Disentangling entropy and suboptimality in Entropic optimal transport

arXiv:2306.06940

Hugo Malamut and Maxime Sylvestre (Université Paris Dauphine PSL, CEREMADE)

May 27, 2024

Let $\rho \in \mathcal{P}_{2,ac}(\mathbb{R}^k)$ be a continuous measure with finite variance, define

$$\underbrace{H(\rho) := \int_{\mathbb{R}^k} \rho(x) \ln \rho(x) dx}_{\text{differential entropy}} \quad \text{and} \quad \underbrace{I(\rho) := \int_{\mathbb{R}^k} \rho(x) \|\nabla \ln \rho(x)\|^2 dx}_{\text{Fisher information}} \tag{1}$$

Let $\rho \in \mathcal{P}_{2,ac}(\mathbb{R}^k)$ be a continuous measure with finite variance, define

$$\underbrace{H(\rho) := \int_{\mathbb{R}^k} \rho(x) \ln \rho(x) dx}_{\text{differential entropy}} \quad \text{and} \quad \underbrace{I(\rho) := \int_{\mathbb{R}^k} \rho(x) \|\nabla \ln \rho(x)\|^2 dx}_{\text{Fisher information}} \tag{1}$$

Let $\rho \in \mathcal{P}_{2,ac}(\mathbb{R}^k)$ be a continuous measure with finite variance, define

$$\underbrace{H(\rho) := \int_{\mathbb{R}^k} \rho(x) \ln \rho(x) dx}_{\text{differential entropy}} \quad \text{and} \quad \underbrace{I(\rho) := \int_{\mathbb{R}^k} \rho(x) \|\nabla \ln \rho(x)\|^2 dx}_{\text{Fisher information}} \tag{1}$$

Let c be a C^2 cost function.

Let μ_0 , $\mu_1 \in \mathcal{P}_{ac}(\mathbb{R}^d)$ be such that $H(\mu_i) < +\infty$.

Let $\rho \in \mathcal{P}_{2,ac}(\mathbb{R}^k)$ be a continuous measure with finite variance, define

$$\underbrace{H(\rho) := \int_{\mathbb{R}^k} \rho(x) \ln \rho(x) dx}_{\text{differential entropy}} \quad \text{and} \quad \underbrace{I(\rho) := \int_{\mathbb{R}^k} \rho(x) \|\nabla \ln \rho(x)\|^2 dx}_{\text{Fisher information}} \tag{1}$$

Let c be a C^2 cost function.

Let $\mu_0, \mu_1 \in \mathcal{P}_{ac}(\mathbb{R}^d)$ be such that $H(\mu_i) < +\infty$.

For $\varepsilon \geq 0$

$$OT_{\varepsilon}(\mu_0, \mu_1) := \inf_{\gamma \in \Pi(\mu_0, \mu_1)} \int c d\gamma + \varepsilon H(\gamma)$$
 (ε EOT)

Peyré and Cuturi (2018)

Let $\rho \in \mathcal{P}_{2,ac}(\mathbb{R}^k)$ be a continuous measure with finite variance, define

$$\underbrace{H(\rho) := \int_{\mathbb{R}^k} \rho(x) \ln \rho(x) dx}_{\text{differential entropy}} \quad \text{and} \quad \underbrace{I(\rho) := \int_{\mathbb{R}^k} \rho(x) \|\nabla \ln \rho(x)\|^2 dx}_{\text{Fisher information}} \tag{1}$$

Let c be a C^2 cost function.

Let $\mu_0, \mu_1 \in \mathcal{P}_{ac}(\mathbb{R}^d)$ be such that $H(\mu_i) < +\infty$.

For $\varepsilon \geq 0$

$$OT_{arepsilon}(\mu_0,\mu_1) := \inf_{\gamma \in \Pi(\mu_0,\mu_1)} \int c \mathrm{d}\gamma + \varepsilon H(\gamma)$$
 (ε EOT)

Question : What happens when $\varepsilon \to 0$?

Prior Works

Qualitative convergence results.

• Γ-convergence : [Mik04],[MT08],[Lé13],[CDPS15]

Quantitative convergence results.

