Kinetic model and numerical scheme for electrons in glow discharge plasmas

Nathalie Bonamy Parrilla with Stéphane Brull, François Rogier

Université de Bordeaux

2023

Physical context

Cold plasmas applications in the industry:

- Deicing
- Airflow control
- Components cleaning

Plasma actuators :

- generate a plasma discharge around the wing
- prevent flow separation
- enhancing lift

Physical context

Cold plasma parameters (glow discharge) :

- atmospheric pressure discharges
- partially ionized gas : ionization degree $\delta_e = 10^{-6}$ to 10^{-4}
- several species : neutral particles, electrons and ions
- Iow temperature : 1eV for electrons and room temperature for heavy species
- Debye length $\approx 10^{-6} m$

Multiscale problem : velocities between particles are very different Université BORDEAUX

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Drift diffusion system

Equations for electrons (or ions) :

$$\partial_{t}\rho + \nabla_{x} \cdot \Gamma = S$$

$$\partial_{t}\rho_{W} + \nabla_{x} \cdot \Gamma_{W} + E \cdot \Gamma = S_{W}$$

$$\Gamma = -\frac{1}{\rho_{n}} [E\mu\rho + \nabla_{x}(D\rho)]$$

 ρ density, ρ_W energy density, E electric field, μ mobility, D diffusion, S ionization source term, ρ_n neutral particles

if the temperature depends only on E/p_n ⇒ only mass equation (local field approximation)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Goal : Use Lattice Boltzmann method to solve DD

- A little reminder of lattice Boltzmann method
- Kinetic model for plasmas
- Derivation of a LB scheme
- Numerical results
- Conclusion and prospects

The classical form of a LB scheme is

$$f_i(t + \Delta t, x + \lambda_i \Delta t) = f_i(t, x) + \omega(M_i(t, x) - f_i(t, x))$$

- f_i : function of a of spatial points $x \in \mathbb{R}^m$ (forming a Cartesian grid) and time t
- {λ_i}_{i=0,...n}: discrete set of velocities such that x + λ_iΔt belongs to the spatial
- ω is a parameter depending on Δt and other parameters

Université BORDEAUX

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The classical form of a LB scheme is

$$f_i(t + \Delta t, x + \lambda_i \Delta t) = f_i(t, x) + \omega(M_i(t, x) - f_i(t, x))$$

discrete moments of f are computed by

$$\sum_i f_i, \quad \sum_i f_i \lambda_i \dots$$

M_i is a function defined with the moments of *f*

the scheme consists in a relaxation step and a streaming step

・ロト・西ト・山田・山田・山口・

Lattice Boltzmann equation

$$\partial_t f_i + v_i \partial_x f_i = \frac{1}{\tau} (M_i - f_i)$$

can be rewritten in the characteristics variable $\xi = (t + l, x + \lambda_i l)$

• LBE is integrated between I = 0 and $I = \Delta t$:

$$f_i(t + \Delta t, x + v_i \Delta t) - f_i(t, x)$$

relaxation term is approximated with rectangle method or with trapezoidal rule :

$$\frac{\Delta t}{2\tau}(M_i - f_i)(t + \Delta t, x + \lambda_i \Delta t) + \frac{\Delta t}{2\tau}(M_i - f_i)(t, x)$$
Université
^{de} BORDEAUX

The scheme is then

$$egin{aligned} f_i(t+\Delta t,x+v_i\Delta t) &= f_i(t,x) + rac{\Delta t}{2 au} [(M_i-f_i)(t+\Delta t,x+\lambda_i\Delta t) \ &+ (M_i-f_i)(t,x)] \end{aligned}$$

A change of variable is performed to obtain an explicit scheme

$$g_i(t,x) = f_i(t,x) - \frac{\Delta t}{2\tau}(M_i - f_i)(t,x)$$

Finally we obtain

$$g_i(t + \Delta t, x + v_i \Delta t) = g_i(t, x) + \omega(M_i - g_i)(t, x)$$

with $\omega = \frac{\Delta t}{\tau + \Delta t/2}$ Université **BORDEAUX**

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

A classical approach in LBM is to use Hermite polynomials :

$$w(\lambda) = \frac{1}{(2\pi)^{\frac{1}{2}}} \exp(-\frac{\lambda_i^2}{2})$$

1, λ , $\lambda \otimes \lambda - I_m$...

