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Physical context

Cold plasmas applications in the industry:

▶ Deicing

▶ Airflow control

▶ Components cleaning

Plasma actuators :

▶ generate a plasma discharge around the wing

▶ prevent flow separation

▶ enhancing lift



Physical context

Cold plasma parameters (glow discharge) :

▶ atmospheric pressure discharges

▶ partially ionized gas : ionization degree δe = 10−6 to 10−4

▶ several species : neutral particles, electrons and ions

▶ low temperature : 1eV for electrons and room temperature for
heavy species

▶ Debye length ≈ 10−6m

Multiscale problem : velocities between particles are very different



Drift diffusion system

Equations for electrons (or ions) :

∂tρ+∇x · Γ = S

∂tρW +∇x · ΓW + E · Γ = SW

Γ = − 1

ρn
[Eµρ+∇x(Dρ)]

ρ density, ρW energy density, E electric field, µ mobility, D
diffusion, S ionization source term, ρn neutral particles

▶ if the temperature depends only on E/ρn ⇒ only mass
equation (local field approximation)

Goal : Use Lattice Boltzmann method to solve DD
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Lattice Boltzmann method

The classical form of a LB scheme is

fi (t +∆t, x + λi∆t) = fi (t, x) + ω(Mi (t, x)− fi (t, x))

▶ fi : function of a of spatial points x ∈ Rm (forming a
Cartesian grid) and time t

▶ {λi}i=0,...n : discrete set of velocities such that x + λi∆t
belongs to the spatial

▶ ω is a parameter depending on ∆t and other parameters



Lattice Boltzmann method

The classical form of a LB scheme is

fi (t +∆t, x + λi∆t) = fi (t, x) + ω(Mi (t, x)− fi (t, x))

▶ discrete moments of f are computed by∑
i

fi ,
∑
i

fiλi ...

▶ Mi is a function defined with the moments of f

▶ the scheme consists in a relaxation step and a streaming step



Lattice Boltzmann method



Lattice Boltzmann method

Lattice Boltzmann equation

∂t fi + vi∂x fi =
1

τ
(Mi − fi )

can be rewritten in the characteristics variable ξ = (t + l , x + λi l)

▶ LBE is integrated between l = 0 and l = ∆t :

fi (t +∆t, x + vi∆t)− fi (t, x)

▶ relaxation term is approximated with rectangle method or
with trapezoidal rule :

∆t

2τ
(Mi − fi )(t +∆t, x + λi∆t) +

∆t

2τ
(Mi − fi )(t, x)



Lattice Boltzmann method

The scheme is then

fi (t +∆t, x + vi∆t) = fi (t, x) +
∆t

2τ
[(Mi − fi )(t +∆t, x + λi∆t)

+ (Mi − fi )(t, x)]

A change of variable is performed to obtain an explicit scheme

gi (t, x) = fi (t, x)−
∆t

2τ
(Mi − fi )(t, x)

Finally we obtain

gi (t +∆t, x + vi∆t) = gi (t, x) + ω(Mi − gi )(t, x)

with ω = ∆t
τ+∆t/2



Lattice Boltzmann method

A classical approach in LBM is to use Hermite polynomials :

w(λ) =
1

(2π)
1
2

exp(−
λ2
i

2
)

1, λ, λ⊗ λ− Im...

In this case the lattice velocities λi are Gauss-Hermite points and
Mi is expressed in terms of Hermite polynomials

Mi = w(λi )ρ[1 + uλi + ...]

with

ρ =
∑
i

fi , u =
∑
i

fiλi/ρ, ...



Lattice Boltzmann method

We want to solve drift diffusion equations, several questions arise :

▶ Which collision operator to solve DD ?

▶ Which lattice is adapted to this problem ?

▶ What kind of boundary conditions ?