- Discrete optimal transport : [CM94]
- Semi-discrete optimal transport : [ANWS21],[Del21]
- Finite Fisher information : [ADPZ11],[EMR15],[Con19]
- Finite entropy: [Pal19],[EN22],[CPT22]
- Multimarginal : [NP23]
- Sinkhorn divergence: [FSV⁺18, CRL⁺20]

Convergence of the value

Proposition [ADPZ11][EMR15]

Assume $c(x,y) = \frac{1}{2}||x-y||^2$, and that $Supp(\mu_i)$ are compact with $I(\mu_i) < +\infty$ then

$$OT_{\varepsilon} - OT_0 = -\frac{d}{2}\varepsilon \ln(2\pi\varepsilon) + \varepsilon \frac{H(\mu_0) + H(\mu_1)}{2} + o(\varepsilon)$$
 (TE-OT _{ε})

Convergence of the value

Proposition [ADPZ11][EMR15]

Assume $c(x,y) = \frac{1}{2}||x-y||^2$, and that $Supp(\mu_i)$ are compact with $I(\mu_i) < +\infty$ then

$$OT_{\varepsilon} - OT_{0} = -\frac{d}{2}\varepsilon \ln(2\pi\varepsilon) + \varepsilon \frac{H(\mu_{0}) + H(\mu_{1})}{2} + o(\varepsilon)$$
 (TE-OT _{ε})

Proposition [EN22, CPT22]

Assume c is infinitesimally twisted and $Supp(\mu_i)$ compact then

$$\left(-\frac{d}{2}\varepsilon\ln(\varepsilon) + C'\varepsilon \le \right)OT_{\varepsilon} - OT_{0} \le -\frac{d}{2}\varepsilon\ln(\varepsilon) + C\varepsilon \tag{2}$$

Questions

Question 1:

$$OT_{\varepsilon} - OT_0 = \underbrace{\int c d\gamma_{\varepsilon} - \int c d\gamma_0}_{suboptimality} + \varepsilon \underbrace{H(\gamma_{\varepsilon})}_{entropy}$$

Can we disentangle?

Questions

Question 1:

$$OT_{\varepsilon} - OT_0 = \underbrace{\int c d\gamma_{\varepsilon} - \int c d\gamma_0}_{suboptimality} + \varepsilon \underbrace{H(\gamma_{\varepsilon})}_{entropy}$$

Can we disentangle?

Question 2:

Is there a rate of convergence for $W_2(\gamma_{\varepsilon}, \gamma_0)$?

Fisher information and quadratic

cost

Theorem [MS23]

Suppose that the cost is quadratic, that is $c(x,y) = \frac{1}{2}||x-y||^2$. Further assume that $I(\mu_i) < \infty$ and $Supp(\mu_i)$ compact. Then

Theorem [MS23]

Suppose that the cost is quadratic, that is $c(x,y) = \frac{1}{2}||x-y||^2$. Further assume that $I(\mu_i) < \infty$ and $Supp(\mu_i)$ compact. Then

$$H(\gamma_{\varepsilon}) = -\frac{d}{2}\ln(2\pi\varepsilon) + H_m - \frac{d}{2} + o(1)$$
 (3)

where
$$H_m=rac{H(\mu_0)+H(\mu_1)}{2}$$
.

Theorem [MS23]

Suppose that the cost is quadratic, that is $c(x,y) = \frac{1}{2}||x-y||^2$. Further assume that $I(\mu_i) < \infty$ and $Supp(\mu_i)$ compact. Then

$$H(\gamma_{\varepsilon}) = -\frac{d}{2}\ln(2\pi\varepsilon) + H_m - \frac{d}{2} + o(1)$$
 (3)

where $H_m = \frac{H(\mu_0) + H(\mu_1)}{2}$. Moreover

$$\int c d\gamma_{\varepsilon} - \int c d\gamma_{0} = \frac{d}{2}\varepsilon + o(\varepsilon)$$
 (4)

Recall $H_m = \frac{H(\mu_0) + H(\mu_1)}{2}$. The dynamic formulation [Lé13] is

$$OT_{\varepsilon} = \varepsilon H_m - \frac{d}{2}\varepsilon \ln(2\pi\varepsilon) + \min_{\substack{\partial \rho + \nabla \cdot (\rho v) = 0 \\ \partial \rho = u_0}} \iint \frac{1}{2} |v_t|^2 d\rho_t dt + \frac{\varepsilon^2}{8} \int_0^1 I(\rho_t) dt \qquad (\varepsilon BB)$$