In this case the lattice velocities λ_i are Gauss-Hermite points and M_i is expressed in terms of Hermite polynomials

$$M_i = w(\lambda_i)\rho[1 + u\lambda_i + \ldots]$$

with

$$\rho = \sum_{i} f_{i}, \quad u = \sum_{i} f_{i} \lambda_{i} / \rho, \quad \dots$$

$$\underset{\text{@BORDEAUX}}{\text{ORDEAUX}}$$

We want to solve drift diffusion equations, several questions arise :

- Which collision operator to solve DD ?
- Which lattice is adapted to this problem ?
- What kind of boundary conditions ?

Idea : construct a lattice Boltzmann scheme from a kinetic model giving drift diffusion system at hydrodynamic limit

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Kinetic model

- Starting from previous work ¹ : scaling parameter $\varepsilon = \sqrt{\frac{m_e}{m_n}}$
- Considering electrons f_e , neutral particles f_n and ions f_i
- Coupled scaled dimensionless system :

$$\partial_t f_e + \frac{1}{\varepsilon} (\mathbf{v} \cdot \nabla_x f_e + F_e \cdot \nabla_v f_e) = \frac{1}{\varepsilon^2} Q_e^{\varepsilon} (f_e, f_i, f_n)$$
$$\partial_t f_i + \mathbf{v} \cdot \nabla_x f_i + F_i \cdot \nabla_v f_i = \frac{1}{\varepsilon^2} Q_i^{\varepsilon} (f_e, f_i, f_n)$$
$$\partial_t f_n + \mathbf{v} \cdot \nabla_x f_n + F_n \cdot \nabla_v f_n = \frac{1}{\varepsilon^2} Q_n^{\varepsilon} (f_e, f_i, f_n)$$

 Collisions considered : ellastic inter/intra-species collisions, inellastic ionization-recombination collisions
 Université

Kinetic model

Simplifications : $f_{i,n}$ = isotropic Maxwellians, simplified Q_{ion} , Q_{ee}

Electrons distribution function f satisfies

$$\partial_t f + \frac{1}{\varepsilon} (v \cdot \nabla_x f - E \cdot \nabla_v f) = \frac{1}{\varepsilon^2} Q_{en}^0(f) + \frac{1}{\varepsilon} Q_{ee}(f) + Q_{en}^2(f) + Q_{ion}(f) + \mathcal{O}(\varepsilon)$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

- ▶ $Q_{en}^0 + \varepsilon^2 Q_{en}^2$: expansion of Boltzmann operator
- Q_{ee} : BGK operator
- Qion : simplified ionization operator

This equation gives at hydrodynamic limit drift diffusion model

Kinetic model

Hilbert expansion of f

$$f = f_0 + \varepsilon f_1 + \varepsilon^2 f_2 + \mathcal{O}(\varepsilon^3)$$

Q⁰_{en} collisions will cause f₀ to be isotropic
 Q_{ee} ⇒ f₀ is also maxwellian
 f₀ will give the form of the flux in DD equiparts

f₁ will give the form of the flux in DD equation :

$$f_1 = -\frac{1}{2\nu_{en}(v)\rho_n} [v \cdot \nabla_x f_0 - E \cdot \nabla_v f_0] + \tilde{f}_1$$

BORDFAUX

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

where $ilde{f}_1 \in { t Ker}(Q^0_{en})$

 Q²_{en} : relaxation term on electronic temperature
 Q_{ion} : source term taking into account ionization processes UNIVERSITE

Fluid equations

By integrating the kinetic equation against 1 and $v^2/2$ we obtain :

$$\begin{cases} \partial_t \rho + \nabla_x \cdot \Gamma = S \\ \partial_t (\frac{3}{2}\rho T) + \nabla_x \cdot \Gamma_w + E \cdot \Gamma = S_W \end{cases}$$
$$\Gamma = -\frac{1}{\rho_n} [E\mu\rho + \nabla_x (D\rho)] \\ \Gamma_W = -\frac{3}{2\rho_n} [E\mu_W\rho T + \nabla_x (D_W\rho T)] \end{cases}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Two possibilities depending on the cross section chosen :

- Hard spheres : $D \propto \sqrt{T}$, $\mu \propto \sqrt{T}^{-1}$
- Maxwellian molecules : $D \propto T$, $\mu \propto 1$

