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The regularized optimal transport

Let p € Py.(R¥) be a continuous measure with finite variance, define

H(p) = [ p()Inp()dx and 1(p) = [ p(IVImp()Pdx 0

differential entropy Fisher information

Let ¢ be a C? cost function.
Let o, 11 € Pac(RY) be such that H(u;) < +oo.
Fore >0

OT.(po, p1) :==  inf /Cd'y +eH(7) (eEQT)
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Question : What happens when € — 0?7



Qualitative convergence results.
e [-convergence : [Mik04],[MT08],[Lé13],[CDPSI15]
Quantitative convergence results.

e Discrete optimal transport : [CM94]

e Semi-discrete optimal transport : [ANWS21],[Del21]
e Finite Fisher information : [ADPZ11],[EMR15],[Con19]
Finite entropy : [Pal19],[EN22],[CPT22]
Multimarginal : [NP23]

Sinkhorn divergence: [FSV'18, CRLT20]
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Proposition [ADPZ11][EMR15] ~

Assume c(x,y) = 3|lx — y||?. and that Supp(u;) are compact with /(1) < +o0
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Proposition [EN22, CPT22] ~
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Can we disentangle ?

Question 2 :
Is there a rate of convergence for Wa(v:,70) ?



Fisher information and quadratic
cost
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Recall H,,, = w The dynamic formulation [Lé13] is

Ols = &l —feln +//f]vt\2dp dt—|——/ (p7)d (€BB)
Known asymptotics (TE-OT.) is
d
OT. — OTy + Eeln(Zwe) —eHpm = o(e) (5)
Thus thanks to (¢BB)
1 g P e [t .
! // L vedpsdt — OTo ) +5 / 1(p5)dt = o(1) 6)
e\JJ 2 8 Jo
suboptimality regularity term

Since both terms are positive they both tend to 0.
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From dynamic to static and back

/ cdve + eH(v:) = eHp, — 55|n(27r5) + // E\vﬂzdpidt + % / I(p7)dt  (¢BB)
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Envelop theorem

2@ = S+ (O
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Quadratic cost without Fisher
information
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Suppose that the cost is quadratic, that is ¢(x, y) = %HX — y||?. Further assume
that p; € Pays.ac for some § > 0 and that the Monge map V£ is Lipschitz. Then
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From the existing litterature

d
—Esln(s) + Ce > /cd'yE — / cdyo + eH(ve)

Combining both,

C> Jcdve = [cdyo _gln (fcd% —fcd%)
& &

the map x — x — % In(x) is coercive, so

Ce < /cd% — / cdyo < Ge
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For the problem
rq@n/cd’y—i—aH(v),

We got an estimate of the type :
"If the suboptimality [ cdy — [ cdvo is small enough, then the entropy explodes”

HE) 2 -5 n( [ edy — [ cdro)



Infinitesimally twisted costs and
compact supports



Main result

c € C%(Q?) is said to be infinitesimally twisted if
Vi, c(x.y) = (92,.c(x.y))ij € My(R) is invertible for every (x,y) € Q.

XiYj

g Theorem ~

Suppose that the cost is C? and infinitesimally twisted . Further assume that p;

is compactly supported then

(676 = OTo+0(e).  H(r | #2%) = =S In(e)+ 0(1). V& = O(Wal270))

16
q e J

Note that here ~g is any optimal transport plan.
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Thank you !
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