Recall $H_m = \frac{H(\mu_0) + H(\mu_1)}{2}$. The dynamic formulation [Lé13] is

$$OT_{\varepsilon} = \varepsilon H_{m} - \frac{d}{2}\varepsilon \ln(2\pi\varepsilon) + \min_{\substack{\partial \rho + \nabla \cdot (\rho v) = 0 \\ \rho_{0} = \mu_{0}, \rho_{1} = \mu_{1}}} \iint \frac{1}{2}|v_{t}|^{2} d\rho_{t} dt + \frac{\varepsilon^{2}}{8} \int_{0}^{1} I(\rho_{t}) dt \qquad (\varepsilon BB)$$

Known asymptotics (TE-OT $_{\varepsilon}$) is

$$OT_{\varepsilon} - OT_{0} = -\frac{d}{2}\varepsilon \ln(2\pi\varepsilon) + \varepsilon H_{m} + o(\varepsilon)$$
 (TE-OT_{\varepsilon})

Recall $H_m = \frac{H(\mu_0) + H(\mu_1)}{2}$. The dynamic formulation [Lé13] is

$$OT_{\varepsilon} = \varepsilon H_m - \frac{d}{2}\varepsilon \ln(2\pi\varepsilon) + \iint \frac{1}{2}|v_t^{\varepsilon}|^2 d\rho_t^{\varepsilon} dt + \frac{\varepsilon^2}{8} \int_0^1 I(\rho_t^{\varepsilon}) dt \qquad (\varepsilon BB)$$

Known asymptotics (TE-OT $_{\varepsilon}$) is

$$OT_{\varepsilon} - OT_0 + \frac{d}{2}\varepsilon \ln(2\pi\varepsilon) - \varepsilon H_m = o(\varepsilon)$$
 (5)

Recall $H_m = \frac{H(\mu_0) + H(\mu_1)}{2}$. The dynamic formulation [Lé13] is

$$OT_{\varepsilon} = \varepsilon H_{m} - \frac{d}{2}\varepsilon \ln(2\pi\varepsilon) + \iint \frac{1}{2} |v_{t}^{\varepsilon}|^{2} d\rho_{t}^{\varepsilon} dt + \frac{\varepsilon^{2}}{8} \int_{0}^{1} I(\rho_{t}^{\varepsilon}) dt \qquad (\varepsilon BB)$$

Known asymptotics (TE-OT $_{\varepsilon}$) is

$$OT_{\varepsilon} - OT_0 + \frac{d}{2}\varepsilon \ln(2\pi\varepsilon) - \varepsilon H_m = o(\varepsilon)$$
 (5)

Thus thanks to (ε BB)

$$\frac{1}{\varepsilon} \underbrace{\left(\iint \frac{1}{2} |v_t^{\varepsilon}|^2 d\rho_t^{\varepsilon} dt - OT_0 \right)}_{suboptimality} + \frac{\varepsilon}{8} \underbrace{\int_0^1 I(\rho_t^{\varepsilon}) dt}_{regularity \ term} = o(1)$$
 (6)

Recall $H_m = \frac{H(\mu_0) + H(\mu_1)}{2}$. The dynamic formulation [Lé13] is

$$OT_{\varepsilon} = \varepsilon H_{m} - \frac{d}{2}\varepsilon \ln(2\pi\varepsilon) + \iint \frac{1}{2} |v_{t}^{\varepsilon}|^{2} d\rho_{t}^{\varepsilon} dt + \frac{\varepsilon^{2}}{8} \int_{0}^{1} I(\rho_{t}^{\varepsilon}) dt \qquad (\varepsilon BB)$$

Known asymptotics (TE-OT $_{\varepsilon}$) is

$$OT_{\varepsilon} - OT_0 + \frac{d}{2}\varepsilon \ln(2\pi\varepsilon) - \varepsilon H_m = o(\varepsilon)$$
 (5)

Thus thanks to (ε BB)

$$\frac{1}{\varepsilon} \underbrace{\left(\iint \frac{1}{2} |v_t^{\varepsilon}|^2 d\rho_t^{\varepsilon} dt - OT_0 \right)}_{suboptimality} + \frac{\varepsilon}{8} \underbrace{\int_0^1 I(\rho_t^{\varepsilon}) dt}_{regularity\ term} = o(1)$$
 (6)

Since both terms are positive they both tend to 0.