Derivation of a LB scheme

We start with a D1Q3 lattice v = +1, 0, -1. Ionization collisions are omitted. We define :

$$\sum_{i} f_{i} = \rho, \sum_{i} f_{i} v_{i} = \rho u, \sum_{i} f_{i} v_{i}^{2} = \mathcal{E}$$

Collision operators are projected onto the 3 first polynomials of Hermit basis

$$Q_{en}^{0}(f)(v) \approx -2\sigma_{en}\rho_{n}\rho_{uw}(v)\frac{v}{3}$$

$$Q_{en}^{2}(f)(v) \approx -4\sqrt{2\pi}\rho_{n}\sigma_{en}\left(\mathcal{E}-T_{n}\rho\right)w(v)\left(\frac{v^{2}}{3^{2}}-\frac{1}{3}\right)$$

$$F(f)(v) \approx -w(v)E\left(\rho\frac{v}{3}+\rho u\left(\frac{v^{2}}{3^{2}}-\frac{1}{3}\right)\right)$$

$$Q_{ee}(f)(v) \approx w(v)\left(\rho+\rho uv+\frac{1}{2}\rho\left(T-1\right)\left(v^{2}-1\right)\right)$$

$$\mathbb{E} \text{BORDEAUX}$$

Derivation of a LB scheme

We consider the lattice Boltzmann equation with these operators :

$$\partial_t f_i + rac{v_i}{\varepsilon} \partial_x f_i = rac{1}{\varepsilon^2} Q_{en}^0(f_i)(v_i) + Q_{en}^2(f_i)(v_i) + rac{1}{\varepsilon} F(f_i)(v_i) + rac{1}{\varepsilon} Q_{ee}(f_i)(v_i)$$

As previously, by taking the Hilbert expansion of f we can obtain equations on the moments of f:

$$f_{i} = f_{i}^{0} + \varepsilon f_{i}^{1} + \mathcal{O}(\varepsilon^{2})$$

$$\rho = \rho^{0} + \varepsilon \rho^{1} + \mathcal{O}(\varepsilon^{2})$$

$$\rho u = (\rho u)^{0} + \varepsilon (\rho u)^{1} + \mathcal{O}(\varepsilon^{2})$$

$$\rho T = (\rho T)^{0} + \varepsilon (\rho T)^{1} + \mathcal{O}(\varepsilon^{2})$$

Université BORDEAUX

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Derivation of a LB scheme

The system obtained is

$$\partial_t \rho^0 + \partial_x (\rho u)^1 = 0$$

$$\partial_t (\rho T)^0 + \partial_x (\rho u)^1 + \frac{1}{9} E(\rho u)^1 = -\frac{4}{9} \sqrt{2\pi} \rho_n \sigma_{en} ((\rho T)^0 - T_n \rho^0)$$

with

$$(\rho u)^{1} = -\frac{E\rho^{0}}{2\sigma_{en}\rho_{n}} - \frac{\partial_{x}(\rho T)^{0}}{2\sigma_{en}\rho_{n}}$$

- this is not consistent with the DD system
- the quadrature is probably not accurate enough
- in order to have the right equation it would be mandatory to have at least 5 Gauss points (for example D1Q5)

BORDFAILY

3

ヘロト ヘ戸ト ヘヨト ヘヨト

for 2D in space that would require a lot of points Univers

- We focus on density equation
- D and μ are assumed to be constant and equal
- No ionization processes
- 1D Drift diffusion equation

$$\partial_t \rho - \partial_x (\partial_x (D\rho) + E\mu\rho) = 0$$

This time we choose to use $D1Q2^2$ scheme

two LB schemes proposed for convection-diffusion problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• results of
$$L^2$$
 and L^{∞} stability

²S Dellacherie, 2012

Scheme

We use the change of variable with the trapezoidal rule

$$g_i(t + \Delta t, x + rac{v_i}{arepsilon}\Delta t) = g(t, x) + \Delta t(Q_i(f) + F_i(f))(t, x)$$

Two velocities : $v_i = (-1)^i \varepsilon \frac{\Delta x}{\Delta t} = (-1)^i$, i = 1, 2

