Temps de vie des solutions en magnétohydrodynamique idéale

Dimitri COBB travail en collaboration avec Francesco FANELLI

28 mai 2024

Présentation du système

Variables d'Elsässer Contribution des variables d'Elsässer Retour les solutions bornées : équivalence des systèmes

Fluides conducteurs

Magnétofluides La magnétohydrodynamique – MHD

NASA (Transition Region And Coronal Explorer). Image sur https://commons.wikimedia.org/wiki/File:Traceimage.jpg

Présentation du système Variables d'Elsässer

Variables d'Elsasser Contribution des variables d'Elsässer Retour les solutions bornées : équivalence des systèmes

Fluides conducteurs

Magnétofluides La magnétohydrodynamique – MHD

UK Atomic Energy Authority. (Instabilité dans un plasma). Image sur https://commons.wikimedia.org/wiki/File: Kink_instability_at_Aldermaston.jpg

Présentation du système

Variables d'Elsässer Contribution des variables d'Elsässer Retour les solutions bornées : équivalence des systèmes

Fluides conducteurs

Magnétofluides La magnétohydrodynamique – MHD

NASA (Gary Glatzmaier of Los Alamos and UC Santa Cruz). Image sur https://commons.wikimedia.org/wiki/File:Geodynamo_After_Reversal.gif

Fluides conducteurs

Magnétofluides La magnétohydrodynamique – MHD

Objectif : étude des fluides conducteurs de courant.

Fluides conducteurs

Magnétofluides La magnétohydrodynamique – MHD

Objectif : étude des fluides conducteurs de courant.

Courant électrique

Fluides conducteurs

Magnétofluides La magnétohydrodynamique – MHD

Objectif : étude des fluides conducteurs de courant.

Courant électrique — Champ magnétique

Fluides conducteurs

Magnétofluides La magnétohydrodynamique – MHD

Objectif : étude des fluides conducteurs de courant.

 $\mathsf{Courant} \,\, \acute{\mathsf{e}} \mathsf{lectrique} \longrightarrow \mathsf{Champ} \,\, \mathsf{magn\acute{e}tique} \longrightarrow \mathsf{Force} \,\, \mathsf{de} \,\, \mathsf{Laplace}$

Fluides conducteurs

Magnétofluides La magnétohydrodynamique – MHD

Objectif : étude des fluides conducteurs de courant.

Courant électrique \longrightarrow Champ magnétique \longrightarrow Force de Laplace \longrightarrow Changement de la dynamique

Fluides conducteurs

Magnétofluides La magnétohydrodynamique – MHD

Objectif : étude des fluides conducteurs de courant.

Courant électrique \longrightarrow Champ magnétique \longrightarrow Force de Laplace \longrightarrow Changement de la dynamique \longrightarrow Courant électrique.

Fluides conducteurs

Magnétofluides La magnétohydrodynamique – MHD

Objectif : étude des fluides conducteurs de courant.

Courant électrique \longrightarrow Champ magnétique \longrightarrow Force de Laplace \longrightarrow Changement de la dynamique \longrightarrow Courant électrique.

Magnétohydrodynamique (MHD) : pour un fluide parfait (incompressible, non-visqueux et parfaitement conducteur)

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Fluides conducteurs

Magnétofluides La magnétohydrodynamique – MHD

Objectif : étude des fluides conducteurs de courant.

Courant électrique \longrightarrow Champ magnétique \longrightarrow Force de Laplace \longrightarrow Changement de la dynamique \longrightarrow Courant électrique.

Magnétohydrodynamique (MHD) : $u : \mathbb{R}_t \times \mathbb{R}_x^d \longrightarrow \mathbb{R}^d$

$$\begin{cases} \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (\mathbf{u} \cdot \nabla)b = (b \cdot \nabla)\mathbf{u} \\ \operatorname{div}(\mathbf{u}) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Fluides conducteurs

Magnétofluides La magnétohydrodynamique – MHD

Objectif : étude des fluides conducteurs de courant.