From dynamic to static and back

$$\underbrace{\int c d\gamma_{\varepsilon} + \varepsilon H(\gamma_{\varepsilon})}_{\text{(a) static}} = \underbrace{\varepsilon H_{m} - \frac{d}{2}\varepsilon \ln(2\pi\varepsilon)}_{\text{(b)}} + \underbrace{\iint \frac{1}{2}|v_{t}^{\varepsilon}|^{2}d\rho_{t}^{\varepsilon}dt + \frac{\varepsilon^{2}}{8}\int_{0}^{1}I(\rho_{t}^{\varepsilon})dt}_{\text{(c) dynamic}}$$
(\varepsilon BB)

From dynamic to static and back

$$\underbrace{\int c d\gamma_{\varepsilon} + \varepsilon H(\gamma_{\varepsilon})}_{\text{(a) static}} = \underbrace{\varepsilon H_{m} - \frac{d}{2}\varepsilon \ln(2\pi\varepsilon)}_{\text{(b)}} + \underbrace{\iint \frac{1}{2}|v_{t}^{\varepsilon}|^{2}d\rho_{t}^{\varepsilon}dt + \frac{\varepsilon^{2}}{8}\int_{0}^{1}I(\rho_{t}^{\varepsilon})dt}_{\text{(c) dynamic}}$$
(\varepsilon BB)

Envelop theorem

$$\frac{d}{d\varepsilon}(a) = \frac{d}{d\varepsilon}(b) + \frac{d}{d\varepsilon}(c)$$

$$H(\gamma_{\varepsilon}) = H_m - \frac{d}{2}\ln(2\pi\varepsilon) - \frac{d}{2} + \frac{\varepsilon}{4}\int I(\rho_t^{\varepsilon})dt$$

From dynamic to static and back

$$\underbrace{\int c d\gamma_{\varepsilon} + \varepsilon H(\gamma_{\varepsilon})}_{\text{(a) static}} = \underbrace{\varepsilon H_{m} - \frac{d}{2}\varepsilon \ln(2\pi\varepsilon)}_{\text{(b)}} + \underbrace{\int \int \frac{1}{2}|v_{t}^{\varepsilon}|^{2} d\rho_{t}^{\varepsilon} dt + \frac{\varepsilon^{2}}{8} \int_{0}^{1} I(\rho_{t}^{\varepsilon}) dt}_{\text{(c) dynamic}}$$
(\varepsilon BB)

Envelop theorem

$$\frac{d}{d\varepsilon}(a) = \frac{d}{d\varepsilon}(b) + \frac{d}{d\varepsilon}(c)$$

$$H(\gamma_{\varepsilon}) = H_{m} - \frac{d}{2}\ln(2\pi\varepsilon) - \frac{d}{2} + \frac{\varepsilon}{4}\int I(\rho_{t}^{\varepsilon})dt$$

$$\left\{ \int cd\gamma_{\varepsilon} - OT_{0} = \iint \frac{1}{2}|v_{t}^{\varepsilon}|^{2}d\rho_{t}^{\varepsilon}dt - OT_{0} - \frac{\varepsilon^{2}}{8}\int I(\rho_{t}^{\varepsilon})dt + \frac{d}{2}\varepsilon \right.$$

$$H(\gamma_{\varepsilon}) = \frac{\varepsilon}{4}\int_{0}^{1}I(\rho_{t}^{\varepsilon})dt - \frac{d}{2}\ln(2\pi\varepsilon) + H_{m} - \frac{d}{2}$$

Quadratic cost without Fisher

information

Theorem [MS23]

Suppose that the cost is quadratic, that is $c(x,y) = \frac{1}{2}||x-y||^2$. Further assume that $Supp(\mu_i)$ compact.

