]2dt.
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Reinforcement Learning (RL) for Control design

Training algorithm
for iteration=1,2,... do
for rollout =1,2,...,12 do in parallel
Generate a random initial condition (E, M, F, M;)(0) € [0, 50000]*
for D =0,1,...,1000 days do
Get control action U(D) = my(s;) € [0, 500000]
Run 700 simulation steps (1 week) using u(t) = U(D)
Compute reward r;
end for
end for
Optimize PPO lossi wrt. 6 to maximize expected return using data collected during
rollouts
6 + IIE';ioptinﬂuized
end for

[2] Schulman, John, et al. "Proximal policy optimization algorithms”, arXiv preprint arXiv:1707.06347 (2017).
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Learned control
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Figure: Heatmap of the model’s action u(M + Mg, F' 4+ Fs) as a function of total males and
total females, in linear scale (left) and logarithmic scale (right).
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Main result

We approximate this numerical control with the explicit mathematical control

Wt (M + M, F+ Fs)  if M + M, < M*,

right . (17>
Ureg (M + M, F + Fs)  otherwise,

ureg(M+Ms,F+Fs) — {

where u is defined on (0, +00)? and

Umin if I1 (F + Fs) > as, Umin if Io > ao,
left . ight )
uig:: Umax (2 — I1) if I1 € (a1, az], uxi = { Umax (@2 — I2) if I € (a1, as],
Umax otherwise, Umax otherwise.

where I (z) = l(ifg(\g) and Ix(x,y) = 1228, M™* =200, a1 = 3, az = 4,

Umax = 3 - 10° is imposed by physical constraints and umin can be chosen.
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Numerical simulations
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Figure: Heatmap of the regression model’s action u(M + Mg, F' + Fs) as a function of total
males and total females. A state-space trajectory is plotted in red, with the dot indicating
initial state and the cross final state, for the heatmap only (left) and when a small noise
u~ N(0,5) is added on top of the action (right)
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Numerical simulations

Final control: U,es(Mr, Fr) = {
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Numerical simulations

Using this control, M(t) is large at first then quickly decreases as did other states:

¢ log(Mr)
€ds if o (Fr) 12,

otherwise,

Final control: U,es(Mr, Fr) = {
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Final control stats 200 days 400 days 600 days 800 days

average |E| + |M|+ |F| 49 x 10 689 2.47 0.002
average | M| 2.5 x 10° 129 x 10° 2204 41.67




Numerical simulation
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Figure: Norm of the states ||E(t), M (t), F'(t)||2 (blue) and control vreg (red) as a function of

time for different values of upi, (0, 0.001, 1, and 5 respectively from top to bottom) and
Umax = 300000, over 2000 days and with the same initial condition.
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Conclusion & Perspective

Our results highlight the usefulness of machine learning and control theory in
developing effective control strategies for complex biological systems. Further
research in this field could lead to even more powerful techniques.
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Conclusion & Perspective

Our results highlight the usefulness of machine learning and control theory in
developing effective control strategies for complex biological systems. Further
research in this field could lead to even more powerful techniques.

Thank youl!
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