Idea : construct a lattice Boltzmann scheme from a kinetic model
giving drift diffusion system at hydrodynamic limit



Kinetic model

▶ Starting from previous work 1 : scaling parameter ε =
√

me
mn

▶ Considering electrons fe , neutral particles fn and ions fi

▶ Coupled scaled dimensionless system :

∂t fe +
1

ε
(v · ∇x fe + Fe · ∇v fe) =

1

ε2
Qε

e (fe , fi , fn)

∂t fi + v · ∇x fi + Fi · ∇v fi =
1

ε2
Qε

i (fe , fi , fn)

∂t fn + v · ∇x fn + Fn · ∇v fn =
1

ε2
Qε

n(fe , fi , fn)

▶ Collisions considered : ellastic inter/intra-species collisions,
inellastic ionization-recombination collisions

1I Choquet, P Degond, B Lucquin-Desreux, 2007



Kinetic model

Simplifications : fi ,n = isotropic Maxwellians, simplified Qion, Qee

Electrons distribution function f satisfies

∂t f+
1

ε
(v ·∇x f−E ·∇v f ) =

1

ε2
Q0

en(f )+
1

ε
Qee(f )+Q2

en(f )+Qion(f )+O(ε)

▶ Q0
en + ε2Q2

en : expansion of Boltzmann operator

▶ Qee : BGK operator

▶ Qion : simplified ionization operator

This equation gives at hydrodynamic limit drift diffusion model



Kinetic model

Hilbert expansion of f

f = f0 + εf1 + ε2f2 +O(ε3)

▶ Q0
en collisions will cause f0 to be isotropic

▶ Qee ⇒ f0 is also maxwellian

▶ f1 will give the form of the flux in DD equation :

f1 = − 1

2νen(v)ρn
[v · ∇x f0 − E · ∇v f0] + f̃1

where f̃1 ∈ Ker(Q0
en)

▶ Q2
en : relaxation term on electronic temperature

▶ Qion : source term taking into account ionization processes



Fluid equations

By integrating the kinetic equation against 1 and v2/2 we obtain :{
∂tρ+∇x · Γ = S

∂t(
3
2ρT ) +∇x · Γw + E · Γ = SW

Γ = − 1

ρn
[Eµρ+∇x(Dρ)]

ΓW = − 3

2ρn
[EµW ρT +∇x(DW ρT )]

Two possibilities depending on the cross section chosen :

▶ Hard spheres : D ∝
√
T , µ ∝

√
T

−1

▶ Maxwellian molecules : D ∝ T , µ ∝ 1



Derivation of a LB scheme

We start with a D1Q3 lattice v = +1, 0,−1. Ionization collisions
are omitted. We define :

∑
i

fi = ρ,
∑
i

fivi = ρu,
∑
i

fiv
2
i = E

Collision operators are projected onto the 3 first polynomials of
Hermit basis

Q0
en(f )(v) ≈ −2σenρnρuw(v)

v

3

Q2
en(f )(v) ≈ −4

√
2πρnσen (E − Tnρ)w(v)

(
v2

32
− 1

3

)
F (f )(v) ≈ −w(v)E

(
ρ
v

3
+ ρu

(
v2

32
− 1

3

))
Qee(f )(v) ≈ w(v)

(
ρ+ ρuv +

1

2
ρ (T − 1) (v2 − 1)

)
− f



Derivation of a LB scheme

We consider the lattice Boltzmann equation with these operators :

∂t fi +
vi
ε
∂x fi =

1

ε2
Q0

en(fi )(vi ) + Q2
en(fi )(vi ) +

1

ε
F (fi )(vi ) +

1

ε
Qee(fi )(vi )

As previously, by taking the Hilbert expansion of f we can obtain
equations on the moments of f :

fi = f 0i + εf 1i +O
(
ε2
)

ρ = ρ0 + ερ1 +O
(
ε2
)

ρu = (ρu)0 + ε(ρu)1 +O
(
ε2
)

ρT = (ρT )0 + ε(ρT )1 +O
(
ε2
)



Derivation of a LB scheme

The system obtained is

∂tρ
0 + ∂x(ρu)

1 = 0

∂t(ρT )0 + ∂x(ρu)
1 +

1

9
E (ρu)1 = −4

9

√
2πρnσen((ρT )0 − Tnρ

0)

with

(ρu)1 = − Eρ0

2σenρn
− ∂x(ρT )0

2σenρn

▶ this is not consistent with the DD system

▶ the quadrature is probably not accurate enough

▶ in order to have the right equation it would be mandatory to
have at least 5 Gauss points (for example D1Q5)