Theorem [MS23]

Suppose that the cost is quadratic, that is $c(x,y) = \frac{1}{2}||x-y||^2$. Further assume that $Supp(\mu_i)$ compact. Then

$$\int c d\gamma_{\varepsilon} - \int c d\gamma_{0} = \Theta(\varepsilon), \quad H(\gamma_{\varepsilon}) = -\frac{d}{2} \ln(\varepsilon) + O(1), \tag{8}$$

$$W_2(\gamma_{\varepsilon}, \gamma_0) \ge C\sqrt{\varepsilon}.$$
 (9)

Theorem [MS23]

Suppose that the cost is quadratic, that is $c(x,y) = \frac{1}{2}||x-y||^2$. Further assume that $\mu_i \in \mathcal{P}_{2+\delta,ac}$ for some $\delta > 0$ and that the Monge map ∇f is Lipschitz. Then

$$\int c d\gamma_{\varepsilon} - \int c d\gamma_{0} = \Theta(\varepsilon), \quad H(\gamma_{\varepsilon}) = -\frac{d}{2} \ln(\varepsilon) + O(1)$$
 (10)

$$C_1\sqrt{\varepsilon} \ge W_2(\gamma_{\varepsilon}, \gamma_0) \ge C_2\sqrt{\varepsilon}$$
 (11)

Theorem [MS23]

Suppose that the cost is quadratic, that is $c(x,y) = \frac{1}{2}||x-y||^2$. Further assume that $\mu_i \in \mathcal{P}_{2+\delta,ac}$ for some $\delta > 0$ and that the Monge map ∇f is Lipschitz. Then

$$\int c d\gamma_{\varepsilon} - \int c d\gamma_{0} = \Theta(\varepsilon), \quad H(\gamma_{\varepsilon}) = -\frac{d}{2} \ln(\varepsilon) + O(1)$$
 (10)

$$C_1\sqrt{\varepsilon} \ge W_2(\gamma_{\varepsilon}, \gamma_0) \ge C_2\sqrt{\varepsilon}$$
 (11)

Key idea:

"If $W_2(\gamma, \gamma_0)$ is small, then $H(\gamma)$ explodes"

Theorem [MS23]

Suppose that the cost is quadratic, that is $c(x,y) = \frac{1}{2}||x-y||^2$. Further assume that $\mu_i \in \mathcal{P}_{2+\delta,ac}$ for some $\delta > 0$ and that the Monge map ∇f is Lipschitz. Then

$$\int c d\gamma_{\varepsilon} - \int c d\gamma_{0} = \Theta(\varepsilon), \quad H(\gamma_{\varepsilon}) = -\frac{d}{2} \ln(\varepsilon) + O(1)$$
 (10)

$$C_1\sqrt{\varepsilon} \ge W_2(\gamma_{\varepsilon}, \gamma_0) \ge C_2\sqrt{\varepsilon}$$
 (11)

Key idea:

"If $W_2(\gamma, \gamma_0)$ is small, then $H(\gamma)$ explodes"

"If $\int cd\gamma - \int cd\gamma_0$ is small, then $H(\gamma)$ explodes"

"Normal distributions minimize the entropy at fixed variance"

$$H(\gamma) \geq H(\mathcal{N}(\mathbb{E}(\gamma), Var(\gamma))),$$

$$H(\gamma) \geq H(\mathcal{N}(\mathbb{E}(\gamma), Var(\gamma))),$$

$$H(\gamma) \ge -d \ln(Var(\gamma)) - d \ln(\frac{2\pi e}{d}).$$

$$H(\gamma) \geq H(\mathcal{N}(\mathbb{E}(\gamma), Var(\gamma))),$$

$$H(\gamma) \geq -d \ln(Var(\gamma)) + C_d$$
.

$$H(\gamma) \geq H(\mathcal{N}(\mathbb{E}(\gamma), Var(\gamma))),$$

$$H(\gamma) \geq -d \ln W_2^2(\gamma, \delta_{\mathbb{E}(\gamma)}) + C_d.$$

$$H(\gamma) \geq H(\mathcal{N}(\mathbb{E}(\gamma), Var(\gamma))),$$

$$H(\gamma) \geq -2d \ln W_2(\gamma, \delta_{\mathbb{E}(\gamma)}) + C_d.$$

Choose $a \in \mathbb{R}^{2d}$.