Courant électrique \longrightarrow Champ magnétique \longrightarrow Force de Laplace \longrightarrow Changement de la dynamique \longrightarrow Courant électrique.

Magnétohydrodynamique (MHD) : $\Pi : \mathbb{R}_t \times \mathbb{R}^d_x \longrightarrow \mathbb{R}$

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Fluides conducteurs

Magnétofluides La magnétohydrodynamique – MHD

Objectif : étude des fluides conducteurs de courant.

Courant électrique \longrightarrow Champ magnétique \longrightarrow Force de Laplace \longrightarrow Changement de la dynamique \longrightarrow Courant électrique.

Magnétohydrodynamique (MHD) : $b : \mathbb{R}_t \times \mathbb{R}_x^d \longrightarrow \mathbb{R}^d$

$$\begin{cases} \partial_t u + (u \cdot \nabla) u + \nabla \Pi = (\mathbf{b} \cdot \nabla) \mathbf{b} - \frac{1}{2} \nabla \left(|\mathbf{b}|^2 \right) \\ \partial_t \mathbf{b} + (u \cdot \nabla) \mathbf{b} = (\mathbf{b} \cdot \nabla) u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(\mathbf{b}) = 0. \end{cases}$$

Fluides conducteurs

Magnétofluides La magnétohydrodynamique – MHD

Objectif : étude des fluides conducteurs de courant.

Courant électrique \longrightarrow Champ magnétique \longrightarrow Force de Laplace \longrightarrow Changement de la dynamique \longrightarrow Courant électrique.

Magnétohydrodynamique (MHD) :

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Fluides conducteurs

Magnétofluides La magnétohydrodynamique – MHD

Objectif : étude des fluides conducteurs de courant.

Courant électrique \longrightarrow Champ magnétique \longrightarrow Force de Laplace \longrightarrow Changement de la dynamique \longrightarrow Courant électrique.

Magnétohydrodynamique (MHD) :

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Objectif : existence et unicité des solutions à données initiales fixées.

Théorie L² Présentation des variables d'Elsässer

Structure du système : théorie L^2

Le système de la MHD idéale est "hyperbolique" et quasi-linéaire

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Théorie L² Présentation des variables d'Elsässer

Structure du système : théorie L^2

Le système de la MHD idéale est "hyperbolique" et quasi-linéaire

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2} \nabla \left(|b|^2 \right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Mais il est aussi symétrique : l'énergie totale (cinétique + magnétique) est conservée

$$(\partial_t + u \cdot \nabla) \left(\frac{1}{2}|u|^2\right) = \operatorname{div} \left(\left(\Pi + \frac{1}{2}|b^2|\right)u\right) + (b \cdot \nabla)b \cdot u (\partial_t + u \cdot \nabla) \left(\frac{1}{2}|b|^2\right) = (b \cdot \nabla)u \cdot b$$

Théorie L² Présentation des variables d'Elsässer

Structure du système : théorie L^2

Le système de la MHD idéale est "hyperbolique" et quasi-linéaire

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2} \nabla \left(|b|^2 \right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Mais il est aussi symétrique : l'énergie totale (cinétique + magnétique) est conservée

$$(\partial_t + u \cdot \nabla) \left(\frac{1}{2}|u|^2\right) = \operatorname{div} \left(\left(\Pi + \frac{1}{2}|b^2|\right)u\right) + (b \cdot \nabla)b \cdot u (\partial_t + u \cdot \nabla) \left(\frac{1}{2}|b|^2\right) = (b \cdot \nabla)u \cdot b$$

Conséquence:

• existence et unicité de solutions locales dans des espaces basés sur L^2 , p. ex. $X = H^{1+d/2+\epsilon}$ ou $X = B_{2,1}^{1+d/2}$.