•
$$Q_i(f) = -\frac{\sigma_{en}}{2\varepsilon^2}qv_i$$

• $F_i(f) = -\frac{1}{2\varepsilon}E\rho v_i$

Here $q = \rho u$

Lattice Boltzmann equation :

$$\partial_t f_i + \frac{v_i}{\varepsilon} \partial_x f_i = Q(f_i) + F(f_i)$$

Again, by using the Hilbert expansion of f in ε we can show that the fluid limit of the LBE is

$$\partial_t \rho - \partial_x (\partial_x (D\rho) + E\mu\rho) = 0$$

with

$$D = \mu = \frac{1}{\sigma_{en}}$$

Université BORDEAUX

Link with finite differences schemes For $\Delta t = \varepsilon \Delta x$ LB scheme is equivalent to

$$\rho_{j}^{n+1} = \frac{1}{2} (\rho_{j+1}^{n} + \rho_{j-1}^{n}) \\ + \frac{1}{2} \left(1 - \frac{\Delta x}{2\varepsilon} (2 + \sigma_{en}) \right) (q_{j-1}^{n} - q_{j+1}^{n}) \\ + \frac{\Delta x}{4} (E_{j+1}^{n} \rho_{j+1}^{n} - E_{j-1}^{n} \rho_{j-1}^{n})$$

$$\begin{split} q_{j}^{n+1} &= \frac{1}{1 + \frac{\Delta x \sigma_{en}}{2\varepsilon}} (\frac{1}{2} (\rho_{j-1}^{n} - \rho_{j+1}^{n}) - \frac{\Delta x}{2} E_{j}^{n+1} \rho_{j}^{n+1} \\ &+ \frac{1}{2} \left(1 - \frac{\sigma_{en} \Delta x}{2\varepsilon} \right) (q_{j-1}^{n} + q_{j+1}^{n}) \\ &- \frac{\Delta x}{4} (E_{j+1}^{n} \rho_{j+1}^{n} + E_{j-1}^{n} \rho_{j-1}^{n})) \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Finite difference schemes allows us to compute equivalent equations³
- We want a diffusive scaling $\Delta t \sim \Delta x^2$ to recover diffusion
- One possible choice is $\varepsilon = \frac{\sigma_{en}\Delta x}{2}$, this gives :

$$\partial_t \rho = \left(C \partial_x^2 \rho + C \partial_x (E \rho) \right) + O(\Delta x)$$

with $C = \left(\frac{1}{\sigma_{en}} - \frac{2}{\sigma_{en}^2}\right)$

• then σ_{en} can be used to fit the value of $D = \mu$ that is wanted

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

• in this case there is a condition : $\sigma_{en} > 2$

³F Dubois, 2008

1D Problem : numerical results

Stability tests

$$\partial_t \rho - \partial_x (D\partial_x \rho + E\mu\rho) = 0$$

 $\partial_x^2 \phi = \frac{1}{\lambda^2} (\rho - 1)$

Where $E = -\partial_x \phi$

Stationary problem with Dirichlet boundary conditions, assuming :

$$D\partial_x \rho + E\mu\rho = 0$$

We test near approximated solution

$$\rho(x) = 1 + \phi(x)/T$$

$$\phi(x) = \frac{\delta T(\exp(\alpha x) - \exp(-\alpha x))}{\rho_i(\exp(\alpha) - \exp(-\alpha))} \qquad \begin{array}{c} \text{Universite}\\ \text{BORDEAUX}\\ \text{Constant}\\ \text$$

1D Problem : numerical results

• Domain :
$$x \in [0, 1]$$

- Tests for $\Delta x \in [0.1, 5.10^{-4}]$
- Parameters : $\lambda = 0.5$, $\varepsilon \propto \Delta x$, $\Delta t = \varepsilon \Delta x$
- Initial condition :

$$\rho(t = 0, x) = 1 + \phi(x)/T + \beta sin(2\pi x)$$

$$\phi(t = 0, x) = \frac{\delta T(\exp(\alpha x) - \exp(-\alpha x))}{\exp(\alpha) - \exp(-\alpha)}$$

$$f_i(t = 0, x) = \rho(0, x)/2$$

Boundary conditions :

$$f_i = \frac{\rho_0}{2}$$

Université BORDEAUX

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Numerical Results

Test for $\Delta x = 0.01$

université BORDEAUX

æ

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶

Numerical Results

Conclusion

Work in progress

using two D1Q2 schemes to recover diffusion coefficient that could be different from mobility coefficient

ionization process was added

Prospects

- physical test case in 2D
- L^{∞} or L^2 stability results ?

Thank you for your attention

Université BORDEAUX

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで