Présentation du système Variables d'Elsässer Contribution des variables d'Elsässer Retour les solutions bornées : équivalence des systèmes

Temps de vie des solutions en magnétohydrodynamique idéale

Dimitri COBB travail en collaboration avec Francesco FANELLI

28 mai 2024

NASA (Transition Region And Coronal Explorer). Image sur https://commons.wikimedia.org/wiki/File:Traceimage.jpg

UK Atomic Energy Authority. (Instabilité dans un plasma). Image sur https://commons.wikimedia.org/wiki/File: Kink_instability_at_Aldermaston.jpg

NASA (Gary Glatzmaier of Los Alamos and UC Santa Cruz). Image sur https://commons.wikimedia.org/wiki/File:Geodynamo_After_Reversal.gif

Objectif : étude des fluides conducteurs de courant.

Objectif : étude des fluides conducteurs de courant.

Courant électrique

Objectif : étude des fluides conducteurs de courant.

Courant électrique ---> Champ magnétique

Objectif : étude des fluides conducteurs de courant.

Courant électrique ---> Champ magnétique ---> Force de Laplace

Objectif : étude des fluides conducteurs de courant.

Courant électrique \longrightarrow Champ magnétique \longrightarrow Force de Laplace \longrightarrow Changement de la dynamique

Objectif : étude des fluides conducteurs de courant.

Courant électrique \longrightarrow Champ magnétique \longrightarrow Force de Laplace \longrightarrow Changement de la dynamique \longrightarrow Courant électrique.

Objectif : étude des fluides conducteurs de courant.

Courant électrique \longrightarrow Champ magnétique \longrightarrow Force de Laplace \longrightarrow Changement de la dynamique \longrightarrow Courant électrique.

Magnétohydrodynamique (MHD) : pour un fluide parfait (incompressible, non-visqueux et parfaitement conducteur)

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Objectif : étude des fluides conducteurs de courant.

Courant électrique \longrightarrow Champ magnétique \longrightarrow Force de Laplace \longrightarrow Changement de la dynamique \longrightarrow Courant électrique.

Magnétohydrodynamique (MHD) : $u : \mathbb{R}_t \times \mathbb{R}_v^d \longrightarrow \mathbb{R}^d$

$$\begin{cases} \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla (|b|^2) \\ \partial_t b + (\mathbf{u} \cdot \nabla)b = (b \cdot \nabla)\mathbf{u} \\ \operatorname{div}(\mathbf{u}) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Objectif : étude des fluides conducteurs de courant.

Courant électrique \longrightarrow Champ magnétique \longrightarrow Force de Laplace \longrightarrow Changement de la dynamique \longrightarrow Courant électrique.

Magnétohydrodynamique (MHD) : $\Pi : \mathbb{R}_t \times \mathbb{R}_x^d \longrightarrow \mathbb{R}$

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Objectif : étude des fluides conducteurs de courant.

Courant électrique \longrightarrow Champ magnétique \longrightarrow Force de Laplace \longrightarrow Changement de la dynamique \longrightarrow Courant électrique.

Magnétohydrodynamique (MHD) : $b : \mathbb{R}_t \times \mathbb{R}_x^d \longrightarrow \mathbb{R}^d$

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla (|b|^2) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Objectif : étude des fluides conducteurs de courant.

Courant électrique \longrightarrow Champ magnétique \longrightarrow Force de Laplace \longrightarrow Changement de la dynamique \longrightarrow Courant électrique.

Magnétohydrodynamique (MHD) :

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Objectif : étude des fluides conducteurs de courant.

Courant électrique \longrightarrow Champ magnétique \longrightarrow Force de Laplace \longrightarrow Changement de la dynamique \longrightarrow Courant électrique.

Magnétohydrodynamique (MHD):

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Objectif : existence et unicité des solutions à données initiales fixées.

Le système de la MHD idéale est "hyperbolique" et quasi-linéaire

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Le système de la MHD idéale est "hyperbolique" et quasi-linéaire

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Mais il est aussi symétrique : l'énergie totale (cinétique + magnétique) est conservée

$$\begin{split} \left(\partial_t + u \cdot \nabla\right) \left(\frac{1}{2}|u|^2\right) &= \operatorname{div}\left(\left(\Pi + \frac{1}{2}|b^2|\right)u\right) + \left(b \cdot \nabla\right)b \cdot u \\ \left(\partial_t + u \cdot \nabla\right) \left(\frac{1}{2}|b|^2\right) &= \left(b \cdot \nabla\right)u \cdot b \end{split}$$

Structure du système : théorie L^2

Le système de la MHD idéale est "hyperbolique" et quasi-linéaire

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Mais il est aussi symétrique : l'énergie totale (cinétique + magnétique) est conservée

$$(\partial_t + u \cdot \nabla) \left(\frac{1}{2} |u|^2 \right) = \operatorname{div} \left(\left(\Pi + \frac{1}{2} |b^2| \right) u \right) + (b \cdot \nabla) b \cdot u$$

$$(\partial_t + u \cdot \nabla) \left(\frac{1}{2} |b|^2 \right) = (b \cdot \nabla) u \cdot b$$

Conséquence:

• existence et unicité de solutions locales dans des espaces basés sur L^2 , p. ex. $X = H^{1+d/2+\epsilon}$ ou $X = B_2^{1+d/2}$.

Structure du système : théorie L^2

Le système de la MHD idéale est "hyperbolique" et quasi-linéaire

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Mais il est aussi symétrique : l'énergie totale (cinétique + magnétique) est conservée

$$(\partial_t + u \cdot \nabla) \left(\frac{1}{2} |u|^2 \right) = \operatorname{div} \left(\left(\Pi + \frac{1}{2} |b^2| \right) u \right) + (b \cdot \nabla) b \cdot u$$

$$(\partial_t + u \cdot \nabla) \left(\frac{1}{2} |b|^2 \right) = (b \cdot \nabla) u \cdot b$$

Conséquence:

• existence et unicité de solutions locales dans des espaces basés sur L^2 , p. ex. $X = H^{1+d/2+\epsilon}$ ou $X = B_2^{1+d/2}$. La raison : $X \hookrightarrow W^{1,\infty}$.