Théorie L² Présentation des variables d'Elsässer

Structure du système : théorie L^2

Le système de la MHD idéale est "hyperbolique" et quasi-linéaire

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2} \nabla \left(|b|^2 \right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Mais il est aussi symétrique : l'énergie totale (cinétique + magnétique) est conservée

$$(\partial_t + u \cdot \nabla) \left(\frac{1}{2}|u|^2\right) = \operatorname{div} \left(\left(\Pi + \frac{1}{2}|b^2|\right)u\right) + (b \cdot \nabla)b \cdot u (\partial_t + u \cdot \nabla) \left(\frac{1}{2}|b|^2\right) = (b \cdot \nabla)u \cdot b$$

Conséquence:

• existence et unicité de solutions locales dans des espaces basés sur L^2 , p. ex. $X = H^{1+d/2+\epsilon}$ ou $X = B_{2,1}^{1+d/2}$. La raison : $X \hookrightarrow W^{1,\infty}$.

Théorie L² Présentation des variables d'Elsässer

Structure du système : théorie L^2

Le système de la MHD idéale est "hyperbolique" et quasi-linéaire

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Mais il est aussi symétrique : l'énergie totale (cinétique + magnétique) est conservée

$$(\partial_t + u \cdot \nabla) \left(\frac{1}{2}|u|^2\right) = \operatorname{div} \left(\left(\Pi + \frac{1}{2}|b^2|\right)u\right) + (b \cdot \nabla)b \cdot u (\partial_t + u \cdot \nabla) \left(\frac{1}{2}|b|^2\right) = (b \cdot \nabla)u \cdot b$$

Conséquence:

- existence et unicité de solutions locales dans des espaces basés sur L^2 , p. ex. $X = H^{1+d/2+\epsilon}$ ou $X = B_{2,1}^{1+d/2}$. La raison : $X \hookrightarrow W^{1,\infty}$.
- Borne inférieure sur le **temps de vie** des solutions $T^* \ge \frac{1}{\|(u_0, b_0)\|_X}$.

Théorie L² Présentation des variables d'Elsässer

Structure du système : théorie L^2

Le système de la MHD idéale est "hyperbolique" et quasi-linéaire

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Mais il est aussi symétrique : l'énergie totale (cinétique + magnétique) est conservée

$$(\partial_t + u \cdot \nabla) \left(\frac{1}{2}|u|^2\right) = \operatorname{div} \left(\left(\Pi + \frac{1}{2}|b^2|\right)u\right) + (b \cdot \nabla)b \cdot u (\partial_t + u \cdot \nabla) \left(\frac{1}{2}|b|^2\right) = (b \cdot \nabla)u \cdot b$$

Conséquence:

- existence et unicité de solutions locales dans des espaces basés sur L^2 , p. ex. $X = H^{1+d/2+\epsilon}$ ou $X = B_{2,1}^{1+d/2}$. La raison : $X \hookrightarrow W^{1,\infty}$.
- Borne inférieure sur le **temps de vie** des solutions $T^* \ge \frac{1}{\|(u_0, b_0)\|_X}$.
- [Schmidt, 1988].

Théorie L² Présentation des variables d'Elsässer

Structure du système : aller au delà de la théorie hyperbolique ?

Théorie L² Présentation des variables d'Elsässer

Structure du système : aller au delà de la théorie hyperbolique ?

Nos raisons de vouloir plus :

Solutions d'énergie infinie

Théorie L² Présentation des variables d'Elsässer

Structure du système : aller au delà de la théorie hyperbolique ?

Nos raisons de vouloir plus :

() Solutions d'énergie infinie $\longrightarrow p \neq 2$,

- **(**) Solutions d'énergie infinie $\longrightarrow p \neq 2$,
- $\textbf{ O} Solutions dans des espaces plus gros H^{1+d/2+\epsilon} \hookrightarrow B^{1+d/2}_{2,1} \hookrightarrow B^1_{\infty,1} \hookrightarrow W^{1,\infty}.$

- Solutions dans des espaces plus gros $H^{1+d/2+\epsilon} \hookrightarrow B^{1+d/2}_{2,1} \hookrightarrow B^1_{\infty,1} \hookrightarrow W^{1,\infty}$. On veut donc $p \neq 2$, et si possible $p = +\infty$.

