Magnetic skyrmions confined in a bounded domain

Antonin Monteil (Paris-Est Créteil)

joint work with Cyrill B. Muratov (Pisa), Theresa M. Simon (Münster) and Valeriy V. Slastikov (Bristol)

mai 2024

Magnetic skyrmions

Skyrmions are particule-like topological singularities in non-centrosymmetric ferromagnets first predicted (Bogdanov-Hubert, Bogdanov-Kudinov-Yablonskii), then observed:

Science 323, 2009 Nature 465, 2010 Science 341, 2013

Topological degree

A H^1 map $m: \mathbb{R}^2 \to \mathbb{S}^2$ constant at infinity can be identified with a map $\mathbb{S}^2 \to \mathbb{S}^2$; it carries a topological degree

$$\deg(m) = \frac{1}{4\pi} \int_{\mathbb{R}^2} m \cdot \partial_1 m \times \partial_2 m \in \mathbb{Z}$$

(number of times m covers \mathbb{S}^2 counted with orientation)

Figure: Degree 1 configuration

Micromagnetic energy and DMI interaction

Given $m=(m',m_3):\Omega\subset\mathbb{R}^2 o\mathbb{S}^2$ magnetization,

$$E(m) = \underbrace{\frac{d^2 \int_{\Omega} |\nabla m|^2}{Exchange}}_{Exchange} + \underbrace{\frac{\sum_{n=1}^{\infty} |\nabla m|^2}{\sum_{n=1}^{\infty} |\nabla m|^2}}_{DMI} + \underbrace{\frac{\sum_{n=1}^{\infty} |D|^2}{\sum_{n=1}^{\infty} |D|^2}}_{Anisotropy} + \underbrace{\frac{\sum_{n=1}^{\infty} |H|^2}{\sum_{n=1}^{\infty} |D|^2}}_{Exchange}$$

The Dzyaloshinskii-Moriya interaction (DMI), or antisymmetric exchange energy, promotes rotation of the magnetization vector:

$$\int_{\Omega} m' \cdot \nabla m_3 = \int_{-1}^{1} \left(\int_{\partial \{m_3 > t\}} -m' \cdot n_{\mathrm{ext}} \, \mathrm{d}s \right) \mathrm{d}t$$

Existence of skyrmions in infinite thin films

Reduced 2D magnetic energy: $m: \mathbb{R}^2 \to \mathbb{S}^2$,

$$E(m) = \int_{\mathbb{R}^2} |\nabla m|^2 + 2\kappa \int_{\mathbb{R}^2} m' \cdot \nabla m_3 + h \int_{\mathbb{R}^2} |m + e_3|^2$$

If h > 0 is fixed, and $\kappa > 0$ is small enough then E has a minimizer among degree 1 configurations. [Melcher, 2014]

Similar results with the stray field energy [Bernand-Mantel, Muratov, Simon, 2021]

Analogue to the Skyrme functional from nuclear physics [Esteban, '86, '90]

Topological lower bound

If $m:\mathbb{R}^2 \to \mathbb{S}^2$ is a degree 1 map constant at infinity, then

$$\int_{\mathbb{R}^2} |\nabla m|^2 \ge 8\pi$$

Equality is achieved by the harmonic maps [Belavin-Polyakov, '75]

$$R\Phi(\frac{x-x_0}{r}), \quad R \in SO(3), r > 0, x_0 \in \mathbb{R}^2,$$

where $\Phi:\mathbb{R}^2\to\mathbb{S}^2$ is the inverse of the stereographic projection

$$\Phi(x) = \frac{1}{1 + |x|^2} (2x, 1 - |x|^2)$$

Upper energy bound

There exists an admissible m such that

$$\int_{\mathbb{R}^2} |\nabla m|^2 + 2\kappa \int_{\mathbb{R}^2} m' \cdot \nabla m_3 + h \int_{\mathbb{R}^2} |m + e_3|^2 < 8\pi$$

We use a well-chosen harmonic map $R\Phi(\frac{x-x_0}{r})$ with a correction at the tail so that the anisotropy remains finite.

Existence of skyrmions in confined geometry

Let $\Omega \subset \mathbb{R}^2$ be a bounded domain. We consider

$$\min\Big\{\int_{\Omega}|\nabla m|^2+2\kappa\int_{\Omega}m'\cdot\nabla m_3\ :\ m=-e_3\ \text{on}\ \partial\Omega,\ \deg(m)=1\Big\}$$

The boundary condition can be achieved by :

- a boundary penalty induced by the stray field in a thin film limit : [Kohn Slastikov, '05] [Ignat Kurzke, '22] [Di Fratta Muratov Slastikov, '24]
- patterning the substrate with strongly anchoring material : [Ohara-Zhang-Chen-Wei-Ma-Xia-Zhou, '21]

Proposition

If $\kappa \ll 1$, there exists a minimizer.

Asymptotics of minimizers when $\kappa \to 0$

By the energy bounds, for a family of minimizers m_{κ} ,

$$\int_{\Omega} |\nabla m_{\kappa}|^2 o 8\pi \quad \text{as } \kappa o 0.$$

Hence, we expect m_{κ} to be close to a harmonic map in some sense.

