Magnetic skyrmions confined in a bounded domain

Antonin Monteil (Paris-Est Créteil)

 joint work with Cyrill B. Muratov (Pisa), Theresa M. Simon (Münster) and Valeriy V. Slastikov (Bristol)
mai 2024

Magnetic skyrmions

Skyrmions are particule-like topological singularities in non-centrosymmetric ferromagnets first predicted
(Bogdanov-Hubert, Bogdanov-Kudinov-Yablonskii), then observed:

Mühlbauer et al.
Science 323, 2009

Yu et al.
Nature 465, 2010

Romming et al.
Science 341, 2013

Topological degree

A H^{1} map $m: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}$ constant at infinity can be identified with a map $\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$; it carries a topological degree

$$
\operatorname{deg}(m)=\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} m \cdot \partial_{1} m \times \partial_{2} m \in \mathbb{Z}
$$

(number of times m covers \mathbb{S}^{2} counted with orientation)

Figure: Degree 1 configuration

Micromagnetic energy and DMI interaction

Given $m=\left(m^{\prime}, m_{3}\right): \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}$ magnetization,

$$
E(m)=\underbrace{d^{2} \int_{\Omega}|\nabla m|^{2}}_{\begin{array}{c}
\text { Exchange } \\
\text { energy }
\end{array}}+\underbrace{2 \kappa \int_{\Omega} m^{\prime} \cdot \nabla m_{3}}_{\text {DMI }}+\underbrace{\int_{\Omega} \phi(m)}_{\begin{array}{c}
\text { Anisotropy } \\
\\
+ \text { Zeeman }
\end{array}}+\underbrace{\int_{\mathbb{R}^{3}}|H|^{2}}_{\begin{array}{c}
\text { Stray } \\
\text { field }
\end{array}}
$$

The Dzyaloshinskii-Moriya interaction (DMI), or antisymmetric exchange energy, promotes rotation of the magnetization vector:

$$
\int_{\Omega} m^{\prime} \cdot \nabla m_{3}=\int_{-1}^{1}\left(\int_{\partial\left\{m_{3}>t\right\}}-m^{\prime} \cdot n_{\text {ext }} \mathrm{d} s\right) \mathrm{d} t
$$

Reduced 2D magnetic energy: $m: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}$,

$$
E(m)=\int_{\mathbb{R}^{2}}|\nabla m|^{2}+2 \kappa \int_{\mathbb{R}^{2}} m^{\prime} \cdot \nabla m_{3}+h \int_{\mathbb{R}^{2}}\left|m+e_{3}\right|^{2}
$$

If $h>0$ is fixed, and $\kappa>0$ is small enough then E has a minimizer among degree 1 configurations. [Melcher, 2014]

Similar results with the stray field energy
[Bernand-Mantel, Muratov, Simon, 2021]
Analogue to the Skyrme functional from nuclear physics [Esteban, '86, '90]

Topological lower bound

If $m: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}$ is a degree 1 map constant at infinity, then

$$
\int_{\mathbb{R}^{2}}|\nabla m|^{2} \geq 8 \pi
$$

Equality is achieved by the harmonic maps [Belavin-Polyakov, '75]

$$
R \Phi\left(\frac{x-x_{0}}{r}\right), \quad R \in S O(3), r>0, x_{0} \in \mathbb{R}^{2}
$$

where $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}$ is the inverse of the stereographic projection

$$
\Phi(x)=\frac{1}{1+|x|^{2}}\left(2 x, 1-|x|^{2}\right)
$$

Upper energy bound

There exists an admissible m such that

$$
\int_{\mathbb{R}^{2}}|\nabla m|^{2}+2 \kappa \int_{\mathbb{R}^{2}} m^{\prime} \cdot \nabla m_{3}+h \int_{\mathbb{R}^{2}}\left|m+e_{3}\right|^{2}<8 \pi
$$

We use a well-chosen harmonic map $R \Phi\left(\frac{x-x_{0}}{r}\right)$ with a correction at the tail so that the anisotropy remains finite.

Existence of skyrmions in confined geometry

Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain. We consider
$\min \left\{\int_{\Omega}|\nabla m|^{2}+2 \kappa \int_{\Omega} m^{\prime} \cdot \nabla m_{3}: m=-e_{3}\right.$ on $\left.\partial \Omega, \operatorname{deg}(m)=1\right\}$
The boundary condition can be achieved by :

- a boundary penalty induced by the stray field in a thin film limit :
[Kohn - Slastikov, '05] [Ignat - Kurzke, '22]
[Di Fratta - Muratov - Slastikov, '24]
- patterning the substrate with strongly anchoring material :
[Ohara-Zhang-Chen-Wei-Ma-Xia-Zhou, '21]

Proposition

If $\kappa \ll 1$, there exists a minimizer.

Asymptotics of minimizers when $\kappa \rightarrow 0$

By the energy bounds, for a family of minimizers m_{κ},

$$
\int_{\Omega}\left|\nabla m_{\kappa}\right|^{2} \rightarrow 8 \pi \quad \text { as } \kappa \rightarrow 0
$$

Hence, we expect m_{κ} to be close to a harmonic map in some sense.