- $\textbf{O} \text{ Solutions d'énergie infinie} \longrightarrow p \neq 2,$
- Solutions dans des espaces plus gros H^{1+d/2+ϵ} → B^{1+d/2} → B¹_{∞,1} → W^{1,∞}. On veut donc p ≠ 2, et si possible p = +∞.
- $\textbf{O} \ \ \, \text{Le temps de vie } \mathcal{T}^* \geq \frac{1}{\|(\textit{u}_0, b_0)\|_X} \ \, \text{n'est pas optimal.}$

- Solutions dans des espaces plus gros $H^{1+d/2+\epsilon} \hookrightarrow B^{1+d/2}_{2,1} \hookrightarrow B^1_{\infty,1} \hookrightarrow W^{1,\infty}$. On veut donc $p \neq 2$, et si possible $p = +\infty$.
- Le temps de vie $T^*_{\text{MHD}} \ge \frac{1}{\|(u_0, b_0)\|_X} = F(u_0, b_0)$ n'est pas optimal.

- Solutions dans des espaces plus gros $H^{1+d/2+\epsilon} \hookrightarrow B^{1+d/2}_{2,1} \hookrightarrow B^1_{\infty,1} \hookrightarrow W^{1,\infty}$. On veut donc $p \neq 2$, et si possible $p = +\infty$.
- Le temps de vie $T^*_{\text{MHD}} \ge \frac{1}{\|(u_0, b_0)\|_X} = F(u_0, b_0)$ n'est pas optimal.

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2} \nabla \left(|b|^2 \right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

Nos raisons de vouloir plus :

- On veut donc p ≠ 2, et si possible p = +∞.
- Le temps de vie $T^*_{\text{MHD}} \ge \frac{1}{\|(u_0, b_0)\|_X} = F(u_0, b_0)$ n'est pas optimal.

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla \Pi = (b \cdot \nabla)b - \frac{1}{2}\nabla \left(|b|^2\right) \\ \partial_t b + (u \cdot \nabla)b = (b \cdot \nabla)u \\ \operatorname{div}(u) = 0 \\ \operatorname{div}(b) = 0. \end{cases}$$

 $\begin{array}{l} {\sf Si} \ b_0 \longrightarrow 0 \ \text{alors MHD} \longrightarrow {\sf Euler.} \ {\sf Mais en 2D} \\ {\it F}(u_0,b_0) \longrightarrow {\it F}(u_0,0) < {\it T}^*_{\rm Euler} = +\infty. \end{array}$

Théorie L² Présentation des variables d'Elsässer

Structure du système : variable d'Elsässer

En réalité, la MHD idéale est un système d'équations de "transport". Changement de variables :

 $\alpha = u + b$ and $\beta = u - b$.

Théorie L² Présentation des variables d'Elsässer

Structure du système : variable d'Elsässer

En réalité, la MHD idéale est un système d'équations de "transport". Changement de variables :

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\begin{cases} \partial_t \alpha + (\beta \cdot \nabla)\alpha + \nabla \pi_1 = 0\\ \partial_t \beta + (\alpha \cdot \nabla)\beta + \nabla \pi_2 = 0\\ \operatorname{div}(\alpha) = 0\\ \operatorname{div}(\beta) = 0. \end{cases}$$

Théorie L² Présentation des variables d'Elsässer

Structure du système : variable d'Elsässer

En réalité, la MHD idéale est un système d'équations de "transport". Changement de variables :

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\begin{cases} \partial_t \alpha + (\beta \cdot \nabla)\alpha + \nabla \pi_1 = 0\\ \partial_t \beta + (\alpha \cdot \nabla)\beta + \nabla \pi_2 = 0\\ \operatorname{div}(\alpha) = 0\\ \operatorname{div}(\beta) = 0. \end{cases}$$

Les fonctions π_1 et π_2 sont *a priori* différentes : elles proviennent de deux contraintes différentes.