Structure du système : théorie L^2

Le système de la MHD idéale est "hyperbolique" et quasi-linéaire

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Mais il est aussi symétrique : l'énergie totale (cinétique + magnétique) est conservée

$$(\partial_t + u \cdot \nabla) \left(\frac{1}{2} |u|^2 \right) = \operatorname{div} \left(\left(\Pi + \frac{1}{2} |b^2| \right) u \right) + (b \cdot \nabla) b \cdot u$$

$$(\partial_t + u \cdot \nabla) \left(\frac{1}{2} |b|^2 \right) = (b \cdot \nabla) u \cdot b$$

Conséquence:

- existence et unicité de solutions locales dans des espaces basés sur L^2 , p. ex. $X = H^{1+d/2+\epsilon}$ ou $X = B_2^{1+d/2}$. La raison : $X \hookrightarrow W^{1,\infty}$.
- Borne inférieure sur le **temps de vie** des solutions $T^* \geq \frac{1}{\|(u_0,b_0)\|_X}$.

Le système de la MHD idéale est "hyperbolique" et quasi-linéaire

 $\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0 \end{cases}$

$$\begin{aligned}
\operatorname{div}(u) &= 0 \\
\operatorname{div}(b) &= 0.
\end{aligned}$$

Mais il est aussi symétrique : l'énergie totale (cinétique + magnétique) est conservée

$$(\partial_t + u \cdot \nabla) \left(\frac{1}{2} |u|^2 \right) = \operatorname{div} \left(\left(\Pi + \frac{1}{2} |b^2| \right) u \right) + (b \cdot \nabla) b \cdot u$$

$$(\partial_t + u \cdot \nabla) \left(\frac{1}{2} |b|^2 \right) = (b \cdot \nabla) u \cdot b$$

Conséquence:

- existence et unicité de solutions locales dans des espaces basés sur L2, p. ex. $X = H^{1+d/2+\epsilon}$ ou $X = B_{2,1}^{1+d/2}$. La raison : $X \hookrightarrow W^{1,\infty}$.
- Borne inférieure sur le **temps de vie** des solutions $T^* \geq \frac{1}{\|(u_0,b_0)\|_X}$.
- [Schmidt, 1988].

Nos raisons de vouloir plus :

Solutions d'énergie infinie

Nos raisons de vouloir plus :

• Solutions d'énergie infinie $\longrightarrow p \neq 2$,

- Solutions d'énergie infinie $\longrightarrow p \neq 2$,
- $\textbf{ Oolutions dans des espaces plus gros } H^{1+d/2+\epsilon} \hookrightarrow B^{1+d/2}_{2,1} \hookrightarrow B^1_{\infty,1} \hookrightarrow W^{1,\infty}.$

- Solutions d'énergie infinie $\longrightarrow p \neq 2$,
- **9** Solutions dans des espaces plus gros $H^{1+d/2+\epsilon}\hookrightarrow B^{1+d/2}_{2,1}\hookrightarrow B^1_{\infty,1}\hookrightarrow W^{1,\infty}$. On veut donc $p\neq 2$, et si possible $p=+\infty$.

- Solutions d'énergie infinie $\longrightarrow p \neq 2$,
- **9** Solutions dans des espaces plus gros $H^{1+d/2+\epsilon}\hookrightarrow B^{1+d/2}_{2,1}\hookrightarrow B^1_{\infty,1}\hookrightarrow W^{1,\infty}$. On veut donc $p\neq 2$, et si possible $p=+\infty$.
- **3** Le temps de vie $T^* \ge \frac{1}{\|(u_0, b_0)\|_X}$ n'est pas optimal.

- Solutions d'énergie infinie $\longrightarrow p \neq 2$,
- **②** Solutions dans des espaces plus gros $H^{1+d/2+\epsilon} \hookrightarrow B^{1+d/2}_{2,1} \hookrightarrow B^1_{\infty,1} \hookrightarrow W^{1,\infty}$. On veut donc $p \neq 2$, et si possible $p = +\infty$.
- **Q** Le temps de vie $T_{\text{MHD}}^* \geq \frac{1}{\|(u_0, b_0)\|_X} = F(u_0, b_0)$ n'est pas optimal.

- Solutions d'énergie infinie $\longrightarrow p \neq 2$,
- **②** Solutions dans des espaces plus gros $H^{1+d/2+\epsilon} \hookrightarrow B_{2,1}^{1+d/2} \hookrightarrow B_{\infty,1}^1 \hookrightarrow W^{1,\infty}$. On veut donc $p \neq 2$, et si possible $p = +\infty$.
- Le temps de vie $T_{\text{MHD}}^* \geq \frac{1}{\|(u_0, b_0)\|_X} = F(u_0, b_0)$ n'est pas optimal.

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla\Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla\left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

- Solutions d'énergie infinie $\longrightarrow p \neq 2$,
- **9** Solutions dans des espaces plus gros $H^{1+d/2+\epsilon}\hookrightarrow B^{1+d/2}_{2,1}\hookrightarrow B^1_{\infty,1}\hookrightarrow W^{1,\infty}$. On veut donc $p\neq 2$, et si possible $p=+\infty$.
- Le temps de vie $T_{\text{MHD}}^* \geq \frac{1}{\|(u_0, b_0)\|_X} = F(u_0, b_0)$ n'est pas optimal.

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Si
$$b_0 \longrightarrow 0$$
 alors MHD \longrightarrow Euler. Mais en 2D $F(u_0, b_0) \longrightarrow F(u_0, 0) < T^*_{\mathrm{Euler}} = +\infty$.

Structure du système : variable d'Elsässer

En réalité, la MHD idéale est un système d'équations de "transport". Changement de variables :

$$\alpha = u + b$$
 and $\beta = u - b$.