Proposition

There exist $R_{\kappa} \in S O(3), r_{\kappa}>0, x_{\kappa} \in \mathbb{R}^{2}$ s.t.

$$
\left\|\nabla\left(m_{\kappa}-R_{\kappa} \Phi\left(\frac{x-x_{\kappa}}{r_{\kappa}}\right)\right)\right\|_{L^{2}} \rightarrow 0
$$

Quantitative stability estimate for harmonic maps

Theorem (Bernand-Mantel, Muratov, Simon, 2021)

For all map $m: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}$ of degree 1 and constant at infinity, we have

$$
\int_{\mathbb{R}^{2}}|\nabla m|^{2}-8 \pi \geq C_{\psi} \inf _{\text {harmonic }} \int_{\mathbb{R}^{2}}|\nabla m-\nabla \psi|^{2}
$$

for some $C>0$.
See also [Topping, 2020], [Hirsch, Zemas, 2021], [Deng, Sun, Wei, 2021], [Rupflin, 2023]

Let $\left(m_{\kappa}\right)$ be a family of minimizers for

$$
E_{\kappa}(m)=\int_{\mathbb{R}^{2}}|\nabla m|^{2}+2 \kappa m^{\prime} \cdot \nabla m_{3}, \quad m=-e_{3} \text { on } \mathbb{R}^{2} \backslash \Omega, \operatorname{deg}(m)=1
$$

By the stability estimate and energy bounds, when $\kappa \rightarrow 0$,

$$
m_{\kappa}=R_{\kappa} \Phi\left(\frac{x-x_{\kappa}}{r_{\kappa}}\right)+o(1) \quad \text { and } \quad E_{\kappa}\left(m_{\kappa}\right) \simeq 8 \pi-C \kappa^{2}
$$

Energy asymptotics

Theorem (M-Muratov-Slastikov-Simon)

For family of minimizers $\left(m_{\kappa}\right)$ with $m_{\kappa}=-e_{3}$ on $\mathbb{R}^{2} \backslash \Omega$, we have

$$
m_{\kappa}=R_{\kappa} \Phi\left(\frac{x-x_{\kappa}}{\kappa r_{\kappa}}\right)+\kappa u_{\kappa}+\operatorname{cste}_{\kappa}
$$

with, up to a subsequence

$$
\left(R_{\kappa}, x_{\kappa}, r_{\kappa}, u_{\kappa}\right) \rightarrow\left(R, x_{0}, r, u\right) \in S O(3) \times \Omega \times \mathbb{R}^{+} \times H_{\mathrm{loc}}^{1}
$$

Moreover (R, x, r, u) minimizes the limiting energy :

$$
r^{2} \int_{\mathbb{R}^{2}}|\nabla u|^{2}+2 r \int_{\mathbb{R}^{2}}(R \Phi)^{\prime} \cdot \nabla\left(R \Phi \cdot e_{3}\right), \quad u=2 \frac{x-x_{0}}{\left|x-x_{0}\right|^{2}} \text { on } \Omega^{c}
$$

The last expresion is the Γ-limit of $\frac{E_{\kappa}\left(m_{\kappa}\right)-8 \pi}{\kappa^{2}}$

Renormalized energy

Minimizing in each variable of the limiting energy
$r^{2} \int_{\mathbb{R}^{2}}|\nabla u|^{2}+2 r \int_{\mathbb{R}^{2}}(R \Phi)^{\prime} \cdot \nabla\left(R \Phi \cdot e_{3}\right), \quad u=2 \frac{x-x_{0}}{\left|x-x_{0}\right|^{2}}$ on $\mathbb{R}^{2} \backslash \Omega$
gives successively :

- $R=\mathrm{id}$,
- $x_{0} \in \operatorname{argmin} T\left(x_{0}\right)$ with

$$
T\left(x_{0}\right)=\min \left\{\int_{\mathbb{R}^{2}}|\nabla u|^{2}: u=2 \frac{x-x_{0}}{\left|x-x_{0}\right|^{2}} \text { on } \mathbb{R}^{2} \backslash \Omega\right\}
$$

- $r=4 \pi / T\left(x_{0}\right)$,

Explicit geometries

Proposition

Let $\Omega=B(0,1)$, then

$$
T\left(x_{0}\right)=\frac{16 \pi}{\left(1-\left|x_{0}\right|^{2}\right)^{2}}
$$

which is minimal at the center $x_{0}=0$.

Proposition

Let $\Omega=\mathbb{R} \times\left(-\frac{1}{2}, \frac{1}{2}\right)$, then

$$
T\left(x_{0}, y_{0}\right)=\frac{4 \pi^{3}}{\cos ^{2}\left(\pi y_{0}\right)}
$$

which is minimal when $y_{0}=0$.

Explicit geometries

Proposition

Let $\Omega=B(0,1)$, then

$$
T\left(x_{0}\right)=\frac{16 \pi}{\left(1-\left|x_{0}\right|^{2}\right)^{2}}
$$

which is minimal at the center $x_{0}=0$.

Proposition

Let $\Omega=\mathbb{R} \times\left(-\frac{1}{2}, \frac{1}{2}\right)$, then

$$
T\left(x_{0}, y_{0}\right)=\frac{4 \pi^{3}}{\cos ^{2}\left(\pi y_{0}\right)}
$$

which is minimal when $y_{0}=0$.
Merci pour votre attention!