Théorie L² Présentation des variables d'Elsässer

Structure du système : variable d'Elsässer

En réalité, la MHD idéale est un système d'équations de "transport". Changement de variables :

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \qquad \begin{cases} \partial_t \alpha + (\beta \cdot \nabla) \alpha + \nabla \pi_1 = 0\\ \partial_t \beta + (\alpha \cdot \nabla) \beta + \nabla \pi_2 = 0\\ \operatorname{div}(\alpha) = 0\\ \operatorname{div}(\beta) = 0. \end{cases}$$

Les fonctions π_1 et π_2 sont *a priori* différentes : elles proviennent de deux contraintes différentes.

Théorie L² Présentation des variables d'Elsässer

Structure du système : variable d'Elsässer

En réalité, la MHD idéale est un système d'équations de "transport". Changement de variables :

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \qquad \begin{cases} \partial_t \alpha + (\beta \cdot \nabla) \alpha + \nabla \pi_1 = 0\\ \partial_t \beta + (\alpha \cdot \nabla) \beta + \nabla \pi_2 = 0\\ \operatorname{div}(\alpha) = 0\\ \operatorname{div}(\beta) = 0. \end{cases}$$

Les fonctions π_1 et π_2 sont *a priori* différentes : elles proviennent de deux contraintes différentes.

Remarque : les deux systèmes ne sont pas toujours équivalents.
Théorie L² Présentation des variables d'Elsässer

Structure du système : variable d'Elsässer

En réalité, la MHD idéale est un système d'équations de "transport". Changement de variables :

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \qquad \begin{cases} \partial_t \alpha + (\beta \cdot \nabla) \alpha + \nabla \pi_1 = 0\\ \partial_t \beta + (\alpha \cdot \nabla) \beta + \nabla \pi_2 = 0\\ \operatorname{div}(\alpha) = 0\\ \operatorname{div}(\beta) = 0. \end{cases}$$

Les fonctions π_1 et π_2 sont *a priori* différentes : elles proviennent de deux contraintes différentes.

Remarque : les deux systèmes ne sont pas toujours équivalents.

Mais oublions provisoirement ce problème et continuons. Nous y reviendrons...

Estimations a priori

Existence et unicité de solutions Le cas des fluides plans d = 2

Méthode pour éliminer la pression, appliquer le rotationnel.

Estimations a priori

Existence et unicité de solutions Le cas des fluides plans d = 2

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_j \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_j \beta_i - \partial_i \beta_j$.

Estimations a priori

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_j \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_j \beta_i - \partial_i \beta_j$.

Existence et unicité de solutions

Le cas des fluides plans d = 2

Alors :

$$\begin{cases} \left(\partial_t + \beta \cdot \nabla\right) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ \left(\partial_t + \alpha \cdot \nabla\right) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations ?

Existence et unicité de solutions Le cas des fluides plans d = 2

Estimations a priori

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_j \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_j \beta_i - \partial_i \beta_j$.

Alors :

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ (\partial_t + \alpha \cdot \nabla) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations ? Hölder ? $X, Y \in C^{\alpha} \Rightarrow \nabla \alpha, \nabla \beta \in C^{\alpha}$.

Estimations a priori

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_j \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_j \beta_i - \partial_i \beta_j$.

Alors :

$$\begin{cases} \left(\partial_t + \beta \cdot \nabla\right) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ \left(\partial_t + \alpha \cdot \nabla\right) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations ? Hölder ? $X, Y \in C^{\alpha} \Rightarrow \nabla \alpha, \nabla \beta \in C^{\alpha}$. Problème : effet de stretching/étirement...

$$\|X,Y\|_{C^{\alpha}} \lesssim \exp\left(C\int_{0}^{t}\|\nabla\alpha,\nabla\beta\|_{\mathcal{C}^{1+\alpha}}\right)\left\{\|X_{0},Y_{0}\|_{C^{\alpha}}+\int_{0}^{t}\|\mathcal{R}\mathcal{HS}\|_{C^{\alpha}}\right\}.$$

Existence et unicité de solutions Le cas des fluides plans d = 2

Estimations a priori

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_j \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_j \beta_i - \partial_i \beta_j$.