Structure du système : variable d'Elsässer

En réalité, la MHD idéale est un système d'équations de "transport". Changement de variables :

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\begin{cases} \partial_t \alpha + (\beta \cdot \nabla)\alpha + \nabla \pi_1 = 0 \\ \partial_t \beta + (\alpha \cdot \nabla)\beta + \nabla \pi_2 = 0 \\ \operatorname{div}(\alpha) = 0 \\ \operatorname{div}(\beta) = 0. \end{cases}$$

En réalité, la MHD idéale est un système d'équations de "transport". Changement de variables:

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\begin{cases} \partial_t \alpha + (\beta \cdot \nabla)\alpha + \nabla \pi_1 = 0 \\ \partial_t \beta + (\alpha \cdot \nabla)\beta + \nabla \pi_2 = 0 \\ \operatorname{div}(\alpha) = 0 \\ \operatorname{div}(\beta) = 0. \end{cases}$$

Les fonctions π_1 et π_2 sont a priori différentes : elles proviennent de deux contraintes différentes.

Structure du système : variable d'Elsässer

En réalité, la MHD idéale est un système d'équations de "transport". Changement de variables :

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\exists \pi_{1}, \pi_{2}, \begin{cases} \partial_{t} \alpha + (\beta \cdot \nabla) \alpha + \nabla \pi_{1} = 0 \\ \partial_{t} \beta + (\alpha \cdot \nabla) \beta + \nabla \pi_{2} = 0 \\ \operatorname{div}(\alpha) = 0 \\ \operatorname{div}(\beta) = 0. \end{cases}$$

Les fonctions π_1 et π_2 sont *a priori* différentes : elles proviennent de deux contraintes différentes.

Structure du système : variable d'Elsässer

En réalité, la MHD idéale est un système d'équations de "transport". Changement de variables :

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\exists \pi_{1}, \pi_{2}, \begin{cases} \partial_{t} \alpha + (\beta \cdot \nabla) \alpha + \nabla \pi_{1} = 0 \\ \partial_{t} \beta + (\alpha \cdot \nabla) \beta + \nabla \pi_{2} = 0 \\ \operatorname{div}(\alpha) = 0 \\ \operatorname{div}(\beta) = 0. \end{cases}$$

Les fonctions π_1 et π_2 sont *a priori* différentes : elles proviennent de deux contraintes différentes.

Remarque : les deux systèmes ne sont pas toujours équivalents.

Structure du système : variable d'Elsässer

En réalité, la MHD idéale est un système d'équations de "transport". Changement de variables :

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \begin{cases} \partial_t \alpha + (\beta \cdot \nabla)\alpha + \nabla \pi_1 = 0 \\ \partial_t \beta + (\alpha \cdot \nabla)\beta + \nabla \pi_2 = 0 \\ \operatorname{div}(\alpha) = 0 \\ \operatorname{div}(\beta) = 0. \end{cases}$$

Les fonctions π_1 et π_2 sont *a priori* différentes : elles proviennent de deux contraintes différentes.

Remarque : les deux systèmes ne sont pas toujours équivalents.

Mais oublions provisoirement ce problème et continuons. Nous y reviendrons...

Méthode pour éliminer la pression, appliquer le rotationnel.

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_j \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_j \beta_i - \partial_i \beta_j$.

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_j \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_j \beta_i - \partial_i \beta_j$.

Alors:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ (\partial_t + \alpha \cdot \nabla) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations?

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_j \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_j \beta_i - \partial_i \beta_j$.

Alors:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ (\partial_t + \alpha \cdot \nabla) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations ? Hölder ? $X, Y \in C^{\alpha} \Rightarrow \nabla \alpha, \nabla \beta \in C^{\alpha}$.

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_j \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_j \beta_i - \partial_i \beta_j$.

Alors:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ (\partial_t + \alpha \cdot \nabla) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations ? Hölder ? $X,Y\in C^{\alpha}\Rightarrow \nabla\alpha,\nabla\beta\in C^{\alpha}$. Problème : effet de stretching/étirement...

$$\|X,Y\|_{\mathcal{C}^\alpha} \lesssim \exp\left(C\int_0^t \|\nabla\alpha,\nabla\beta\|_{\mathcal{C}^{1+\alpha}}\right) \left\{\|X_0,Y_0\|_{\mathcal{C}^\alpha} + \int_0^t \|\textit{RHS}\|_{\mathcal{C}^\alpha}\right\}.$$

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_j \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_j \beta_i - \partial_i \beta_j$.

Alors:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ (\partial_t + \alpha \cdot \nabla) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations? Lebesgue?

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_j \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_j \beta_i - \partial_i \beta_j$.

Alors:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ (\partial_t + \alpha \cdot \nabla) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations? Lebesgue? Pas de stretching...

$$||X, Y||_{L^{\infty}} \le ||X_0, Y_0||_{L^{\infty}} + \int_0^t ||RHS||_{L^{\infty}}.$$

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_j \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_j \beta_i - \partial_i \beta_j$.

Alors:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ (\partial_t + \alpha \cdot \nabla) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations? Lebesgue? Pas de stretching...

$$||X,Y||_{L^{\infty}} \le ||X_0,Y_0||_{L^{\infty}} + \int_0^t ||RHS||_{L^{\infty}}.$$

Inconvénient majeur : $X, Y \in L^{\infty} \Rightarrow \nabla \alpha, \nabla \beta \in L^{\infty}$ et *RHS* pire encore !

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_j \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_j \beta_i - \partial_i \beta_j$.

Alors:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ (\partial_t + \alpha \cdot \nabla) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations ? Solution : trouver un espace intermédiaire.

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_i \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_i \beta_i - \partial_i \beta_j$.

Alors:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ (\partial_t + \alpha \cdot \nabla) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations ? Solution : trouver un espace intermédiaire. Espace de Besov :

$$L^{\infty} \subset B^{0}_{\infty,1} \subset C^{\epsilon}$$
.