For $\gamma \in \mathcal{P}_{2,ac}(\mathbb{R}^{2d})$,

$$H(\gamma) \geq -2d \ln W_2(\gamma, \delta_a) + C_d$$

Choose $a \in \mathbb{R}^{2d}$.

For $\gamma \in \mathcal{P}_{2,ac}(\mathbb{R}^{2d})$,

$$H(\gamma) \geq -2d \ln W_2(\gamma, \delta_a) + C_d$$

Idea: This is not true only for diracs:

Choose $a \in \mathbb{R}^{2d}$.

For $\gamma \in \mathcal{P}_{2,ac}(\mathbb{R}^{2d})$,

$$H(\gamma) \geq -2d \ln W_2(\gamma, \delta_a) + C_d$$

Idea : This is not true only for diracs:

If $\gamma_0 \in \mathcal{P}(\mathbb{R}^{2d})$ "is of dimension k,"

$$\forall \gamma \in \mathcal{P}_{2,ac}(\mathbb{R}^{2d}) \quad H(\gamma) \ge -(2d-k) \ln W_2(\gamma,\gamma_0) + C(\gamma_0)$$

Choose $a \in \mathbb{R}^{2d}$.

For $\gamma \in \mathcal{P}_{2,ac}(\mathbb{R}^{2d})$,

$$H(\gamma) \geq -2d \ln W_2(\gamma, \delta_a) + C_d$$

Idea : This is not true only for diracs:

If $\gamma_0 \in \mathcal{P}(\mathbb{R}^{2d})$ "is of dimension k,"

$$\forall \gamma \in \mathcal{P}_{2,ac}(\mathbb{R}^{2d}) \quad H(\gamma) \ge -(2d-k) \ln W_2(\gamma, \gamma_0) + C(\gamma_0)$$

In our case γ_0 is of dimension d (Brenier theorem):

$$H(\gamma_{\varepsilon}) \geq -d \ln W_2(\gamma_{\varepsilon}, \gamma_0) + C(\gamma_0)$$

Choose $a \in \mathbb{R}^{2d}$.

For $\gamma \in \mathcal{P}_{\mathsf{2,ac}}(\mathbb{R}^{2d})$,

$$H(\gamma) \geq -2d \ln W_2(\gamma, \delta_a) + C_d$$

Idea: This is not true only for diracs:

If $\gamma_0 \in \mathcal{P}(\mathbb{R}^{2d})$ "is of dimension k,"

$$\forall \gamma \in \mathcal{P}_{2,ac}(\mathbb{R}^{2d}) \quad H(\gamma) \geq -(2d-k) \ln W_2(\gamma,\gamma_0) + C(\gamma_0)$$

In our case γ_0 is of dimension d (Brenier theorem):

$$H(\gamma_arepsilon)\gtrsim -rac{d}{2}\ln\,W_2^2(\gamma_arepsilon,\gamma_0)$$

$$H(\gamma_arepsilon)\gtrsim -rac{d}{2}\ln\,W_2^2(\gamma_arepsilon,\gamma_0)$$

$$H(\gamma_{arepsilon})\gtrsim -rac{d}{2}\ln\,W_2^2(\gamma_{arepsilon},\gamma_0)$$

From the existing litterature,

$$-\frac{d}{2}\varepsilon\ln(\varepsilon)\gtrsim OT_\varepsilon-OT_0\geq \varepsilon H(\gamma_\varepsilon)$$

$$H(\gamma_arepsilon)\gtrsim -rac{d}{2}\ln W_2^2(\gamma_arepsilon,\gamma_0)$$

From the existing litterature,

$$-rac{d}{2}arepsilon\ln(arepsilon)\gtrsim OT_arepsilon-OT_0\geq arepsilon H(\gamma_arepsilon)$$

Combining both,

$$W_2^2(\gamma_{\varepsilon},\gamma_0)\gtrsim \sqrt{\varepsilon}.$$

$$H(\gamma_arepsilon)\gtrsim -rac{d}{2}\ln\,W_2^2(\gamma_arepsilon,\gamma_0)$$

$$H(\gamma_{arepsilon})\gtrsim -rac{d}{2}\ln\,W_2^2(\gamma_{arepsilon},\gamma_0)$$