▶ for 2D in space that would require a lot of points



LB scheme for advection diffusion problem

▶ We focus on density equation

▶ D and µ are assumed to be constant and equal

▶ No ionization processes

1D Drift diffusion equation

∂tρ− ∂x(∂x(Dρ) + Eµρ) = 0

This time we choose to use D1Q22 scheme

▶ two LB schemes proposed for convection-diffusion problems

▶ results of L2 and L∞ stability

2S Dellacherie, 2012



LB scheme for advection diffusion problem

Scheme
We use the change of variable with the trapezoidal rule

gi (t +∆t, x +
vi
ε
∆t) = g(t, x) + ∆t(Qi (f ) + Fi (f ))(t, x)

Two velocities : vi = (−1)iε∆x
∆t = (−1)i , i = 1, 2

▶ Qi (f ) = −σen
2ε2

qvi

▶ Fi (f ) = − 1
2εEρvi

Here q = ρu



LB scheme for advection diffusion problem

Lattice Boltzmann equation :

∂t fi +
vi
ε
∂x fi = Q(fi ) + F (fi )

Again, by using the Hilbert expansion of f in ε we can show that
the fluid limit of the LBE is

∂tρ− ∂x(∂x(Dρ) + Eµρ) = 0

with

D = µ =
1

σen



LB scheme for advection diffusion problem

Link with finite differences schemes
For ∆t = ε∆x LB scheme is equivalent to

ρn+1
j =

1

2
(ρnj+1 + ρnj−1)

+
1

2

(
1− ∆x

2ε
(2 + σen)

)
(qnj−1 − qnj+1)

+
∆x

4
(En

j+1ρ
n
j+1 − En

j−1ρ
n
j−1)

qn+1
j =

1

1 + ∆xσen
2ε

(
1

2
(ρnj−1 − ρnj+1)−

∆x

2
En+1
j ρn+1

j

+
1

2

(
1− σen∆x

2ε

)
(qnj−1 + qnj+1)

− ∆x

4
(En

j+1ρ
n
j+1 + En

j−1ρ
n
j−1))



LB scheme for advection diffusion problem

▶ Finite difference schemes allows us to compute equivalent
equations3

▶ We want a diffusive scaling ∆t ∼ ∆x2 to recover diffusion

▶ One possible choice is ε = σen∆x
2 , this gives :

∂tρ =
(
C∂2

xρ+ C∂x(Eρ)
)
+ O(∆x)

with C =
(

1
σen

− 2
σ2
en

)
▶ then σen can be used to fit the value of D = µ that is wanted

▶ in this case there is a condition : σen > 2

3F Dubois, 2008



1D Problem : numerical results

Stability tests

∂tρ− ∂x(D∂xρ+ Eµρ) = 0

∂2
xϕ =

1

λ2
(ρ− 1)

Where E = −∂xϕ

Stationary problem with Dirichlet boundary conditions, assuming :

D∂xρ+ Eµρ = 0

We test near approximated solution

ρ(x) = 1 + ϕ(x)/T

ϕ(x) =
δT (exp(αx)− exp(−αx))

ρi (exp(α)− exp(−α))



1D Problem : numerical results

▶ Domain : x ∈ [0, 1]

▶ Tests for ∆x ∈ [0.1, 5.10−4]

▶ Parameters : λ = 0.5, ε ∝ ∆x , ∆t = ε∆x

▶ Initial condition :

ρ(t = 0, x) = 1 + ϕ(x)/T + βsin(2πx)

ϕ(t = 0, x) =
δT (exp(αx)− exp(−αx))

exp(α)− exp(−α)

fi (t = 0, x) = ρ(0, x)/2

▶ Boundary conditions :

fi =
ρ0
2



Numerical Results

Test for ∆x = 0.01



Numerical Results



Conclusion

Work in progress

▶ using two D1Q2 schemes to recover diffusion coefficient that
could be different from mobility coefficient

▶ ionization process was added

Prospects

▶ physical test case in 2D

▶ L∞ or L2 stability results ?

Thank you for your attention