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ii} = \partial_i \alpha_i - \partial_i \alpha_i$$
 and $Y_{ii} = \partial_i \beta_i - \partial_i \beta_i$.

Alors:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ (\partial_t + \alpha \cdot \nabla) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations ? Solution : trouver un espace intermédiaire. Espace de Besov :

$$L^{\infty} \subset B^{0}_{\infty,1} \subset C^{\epsilon}$$
.

Avantage : estimations linéaires pour l'équation de transport

$$\left\|X,Y\right\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}\lesssim \left(1+\int_{0}^{t}\|\nabla\alpha,\nabla\beta\|_{\infty}\right)\left\{\|X_{\mathbf{0}},Y_{\mathbf{0}}\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}+\int_{0}^{t}\|\mathsf{RHS}\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}\right\}.$$

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_i \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_i \beta_i - \partial_i \beta_j$.

Alors:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ (\partial_t + \alpha \cdot \nabla) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations ? Solution : trouver un espace intermédiaire. Espace de Besov :

$$L^{\infty} \subset B^{0}_{\infty,1} \subset C^{\epsilon}$$
.

Avantage : estimations linéaires pour l'équation de transport

$$\left\|X,Y\right\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}\lesssim \left(1+\int_{0}^{t}\|\nabla\alpha,\nabla\beta\|_{\infty}\right)\left\{\|X_{0},Y_{0}\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}+\int_{0}^{t}\|\mathsf{RHS}\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}\right\}.$$

Désavantage : le produit ponctuel des fonctions $B^0_{\infty,1} \times B^0_{\infty,1} \longrightarrow B^0_{\infty,1}$ est mal défini/discontinu.

Introduction des "tourbillons" $(X, Y) = \operatorname{curl}(\alpha, \beta)$:

Introduction des "tourbillons" $(X, Y) = \operatorname{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Introduction des "tourbillons" $(X, Y) = \operatorname{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d = 2,

Introduction des "tourbillons" $(X, Y) = \text{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d=2, donc $X=\omega+j$ et $Y=\omega-j$ sont scalaires,

Introduction des "tourbillons" $(X, Y) = \text{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d=2, donc $X=\omega+j$ et $Y=\omega-j$ sont scalaires, et $\mathcal{L}:\mathcal{M}_2(\mathbb{R})\times\mathcal{M}_2(\mathbb{R})\to\mathbb{R}$ est une forme bilinéaire anti-symétrique.

Introduction des "tourbillons" $(X, Y) = \text{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d=2, donc $X=\omega+j$ et $Y=\omega-j$ sont scalaires, et $\mathcal{L}:\mathcal{M}_2(\mathbb{R})\times\mathcal{M}_2(\mathbb{R})\longrightarrow\mathbb{R}$ est une forme bilinéaire anti-symétrique.

$$\mathcal{L}(\nabla \alpha, \nabla \beta) = \mathcal{L}(\nabla (u+b), \nabla (u-b))$$

Introduction des "tourbillons" $(X, Y) = \text{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d=2, donc $X=\omega+j$ et $Y=\omega-j$ sont scalaires, et $\mathcal{L}:\mathcal{M}_2(\mathbb{R})\times\mathcal{M}_2(\mathbb{R})\longrightarrow\mathbb{R}$ est une forme bilinéaire anti-symétrique.

$$\mathcal{L}(\nabla \alpha, \nabla \beta) = \mathcal{L}(\nabla (u+b), \nabla (u-b)) = 2\mathcal{L}(\nabla b, \nabla u)$$

Introduction des "tourbillons" $(X, Y) = \text{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d=2, donc $X=\omega+j$ et $Y=\omega-j$ sont scalaires, et $\mathcal{L}:\mathcal{M}_2(\mathbb{R})\times\mathcal{M}_2(\mathbb{R})\longrightarrow\mathbb{R}$ est une forme bilinéaire anti-symétrique.

$$\mathcal{L}(\nabla \alpha, \nabla \beta) = \mathcal{L}(\nabla (u+b), \nabla (u-b)) = 2\mathcal{L}(\nabla b, \nabla u)$$

$$\left\|\boldsymbol{X},\boldsymbol{Y}\right\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}\lesssim \left(1+\int_{\mathbf{0}}^{t}\|\nabla\alpha,\nabla\beta\|_{\infty}\right)\left\{\left\|\boldsymbol{X}_{\mathbf{0}},\boldsymbol{Y}_{\mathbf{0}}\right\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}+\int_{\mathbf{0}}^{t}\left\|\mathsf{RHS}\right\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}\right\}.$$

Introduction des "tourbillons" $(X, Y) = \text{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d=2, donc $X=\omega+j$ et $Y=\omega-j$ sont scalaires, et $\mathcal{L}:\mathcal{M}_2(\mathbb{R})\times\mathcal{M}_2(\mathbb{R})\longrightarrow\mathbb{R}$ est une forme bilinéaire anti-symétrique.

$$\mathcal{L}(\nabla \alpha, \nabla \beta) = \mathcal{L}(\nabla (u+b), \nabla (u-b)) = 2\mathcal{L}(\nabla b, \nabla u)$$

$$\left\|X,Y\right\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}\lesssim \left(1+\int_{\mathbf{0}}^{t}\|\nabla\alpha,\nabla\beta\|_{\infty}\right)\left\{\left\|X_{\mathbf{0}},Y_{\mathbf{0}}\right\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}+\int_{\mathbf{0}}^{t}\left\|\mathsf{RHS}\right\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}\right\}.$$

Introduction des "tourbillons" $(X, Y) = \text{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d=2, donc $X=\omega+j$ et $Y=\omega-j$ sont scalaires, et $\mathcal{L}:\mathcal{M}_2(\mathbb{R})\times\mathcal{M}_2(\mathbb{R})\longrightarrow\mathbb{R}$ est une forme bilinéaire anti-symétrique.