Proposition

There exist $R_{\kappa} \in SO(3)$, $r_{\kappa} > 0$, $x_{\kappa} \in \mathbb{R}^2$ s.t.

$$\left\|\nabla\left(m_{\kappa}-R_{\kappa}\Phi\left(\frac{x-x_{\kappa}}{r_{\kappa}}\right)\right)\right\|_{L^{2}}\to 0$$

Quantitative stability estimate for harmonic maps

Theorem (Bernand-Mantel, Muratov, Simon, 2021)

For all map $m:\mathbb{R}^2 \to \mathbb{S}^2$ of degree 1 and constant at infinity, we have

$$\int_{\mathbb{R}^2} |\nabla m|^2 - 8\pi \ge C \inf_{\psi \text{ harmonic}} \int_{\mathbb{R}^2} |\nabla m - \nabla \psi|^2$$

for some C > 0.

See also [Topping, 2020], [Hirsch, Zemas, 2021], [Deng, Sun, Wei, 2021], [Rupflin, 2023]

Next order energy asymptotics

Let (m_{κ}) be a family of minimizers for

$$E_{\kappa}(m) = \int_{\mathbb{R}^2} |\nabla m|^2 + 2\kappa m' \cdot \nabla m_3, \quad m = -e_3 \text{ on } \mathbb{R}^2 \setminus \Omega, \ \deg(m) = 1$$

By the stability estimate and energy bounds, when $\kappa \to 0$,

$$m_{\kappa} = R_{\kappa} \Phi(\frac{x - x_{\kappa}}{r_{\kappa}}) + o(1)$$
 and $E_{\kappa}(m_{\kappa}) \simeq 8\pi - C\kappa^2$

Energy asymptotics

Theorem (M-Muratov-Slastikov-Simon)

For family of minimizers (m_{κ}) with $m_{\kappa} = -e_3$ on $\mathbb{R}^2 \setminus \Omega$, we have

$$m_{\kappa} = R_{\kappa} \Phi\left(\frac{x - x_{\kappa}}{\kappa r_{\kappa}}\right) + \kappa u_{\kappa} + cste_{\kappa}$$

with, up to a subsequence

$$(R_{\kappa}, \mathsf{x}_{\kappa}, \mathsf{r}_{\kappa}, \mathsf{u}_{\kappa}) \to (R, \mathsf{x}_{0}, \mathsf{r}, \mathsf{u}) \in SO(3) \times \Omega \times \mathbb{R}^{+} \times H^{1}_{\mathrm{loc}}$$

Moreover (R, x, r, u) minimizes the limiting energy :

$$r^2 \int_{\mathbb{R}^2} |\nabla \mathbf{u}|^2 + 2r \int_{\mathbb{R}^2} (R\Phi)' \cdot \nabla (R\Phi \cdot e_3), \quad \mathbf{u} = 2 \frac{x - x_0}{|x - x_0|^2} \text{ on } \Omega^c$$

The last expresion is the Γ -limit of $\frac{E_{\kappa}(m_{\kappa})-8\pi}{\kappa^2}$

Renormalized energy

Minimizing in each variable of the limiting energy

$$r^2 \int_{\mathbb{R}^2} \! |\nabla u|^2 + 2r \int_{\mathbb{R}^2} \! (R\Phi)' \cdot \nabla (R\Phi \cdot e_3), \quad u = 2 \frac{x - x_0}{|x - x_0|^2} \text{ on } \mathbb{R}^2 \setminus \Omega$$

gives successively:

- R = id,
- $x_0 \in \operatorname{argmin} T(x_0)$ with

$$T(x_0) = \min \Big\{ \int_{\mathbb{R}^2} |\nabla u|^2 : u = 2 \frac{x - x_0}{|x - x_0|^2} \text{ on } \mathbb{R}^2 \setminus \Omega \Big\},$$

•
$$r = 4\pi/T(x_0)$$
,

Explicit geometries

Proposition

Let $\Omega = B(0,1)$, then

$$T(x_0) = \frac{16\pi}{(1 - |x_0|^2)^2}$$

which is minimal at the center $x_0 = 0$.

Proposition

Let $\Omega=\mathbb{R}\times(-\frac{1}{2},\frac{1}{2})$, then

$$T(x_0, y_0) = \frac{4\pi^3}{\cos^2(\pi y_0)}$$

which is minimal when $y_0 = 0$.

Explicit geometries

Proposition

Let $\Omega = B(0,1)$, then

$$T(x_0) = \frac{16\pi}{(1 - |x_0|^2)^2}$$

which is minimal at the center $x_0 = 0$.

Proposition

Let $\Omega = \mathbb{R} \times (-\frac{1}{2}, \frac{1}{2})$, then

$$T(x_0, y_0) = \frac{4\pi^3}{\cos^2(\pi y_0)}$$

which is minimal when $y_0 = 0$.

Merci pour votre attention!