True because $W_2^2(\gamma_{\varepsilon},\gamma_0)$ measures the transverse distance between γ_{ε} and γ_0

$$H(\gamma_{arepsilon})\gtrsim -rac{d}{2}\ln\,W_2^2(\gamma_{arepsilon},\gamma_0)$$

True because $W_2^2(\gamma_\varepsilon,\gamma_0)$ measures the transverse distance between γ_ε and γ_0

$$H(\gamma_{arepsilon})\gtrsim -rac{d}{2}\ln\,W_2^2(\gamma_{arepsilon},\gamma_0)$$

$$H(\gamma_{arepsilon})\gtrsim -rac{d}{2}\ln\,W_2^2(\gamma_{arepsilon},\gamma_0)$$

True because $W_2^2(\gamma_{arepsilon},\gamma_0)$ measures the transverse distance between $\gamma_{arepsilon}$ and γ_0

$$"H(\gamma_{arepsilon}) \gtrsim -rac{d}{2}\ln(\int c \mathrm{d}\gamma_{arepsilon} - \int c \mathrm{d}\gamma_{0})"$$

$$H(\gamma_arepsilon)\gtrsim -rac{d}{2}\ln(\int c \mathrm{d}\gamma_arepsilon - \int c \mathrm{d}\gamma_0)$$

$$H(\gamma_arepsilon)\gtrsim -rac{d}{2}\ln(\int c \mathrm{d}\gamma_arepsilon - \int c \mathrm{d}\gamma_0)$$

From the existing litterature

$$-\frac{d}{2}\varepsilon\ln(\varepsilon)+C\varepsilon\geq\int c\mathrm{d}\gamma_{\varepsilon}-\int c\mathrm{d}\gamma_{0}+\varepsilon H(\gamma_{\varepsilon})$$

$$H(\gamma_{arepsilon})\gtrsim -rac{d}{2}\ln(\int c\mathrm{d}\gamma_{arepsilon}-\int c\mathrm{d}\gamma_{0})$$

From the existing litterature

$$-\frac{d}{2}\varepsilon\ln(\varepsilon)+C\varepsilon\geq\int c\mathrm{d}\gamma_{\varepsilon}-\int c\mathrm{d}\gamma_{0}+\varepsilon H(\gamma_{\varepsilon})$$

Combining both,

$$C \geq \frac{\int c d\gamma_{\varepsilon} - \int c d\gamma_{0}}{\varepsilon} - \frac{d}{2} \ln \left(\frac{\int c d\gamma_{\varepsilon} - \int c d\gamma_{0}}{\varepsilon} \right)$$

(15)

$$H(\gamma_{\varepsilon}) \gtrsim -\frac{d}{2} \ln(\int c d\gamma_{\varepsilon} - \int c d\gamma_{0})$$

From the existing litterature

$$-\frac{d}{2}\varepsilon\ln(\varepsilon)+C\varepsilon\geq\int c\mathrm{d}\gamma_{\varepsilon}-\int c\mathrm{d}\gamma_{0}+\varepsilon H(\gamma_{\varepsilon})$$

Combining both,

$$C \geq rac{\int c ext{d} \gamma_arepsilon - \int c ext{d} \gamma_0}{arepsilon} - rac{d}{2} \ln \left(rac{\int c ext{d} \gamma_arepsilon - \int c ext{d} \gamma_0}{arepsilon}
ight)$$

(15)

the map $x \mapsto x - \frac{d}{2} \ln(x)$ is coercive, so

$$C_1 \varepsilon \leq \int c d\gamma_{\varepsilon} - \int c d\gamma_0 \leq C_2 \varepsilon$$

Key point

For the problem

$$\min_{\gamma} \int c d\gamma + \varepsilon H(\gamma)$$
,

We got an estimate of the type :

Key point

For the problem

$$\min_{\gamma} \int c d\gamma + \varepsilon H(\gamma),$$

We got an estimate of the type:

"If the suboptimality $\int c d\gamma - \int c d\gamma_0$ is small enough, then the entropy explodes"