$$\mathcal{L}(\nabla \alpha, \nabla \beta) = \mathcal{L}(\nabla (u+b), \nabla (u-b)) = 2\mathcal{L}(\nabla b, \nabla u)$$

$$\left\|X,Y\right\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}\lesssim \left(1+\int_{0}^{t}\|\nabla\alpha,\nabla\beta\|_{\infty}\right)\left\{\|X_{0},Y_{0}\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}+\int_{0}^{t}\|\mathcal{L}(\nabla\alpha,\nabla\beta)\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}\right\}.$$

Introduction des "tourbillons" $(X, Y) = \text{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d=2, donc $X=\omega+j$ et $Y=\omega-j$ sont scalaires, et $\mathcal{L}:\mathcal{M}_2(\mathbb{R})\times\mathcal{M}_2(\mathbb{R})\longrightarrow\mathbb{R}$ est une forme bilinéaire anti-symétrique.

$$\mathcal{L}(\nabla \alpha, \nabla \beta) = \mathcal{L}(\nabla (u+b), \nabla (u-b)) = 2\mathcal{L}(\nabla b, \nabla u)$$

$$\left\|X,Y\right\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}\lesssim \left(1+\int_{0}^{t}\|\nabla\alpha,\nabla\beta\|_{\infty}\right)\left\{\|X_{0},Y_{0}\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}+\int_{0}^{t}\|\underline{\mathcal{L}(\nabla\mathbf{u},\nabla\beta)}\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}\right\}.$$

Introduction des "tourbillons" $(X, Y) = \text{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d=2, donc $X=\omega+j$ et $Y=\omega-j$ sont scalaires, et $\mathcal{L}:\mathcal{M}_2(\mathbb{R})\times\mathcal{M}_2(\mathbb{R})\longrightarrow\mathbb{R}$ est une forme bilinéaire anti-symétrique.

$$\mathcal{L}(\nabla \alpha, \nabla \beta) = \mathcal{L}(\nabla (u+b), \nabla (u-b)) = 2\mathcal{L}(\nabla b, \nabla u)$$

$$\|X,Y\|_{\mathcal{B}^{\boldsymbol{0}}_{\infty,\boldsymbol{1}}}\lesssim \left(1+\int_0^t\|\nabla\alpha,\nabla\beta\|_{\infty}\right)\left\{\|X_0,Y_0\|_{\mathcal{B}^{\boldsymbol{0}}_{\infty,\boldsymbol{1}}}+\int_0^t\|\boldsymbol{u}\|_{\mathcal{B}^{\boldsymbol{1}}_{\infty,\boldsymbol{1}}}\|\boldsymbol{b}\|_{\mathcal{B}^{\boldsymbol{1}}_{\infty,\boldsymbol{1}}}\right\}.$$

Introduction des "tourbillons" $(X, Y) = \text{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d=2, donc $X=\omega+j$ et $Y=\omega-j$ sont scalaires, et $\mathcal{L}:\mathcal{M}_2(\mathbb{R})\times\mathcal{M}_2(\mathbb{R})\longrightarrow\mathbb{R}$ est une forme bilinéaire anti-symétrique.

$$\mathcal{L}(\nabla \alpha, \nabla \beta) = \mathcal{L}(\nabla (u+b), \nabla (u-b)) = 2\mathcal{L}(\nabla b, \nabla u)$$

$$\|X,Y\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}} \lesssim \left(1 + \int_{\mathbf{0}}^{t} \|\nabla\alpha,\nabla\beta\|_{\infty}\right) \left\{\|X_{\mathbf{0}},Y_{\mathbf{0}}\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}} + \int_{\mathbf{0}}^{t} \|u\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{1}}} \|b\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{1}}}\right\}.$$

Introduction des "tourbillons" $(X, Y) = \text{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d=2, donc $X=\omega+j$ et $Y=\omega-j$ sont scalaires, et $\mathcal{L}:\mathcal{M}_2(\mathbb{R})\times\mathcal{M}_2(\mathbb{R})\longrightarrow\mathbb{R}$ est une forme bilinéaire anti-symétrique.

$$\mathcal{L}(\nabla \alpha, \nabla \beta) = \mathcal{L}(\nabla (u+b), \nabla (u-b)) = 2\mathcal{L}(\nabla b, \nabla u)$$

Estimations linéaires:

$$\left\|X,Y\right\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}\lesssim \left(1+\int_{0}^{t}\|\nabla\alpha,\nabla\beta\|_{\infty}\right)\left\{\|X_{\mathbf{0}},Y_{\mathbf{0}}\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{0}}}+\int_{0}^{t}\|u\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{1}}}\|b\|_{\mathcal{B}_{\infty,\mathbf{1}}^{\mathbf{1}}}\right\}.$$

Quand b est faible, les estimations sont presque linéaires.

Théorème (C., Fanelli, 2020)

Soit $u_0, b_0 \in B^2_{\infty, 1} \cap L^2$. Le temps de vie de la solution associée est au moins

$$T^* \geq \frac{C}{\left\| (u_0, b_0) \right\|_{L^2 \cap \mathcal{B}_{\infty, \mathbf{1}}^2}} \log \left\{ 1 + \log \left[1 + \log \left(1 + C \frac{\left\| (u_0, b_0) \right\|_{L^2 \cap \mathcal{B}_{\infty, \mathbf{1}}^2}}{\left\| b_0 \right\|_{\mathcal{B}_{\infty, \mathbf{1}}^1}} \right) \right] \right\}.$$

Théorème (C., Fanelli, 2020)

Soit $u_0, b_0 \in B^2_{\infty,1} \cap L^2$. Le temps de vie de la solution associée est au moins

$$\mathcal{T}^* \geq \frac{C}{\left\| (u_0, b_0) \right\|_{L^2 \cap \mathcal{B}_{\infty, \mathbf{1}}^2}} \log \left\{ 1 + \log \left[1 + \log \left(1 + C \frac{\left\| (u_0, b_0) \right\|_{L^2 \cap \mathcal{B}_{\infty, \mathbf{1}}^2}}{\left\| b_0 \right\|_{\mathcal{B}_{\infty, \mathbf{1}}^1}} \right) \right] \right\}.$$

Théorème (C., Fanelli, 2021)

Soit $u_0\in B^2_{\infty,1}\cap L^2$ et $b_0\in B^1_{\infty,1}\cap L^2$. Le temps de vie de la solution associée est au moins

$$\mathcal{T}^* \geq \frac{C}{\left\|u_0\right\|_{L^2 \cap \mathcal{B}^2_{\infty,\mathbf{1}}}} \log \left\{1 + \log\left[1 + \log\left(1 + C\frac{\left\|u_0\right\|_{L^2 \cap \mathcal{B}^2_{\infty,\mathbf{1}}}}{\left\|b_0\right\|_{\mathcal{B}^1_{\infty,\mathbf{1}}}}\right)\right]\right\}.$$

Théorème (C., Fanelli, 2020)

Soit $u_0, b_0 \in B^2_{\infty,1} \cap L^2$. Le temps de vie de la solution associée est au moins

$$T^* \geq \frac{C}{\left\| (u_0, b_0) \right\|_{L^2 \cap \mathcal{B}_{\infty, \mathbf{1}}^2}} \log \left\{ 1 + \log \left[1 + \log \left(1 + C \frac{\left\| (u_0, b_0) \right\|_{L^2 \cap \mathcal{B}_{\infty, \mathbf{1}}^2}}{\left\| b_0 \right\|_{\mathcal{B}_{\infty, \mathbf{1}}^1}} \right) \right] \right\}.$$

Théorème (C., Fanelli, 2021)

Soit $u_0 \in B^2_{\infty,1} \cap L^2$ et $b_0 \in B^1_{\infty,1} \cap L^2$. Le temps de vie de la solution associée est au moins

$$\mathcal{T}^* \geq \frac{C}{\left\| u_0 \right\|_{L^2 \cap \mathcal{B}_{\infty, \mathbf{1}}^2}} \log \left\{ 1 + \log \left[1 + \log \left(1 + C \frac{\left\| u_0 \right\|_{L^2 \cap \mathcal{B}_{\infty, \mathbf{1}}^2}}{\left\| b_0 \right\|_{\mathcal{B}_{\infty, \mathbf{1}}^1}} \right) \right] \right\}.$$

Dimitri COBB

Variables d'Elsässer:

$$\alpha = u + b$$
 and $\beta = u - b$.

Variables d'Elsässer:

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \begin{cases} \partial_t \alpha + (\beta \cdot \nabla)\alpha + \nabla \pi_1 = 0 \\ \partial_t \beta + (\alpha \cdot \nabla)\beta + \nabla \pi_2 = 0 \\ \operatorname{div}(\alpha) = 0 \\ \operatorname{div}(\beta) = 0. \end{cases}$$

Variables d'Elsässer:

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \begin{cases} \partial_t \alpha + (\beta \cdot \nabla) \alpha + \nabla \pi_1 = 0 \\ \partial_t \beta + (\alpha \cdot \nabla) \beta + \nabla \pi_2 = 0 \\ \operatorname{div}(\alpha) = 0 \\ \operatorname{div}(\beta) = 0. \end{cases}$$

Pour revenir à u et b: $u = \frac{1}{2}(\alpha + \beta)$ et $b = \frac{1}{2}(\alpha - \beta)$.

Théorème (C., Fanelli, 2020)

Soit $1 \le p < +\infty$ et $(\alpha, \beta) \in C_T^0(L^p \cap L^\infty)$ une solution faible.

Variables d'Elsässer:

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \begin{cases} \partial_t \alpha + (\beta \cdot \nabla) \alpha + \nabla \pi_1 = 0 \\ \partial_t \beta + (\alpha \cdot \nabla) \beta + \nabla \pi_2 = 0 \\ \operatorname{div}(\alpha) = 0 \\ \operatorname{div}(\beta) = 0. \end{cases}$$

Pour revenir à u et b: $u = \frac{1}{2}(\alpha + \beta)$ et $b = \frac{1}{2}(\alpha - \beta)$.

Théorème (C., Fanelli, 2020)

Soit
$$1 \le p < +\infty$$
 et $(\alpha, \beta) \in C^0_T(L^p \cap L^\infty)$ une solution faible. Alors $\pi_1 = \pi_2$.

Variables d'Elsässer:

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\exists \, \pi_1, \pi_2, \qquad \begin{cases} \partial_t \alpha + (\beta \cdot \nabla) \alpha + \nabla \pi_1 = 0 \\ \partial_t \beta + (\alpha \cdot \nabla) \beta + \nabla \pi_2 = 0 \\ \operatorname{div}(\alpha) = 0 \\ \operatorname{div}(\beta) = 0. \end{cases}$$

Pour revenir à u et b: $u = \frac{1}{2}(\alpha + \beta)$ et $b = \frac{1}{2}(\alpha - \beta)$.

Théorème (C., Fanelli, 2020)

Soit $1 \le p < +\infty$ et $(\alpha, \beta) \in C^0_T(L^p \cap L^\infty)$ une solution faible. Alors $\pi_1 = \pi_2$. Ainsi (u, b) est une solution faible de la MHD idéale.

Variables d'Elsässer:

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \begin{cases} \partial_t \alpha + (\beta \cdot \nabla)\alpha + \nabla \pi_1 = 0 \\ \partial_t \beta + (\alpha \cdot \nabla)\beta + \nabla \pi_2 = 0 \\ \operatorname{div}(\alpha) = 0 \\ \operatorname{div}(\beta) = 0. \end{cases}$$

Pour revenir à u et b: $u = \frac{1}{2}(\alpha + \beta)$ et $b = \frac{1}{2}(\alpha - \beta)$.

Théorème (C., Fanelli, 2020)

Soit $1 \le p < +\infty$ et $(\alpha, \beta) \in C^0_T(L^p \cap L^\infty)$ une solution faible. Alors $\pi_1 = \pi_2$. Ainsi (u, b) est une solution faible de la MHD idéale.

Question: que dire de $p = +\infty$?

Variables d'Elsässer :

$$\alpha = u + b$$
 et $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \begin{cases} \partial_t \alpha + (\beta \cdot \nabla)\alpha + \nabla \pi_1 = 0 \\ \partial_t \beta + (\alpha \cdot \nabla)\beta + \nabla \pi_2 = 0 \\ \operatorname{div}(\alpha) = 0 \\ \operatorname{div}(\beta) = 0. \end{cases}$$

Variables d'Elsässer :

$$\alpha = u + b$$
 et $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \begin{cases} \partial_t \alpha + (\beta \cdot \nabla)\alpha + \nabla \pi_1 = 0 \\ \partial_t \beta + (\alpha \cdot \nabla)\beta + \nabla \pi_2 = 0 \\ \operatorname{div}(\alpha) = 0 \\ \operatorname{div}(\beta) = 0. \end{cases}$$

Contre-exemple:

Variables d'Elsässer :

$$\alpha = u + b$$
 et $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \qquad \begin{cases} \partial_t \alpha + (\beta \cdot \nabla)\alpha + \nabla \pi_1 = 0 \\ \partial_t \beta + (\alpha \cdot \nabla)\beta + \nabla \pi_2 = 0 \\ \operatorname{div}(\alpha) = 0 \\ \operatorname{div}(\beta) = 0. \end{cases}$$

Contre-exemple: d = 2,

Variables d'Elsässer :

$$\alpha = u + b$$
 et $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \begin{cases} \partial_t \alpha + (\beta \cdot \nabla)\alpha + \nabla \pi_1 = 0 \\ \partial_t \beta + (\alpha \cdot \nabla)\beta + \nabla \pi_2 = 0 \\ \operatorname{div}(\alpha) = 0 \\ \operatorname{div}(\beta) = 0. \end{cases}$$

Contre-exemple : d = 2,

$$\alpha(t, x) = (f(t), 0)$$
 et $\beta(t, x) = -(f(t), 0)$.

Variables d'Elsässer :

$$\alpha = u + b$$
 et $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \begin{cases} \partial_t \alpha + \nabla \pi_1 = 0 \\ \partial_t \beta + \nabla \pi_2 = 0 \\ \operatorname{div}(\alpha) = 0 \\ \operatorname{div}(\beta) = 0. \end{cases}$$

Contre-exemple : d = 2,

$$\alpha(t, x) = (f(t), 0)$$
 et $\beta(t, x) = -(f(t), 0)$.

Variables d'Elsässer :

$$\alpha = u + b$$
 et $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \begin{cases} (f'(t), 0) + \nabla(-x_1 f'(t)) = 0 \\ -(f'(t), 0) + \nabla(x_1 f(t)) = 0 \\ \operatorname{div}(\alpha) = 0 \\ \operatorname{div}(\beta) = 0. \end{cases}$$

Contre-exemple : d = 2,

$$\alpha(t, x) = (f(t), 0)$$
 et $\beta(t, x) = -(f(t), 0)$.

Variables d'Elsässer :

$$\alpha = u + b$$
 et $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \begin{cases} (f'(t), 0) + \nabla(-x_1 f'(t)) = 0 \\ -(f'(t), 0) + \nabla(x_1 f(t)) = 0 \\ \operatorname{div}(\alpha) = 0 \\ \operatorname{div}(\beta) = 0. \end{cases}$$

Contre-exemple : d = 2.

$$\alpha(t, x) = (f(t), 0)$$
 et $\beta(t, x) = -(f(t), 0)$.

L'équation du champ magnétique $b = \frac{1}{2}(\alpha - \beta)$ devient

$$\partial_t b + (u \cdot \nabla)b - (b \cdot \nabla)u = \frac{1}{2}\nabla(\pi_2 - \pi_1)$$

Variables d'Elsässer :

$$\alpha = u + b$$
 et $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \begin{cases} (f'(t), 0) + \nabla(-x_1 f'(t)) = 0 \\ -(f'(t), 0) + \nabla(x_1 f(t)) = 0 \\ \operatorname{div}(\alpha) = 0 \\ \operatorname{div}(\beta) = 0. \end{cases}$$

Contre-exemple: d = 2,

$$\alpha(t, x) = (f(t), 0)$$
 et $\beta(t, x) = -(f(t), 0)$.

L'équation du champ magnétique $b = \frac{1}{2}(\alpha - \beta)$ devient

$$\partial_t b + (u \cdot \nabla)b - (b \cdot \nabla)u = (f'(t), 0) \neq 0.$$

C'est une solution lisse $C^{\infty} \cap L^{\infty}$ qui montre que les systèmes ne sont pas équivalents.

Dans le cas $p=+\infty$, on établit un théorème d'équivalence optimal.

Dans le cas $p = +\infty$, on établit un théorème d'équivalence optimal.

Théorème (C., 2021)

Soit $(\alpha, \beta) \in C^0([0, T[; L^{\infty})]$ une solution faible du système d'Elsässer et $(u, b) = \frac{1}{2}(\alpha + \beta, \alpha - \beta)$. Les affirmations suivantes sont équivalentes :

Dans le cas $p = +\infty$, on établit un théorème d'équivalence optimal.

Théorème (C., 2021)

Soit $(\alpha, \beta) \in C^0([0, T[; L^\infty)]$ une solution faible du système d'Elsässer et $(u, b) = \frac{1}{2}(\alpha + \beta, \alpha - \beta)$. Les affirmations suivantes sont équivalentes :

• Le couple (u, b) est une solution de la MHD idéale.

Dans le cas $p = +\infty$, on établit un théorème d'équivalence optimal.

Théorème (C., 2021)

Soit $(\alpha, \beta) \in C^0([0, T[; L^{\infty})]$ une solution faible du système d'Elsässer et $(u, b) = \frac{1}{2}(\alpha + \beta, \alpha - \beta)$. Les affirmations suivantes sont équivalentes :

- Le couple (u, b) est une solution de la MHD idéale.
- ② pour tout temps $t \in [0, T[$, la condition $b(t) b(0) \in S'_b$ est vérifiée.

Dans le cas $p = +\infty$, on établit un théorème d'équivalence optimal.

Théorème (C., 2021)

Soit $(\alpha, \beta) \in C^0([0, T[; L^{\infty})]$ une solution faible du système d'Elsässer et $(u, b) = \frac{1}{2}(\alpha + \beta, \alpha - \beta)$. Les affirmations suivantes sont équivalentes :

- Le couple (u, b) est une solution de la MHD idéale.
- ② pour tout temps $t \in [0, T[$, la condition $b(t) b(0) \in S'_b$ est vérifiée.

L'espace \mathcal{S}_h' contient les distributions tempérées $f \in \mathcal{S}_h'$ de transformée de Fourier "petite" autour de $\xi = 0$.

Dans le cas $p = +\infty$, on établit un théorème d'équivalence optimal.

Théorème (C., 2021)

Soit $(\alpha, \beta) \in C^0([0, T[; L^{\infty})]$ une solution faible du système d'Elsässer et $(u, b) = \frac{1}{2}(\alpha + \beta, \alpha - \beta)$. Les affirmations suivantes sont équivalentes :

- Le couple (u, b) est une solution de la MHD idéale.
- ② pour tout temps $t \in [0, T[$, la condition $b(t) b(0) \in S'_h$ est vérifiée.

L'espace \mathcal{S}_h' contient les distributions tempérées $f \in \mathcal{S}_h'$ de transformée de Fourier "petite" autour de $\xi = 0$.

Définition (Chemin)

Fixons une fonction de troncature $\chi \in \mathcal{D}$. On note \mathcal{S}'_h l'espace des $f \in \mathcal{S}'$ telles que

$$\chi(\lambda \xi) \hat{f}(\xi) \longrightarrow 0$$
 lorsque $\lambda \to 0^+$.

Dans le cas $p = +\infty$, on établit un théorème d'équivalence optimal.

Théorème (C., 2021)

Soit $(\alpha, \beta) \in C^0([0, T[; L^{\infty})]$ une solution faible du système d'Elsässer et $(u, b) = \frac{1}{2}(\alpha + \beta, \alpha - \beta)$. Les affirmations suivantes sont équivalentes :

- 1 Le couple (u, b) est une solution de la MHD idéale.
- ② pour tout temps $t \in [0, T[$, la condition $b(t) b(0) \in S'_h$ est vérifiée.

L'espace \mathcal{S}_h' contient les distributions tempérées $f \in \mathcal{S}_h'$ de transformée de Fourier "petite" autour de $\xi = 0$.

Définition (Chemin)

Fixons une fonction de troncature $\chi \in \mathcal{D}$. On note \mathcal{S}'_h l'espace des $f \in \mathcal{S}'$ telles que

$$\chi(\lambda \xi) \hat{f}(\xi) \longrightarrow 0$$
 lorsque $\lambda \to 0^+$.

Exemples...

Dans le cas $p = +\infty$, on établit un théorème d'équivalence optimal.

Théorème (C., 2021)

Soit $(\alpha, \beta) \in C^0([0, T]; L^{\infty})$ une solution faible du système d'Elsässer et $(u, b) = \frac{1}{2}(\alpha + \beta, \alpha - \beta)$. Les affirmations suivantes sont équivalentes :

- Le couple (u, b) est une solution de la MHD idéale.
- ② pour tout temps $t \in [0, T[$, la condition $b(t) b(0) \in S'_b$ est vérifiée.

L'espace \mathcal{S}_h' contient les distributions tempérées $f \in \mathcal{S}_h'$ de transformée de Fourier "petite" autour de $\xi = 0$.

Définition (Chemin)

Fixons une fonction de troncature $\chi \in \mathcal{D}$. On note \mathcal{S}'_h l'espace des $f \in \mathcal{S}'$ telles que

$$\chi(\lambda \xi) \hat{f}(\xi) \longrightarrow 0$$
 lorsque $\lambda \to 0^+$.

Exemples...

• Fonctions périodiques sans valeur moyenne : $sin(ax_1) \in \mathcal{S}'_h$,

Dans le cas $p = +\infty$, on établit un théorème d'équivalence optimal.

Théorème (C., 2021)

Soit $(\alpha, \beta) \in C^0([0, T]; L^{\infty})$ une solution faible du système d'Elsässer et $(u,b)=\frac{1}{2}(\alpha+\beta,\alpha-\beta)$. Les affirmations suivantes sont équivalentes :

- Le couple (u, b) est une solution de la MHD idéale.
- ② pour tout temps $t \in [0, T[$, la condition $b(t) b(0) \in S'_b$ est vérifiée.

L'espace \mathcal{S}_h' contient les distributions tempérées $f \in \mathcal{S}_h'$ de transformée de Fourier "petite" autour de $\xi = 0$.

Définition (Chemin)

Fixons une fonction de troncature $\chi \in \mathcal{D}$. On note \mathcal{S}'_h l'espace des $f \in \mathcal{S}'$ telles que

$$\chi(\lambda \xi) \widehat{f}(\xi) \longrightarrow 0$$
 lorsque $\lambda \to 0^+$.

Exemples...

- **①** Fonctions périodiques sans valeur moyenne : $sin(ax_1) \in \mathcal{S}'_h$,
- 2 Fonction signe $\sigma = \mathbb{1}_{\mathbb{R}_{\perp}} \mathbb{1}_{\mathbb{R}} \in \mathcal{S}'_{b}$.

Merci pour votre attention!