Alors :

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ (\partial_t + \alpha \cdot \nabla) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations ? Lebesgue ?

Existence et unicité de solutions Le cas des fluides plans d = 2

Estimations a priori

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_j \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_j \beta_i - \partial_i \beta_j$.

Alors :

$$\begin{cases} \left(\partial_t + \beta \cdot \nabla\right) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ \left(\partial_t + \alpha \cdot \nabla\right) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations ? Lebesgue ? Pas de stretching...

$$\|X, Y\|_{L^{\infty}} \leq \|X_0, Y_0\|_{L^{\infty}} + \int_0^t \|RHS\|_{L^{\infty}}.$$

Existence et unicité de solutions Le cas des fluides plans d = 2

Estimations a priori

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_j \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_j \beta_i - \partial_i \beta_j$.

Alors :

$$\begin{cases} \left(\partial_t + \beta \cdot \nabla\right) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ \left(\partial_t + \alpha \cdot \nabla\right) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations ? Lebesgue ? Pas de stretching...

$$\|X, Y\|_{L^{\infty}} \leq \|X_0, Y_0\|_{L^{\infty}} + \int_0^t \|RHS\|_{L^{\infty}}.$$

Inconvénient majeur : $X, Y \in L^{\infty} \Rightarrow \nabla \alpha, \nabla \beta \in L^{\infty}$ et *RHS* pire encore !

Existence et unicité de solutions Le cas des fluides plans d = 2

Estimations a priori

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_j \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_j \beta_i - \partial_i \beta_j$.

Alors :

$$\begin{cases} \left(\partial_t + \beta \cdot \nabla\right) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ \left(\partial_t + \alpha \cdot \nabla\right) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations ? Solution : trouver un espace intermédiaire.

Existence et unicité de solutions Le cas des fluides plans d = 2

Estimations a priori

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_j \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_j \beta_i - \partial_i \beta_j$.

Alors :

$$\begin{cases} \left(\partial_t + \beta \cdot \nabla\right) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ \left(\partial_t + \alpha \cdot \nabla\right) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations ? Solution : trouver un espace intermédiaire. Espace de Besov :

$$L^{\infty} \subset B^{\mathbf{0}}_{\infty,1} \subset C^{\epsilon}.$$

Existence et unicité de solutions Le cas des fluides plans d = 2

Estimations a priori

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_j \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_j \beta_i - \partial_i \beta_j$.

Alors :

$$\begin{cases} \left(\partial_t + \beta \cdot \nabla\right) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ \left(\partial_t + \alpha \cdot \nabla\right) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations ? Solution : trouver un espace intermédiaire. Espace de Besov :

$$L^{\infty} \subset B^{\mathbf{0}}_{\infty,1} \subset C^{\epsilon}.$$

Avantage : estimations linéaires pour l'équation de transport

$$\left\|X,Y\right\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}} \lesssim \left(1 + \int_{\mathbf{0}}^{t} \|\nabla\alpha,\nabla\beta\|_{\infty}\right) \left\{\|X_{\mathbf{0}},Y_{\mathbf{0}}\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}} + \int_{\mathbf{0}}^{t} \|\mathsf{RHS}\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}}\right\}.$$

Estimations a priori

Méthode pour éliminer la pression, appliquer le rotationnel.

$$X_{ij} = \partial_j \alpha_i - \partial_i \alpha_j$$
 and $Y_{ij} = \partial_j \beta_i - \partial_i \beta_j$.