Key point

For the problem

$$\min_{\gamma} \int c d\gamma + \varepsilon H(\gamma),$$

We got an estimate of the type:

"If the suboptimality $\int c d\gamma - \int c d\gamma_0$ is small enough, then the entropy explodes"

$$H(\gamma)\gtrsim -rac{d}{2}\ln(\int c\mathrm{d}\gamma-\int c\mathrm{d}\gamma_0)$$

Infinitesimally twisted costs and

compact supports

Main result

Definition

 $c \in \mathcal{C}^2(\Omega^2)$ is said to be infinitesimally twisted if

 $\nabla^2_{xy}c(x,y)=(\partial^2_{x_iy_j}c(x,y))_{i,j}\in M_d(\mathbb{R}) \text{ is invertible for every } (x,y)\in\Omega^2.$

Theorem

Suppose that the cost is \mathcal{C}^2 and infinitesimally twisted . Further assume that μ_i is compactly supported then

$$(c, \gamma_{\varepsilon}) = OT_0 + \Theta(\varepsilon), \quad H(\gamma_{\varepsilon} \mid \mathcal{H}^{2d}) = -\frac{d}{2} \ln(\varepsilon) + O(1), \quad \sqrt{\varepsilon} = O(W_2(\gamma_{\varepsilon}, \gamma_0))$$
(16)

Note that here γ_0 is any optimal transport plan.

Thank you!

References i

Stefan Adams, Nicolas Dirr, Mark A. Peletier, and Johannes Zimmer.
From a large-deviations principle to the wasserstein gradient flow: A new micro-macro passage.

Communications in Mathematical Physics, 307(3):791-815, September 2011.

Jason M. Altschuler, Jonathan Niles-Weed, and Austin J. Stromme. Asymptotics for semidiscrete entropic optimal transport. SIAM Journal on Mathematical Analysis, 54(2):1718–1741, mar 2021.

Guillaume Carlier, Vincent Duval, Gabriel Peyré, and Bernhard Schmitzer.
Convergence of entropic schemes for optimal transport and gradient flows,
2015.

References ii

R. Cominetti and J. San Martin.

Asymptotic analysis of the exponential penalty trajectory in linear programming.

Mathematical Programming, 67(1-3):169-187, October 1994.

Giovanni Conforti.

A second order equation for schrödinger bridges with applications to the hot gas experiment and entropic transportation cost.

Probability Theory and Related Fields, 174(1-2):1-47, 2019.

Guillaume Carlier, Paul Pegon, and Luca Tamanini.

Convergence rate of general entropic optimal transport costs. *arXiv brebrint arXiv:2206.03347*, 2022.

References iii

Lenaic Chizat, Pierre Roussillon, Flavien Léger, François-Xavier Vialard, and Gabriel Peyré.

Faster wasserstein distance estimation with the sinkhorn divergence. Advances in Neural Information Processing Systems, 33:2257–2269, 2020.

Alex Delalande.

Nearly tight convergence bounds for semi-discrete entropic optimal transport, 2021.

Matthias Erbar, Jan Maas, and Michiel Renger.

From large deviations to wasserstein gradient flows in multiple dimensions. *Electronic Communications in Probability*, 20:1–12, 2015.

References iv

Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun ichi Amari, Alain Trouvé, and Gabriel Peyré.

Interpolating between optimal transport and mmd using sinkhorn divergences, 2018.

Christian Léonard.

A survey of the schrödinger problem and some of its connections with optimal transport, 2013.

References v

Toshio Mikami.

Monge's problem with a quadratic cost by the zero-noise limit of h-path processes.

Probability Theory and Related Fields, 129(2):245-260, March 2004.

Hugo Malamut and Maxime Sylvestre.

Convergence rates of the regularized optimal transport: Disentangling suboptimality and entropy.

arXiv preprint arXiv:2306.06940, 2023.

Toshio Mikami and Michèle Thieullen.

Optimal transportation problem by stochastic optimal control.

SIAM Journal on Control and Optimization, 47(3):1127–1139, January 2008.

References vi

Luca Nenna and Paul Pegon.

Convergence rate of entropy-regularized multi-marginal optimal transport costs, 2023.

Soumik Pal.

On the difference between entropic cost and the optimal transport cost, 2019.