Alors :

$$\begin{cases} \left(\partial_t + \beta \cdot \nabla\right) X_{ij} = \partial_i \beta_k \partial_k \alpha_j - \partial_j \beta_k \partial_k \alpha_i \\ \left(\partial_t + \alpha \cdot \nabla\right) Y_{ij} = \partial_i \alpha_k \partial_k \beta_j - \partial_j \alpha_k \partial_k \beta_i. \end{cases}$$

Quelles estimations ? Solution : trouver un espace intermédiaire. Espace de Besov :

$$L^{\infty} \subset B^{\mathbf{0}}_{\infty,1} \subset C^{\epsilon}.$$

Avantage : estimations linéaires pour l'équation de transport

$$\left\|X,Y\right\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}} \lesssim \left(1 + \int_{\mathbf{0}}^{t} \|\nabla\alpha,\nabla\beta\|_{\infty}\right) \left\{\|X_{\mathbf{0}},Y_{\mathbf{0}}\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}} + \int_{\mathbf{0}}^{t} \|\mathsf{RHS}\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}}\right\}.$$

Désavantage : le produit ponctuel des fonctions $B^0_{\infty,1} \times B^0_{\infty,1} \longrightarrow B^0_{\infty,1}$ est mal défini/discontinu.

Existence et unicité de solutions Le cas des fluides plans d = 2

Le cas d'un fluide plan d = 2

Introduction des "tourbillons" $(X, Y) = \operatorname{curl}(\alpha, \beta)$:

Existence et unicité de solutions Le cas des fluides plans d = 2

Le cas d'un fluide plan d = 2

Introduction des "tourbillons" $(X, Y) = \operatorname{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Existence et unicité de solutions Le cas des fluides plans d = 2

Le cas d'un fluide plan d = 2

Introduction des "tourbillons" $(X, Y) = \operatorname{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d = 2,

Existence et unicité de solutions Le cas des fluides plans d = 2

Le cas d'un fluide plan d = 2

Introduction des "tourbillons" $(X, Y) = \operatorname{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d = 2, donc $X = \omega + j$ et $Y = \omega - j$ sont scalaires,

Existence et unicité de solutions Le cas des fluides plans d = 2

Le cas d'un fluide plan d = 2

Introduction des "tourbillons" $(X, Y) = \operatorname{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d = 2, donc $X = \omega + j$ et $Y = \omega - j$ sont scalaires, et $\mathcal{L} : \mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}$ est une forme bilinéaire anti-symétrique.

Existence et unicité de solutions Le cas des fluides plans d = 2

Le cas d'un fluide plan d = 2

Introduction des "tourbillons" $(X, Y) = \operatorname{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d = 2, donc $X = \omega + j$ et $Y = \omega - j$ sont scalaires, et $\mathcal{L} : \mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}$ est une forme bilinéaire anti-symétrique.

$$\mathcal{L}(\nabla \alpha, \nabla \beta) = \mathcal{L}(\nabla (u+b), \nabla (u-b))$$

Existence et unicité de solutions Le cas des fluides plans d = 2

Le cas d'un fluide plan d = 2

Introduction des "tourbillons" $(X, Y) = \operatorname{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d = 2, donc $X = \omega + j$ et $Y = \omega - j$ sont scalaires, et $\mathcal{L} : \mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}$ est une forme bilinéaire anti-symétrique.

$$\mathcal{L}(\nabla \alpha, \nabla \beta) = \mathcal{L}(\nabla (u+b), \nabla (u-b)) = 2\mathcal{L}(\nabla b, \nabla u)$$

Existence et unicité de solutions Le cas des fluides plans d = 2

Le cas d'un fluide plan d = 2

Introduction des "tourbillons" $(X, Y) = \operatorname{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d = 2, donc $X = \omega + j$ et $Y = \omega - j$ sont scalaires, et $\mathcal{L} : \mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}$ est une forme bilinéaire anti-symétrique.

$$\mathcal{L}(\nabla \alpha, \nabla \beta) = \mathcal{L}(\nabla (u+b), \nabla (u-b)) = 2\mathcal{L}(\nabla b, \nabla u)$$

$$\left\|X,Y\right\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}} \lesssim \left(1 + \int_{\mathbf{0}}^{t} \|\nabla\alpha,\nabla\beta\|_{\infty}\right) \left\{\|X_{\mathbf{0}},Y_{\mathbf{0}}\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}} + \int_{\mathbf{0}}^{t} \|\mathsf{RHS}\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}}\right\}.$$

Existence et unicité de solutions Le cas des fluides plans d = 2

Le cas d'un fluide plan d = 2

Introduction des "tourbillons" $(X, Y) = \operatorname{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d = 2, donc $X = \omega + j$ et $Y = \omega - j$ sont scalaires, et $\mathcal{L} : \mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}$ est une forme bilinéaire anti-symétrique.

$$\mathcal{L}(\nabla \alpha, \nabla \beta) = \mathcal{L}(\nabla (u+b), \nabla (u-b)) = 2\mathcal{L}(\nabla b, \nabla u)$$

$$\left\|X,Y\right\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}} \lesssim \left(1 + \int_{\mathbf{0}}^{t} \|\nabla\alpha,\nabla\beta\|_{\infty}\right) \left\{\|X_{\mathbf{0}},Y_{\mathbf{0}}\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}} + \int_{\mathbf{0}}^{t} \|\mathsf{RHS}\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}}\right\}.$$

Existence et unicité de solutions Le cas des fluides plans d = 2

Le cas d'un fluide plan d = 2

Introduction des "tourbillons" $(X, Y) = \operatorname{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d = 2, donc $X = \omega + j$ et $Y = \omega - j$ sont scalaires, et $\mathcal{L} : \mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}$ est une forme bilinéaire anti-symétrique.

$$\mathcal{L}(\nabla \alpha, \nabla \beta) = \mathcal{L}(\nabla (u+b), \nabla (u-b)) = 2\mathcal{L}(\nabla b, \nabla u)$$

$$\left\|X,Y\right\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}} \lesssim \left(1 + \int_{\mathbf{0}}^{t} \|\nabla\alpha,\nabla\beta\|_{\infty}\right) \left\{\|X_{\mathbf{0}},Y_{\mathbf{0}}\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}} + \int_{\mathbf{0}}^{t} \|\mathcal{L}(\nabla\alpha,\nabla\beta)\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}}\right\}.$$

Existence et unicité de solutions Le cas des fluides plans d = 2

Le cas d'un fluide plan d = 2

Introduction des "tourbillons" $(X, Y) = \operatorname{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d = 2, donc $X = \omega + j$ et $Y = \omega - j$ sont scalaires, et $\mathcal{L} : \mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}$ est une forme bilinéaire anti-symétrique.

$$\mathcal{L}(\nabla \alpha, \nabla \beta) = \mathcal{L}(\nabla (u+b), \nabla (u-b)) = 2\mathcal{L}(\nabla b, \nabla u)$$

$$\left\|X,Y\right\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}} \lesssim \left(1+\int_{\mathbf{0}}^{t} \|\nabla\alpha,\nabla\beta\|_{\infty}\right) \left\{\|X_{\mathbf{0}},Y_{\mathbf{0}}\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}}+\int_{\mathbf{0}}^{t} \|\mathcal{L}(\nabla u,\nabla\beta)\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}}\right\}.$$

Existence et unicité de solutions Le cas des fluides plans d = 2

Le cas d'un fluide plan d = 2

Introduction des "tourbillons" $(X, Y) = \operatorname{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d = 2, donc $X = \omega + j$ et $Y = \omega - j$ sont scalaires, et $\mathcal{L} : \mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}$ est une forme bilinéaire anti-symétrique.

$$\mathcal{L}(\nabla \alpha, \nabla \beta) = \mathcal{L}(\nabla (u+b), \nabla (u-b)) = 2\mathcal{L}(\nabla b, \nabla u)$$

$$\|X,Y\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}} \lesssim \left(1 + \int_{\mathbf{0}}^{t} \|\nabla\alpha,\nabla\beta\|_{\infty}\right) \left\{\|X_{\mathbf{0}},Y_{\mathbf{0}}\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}} + \int_{\mathbf{0}}^{t} \|u\|_{B^{\mathbf{1}}_{\infty,\mathbf{1}}} \|b\|_{B^{\mathbf{1}}_{\infty,\mathbf{1}}}\right\}.$$

Existence et unicité de solutions Le cas des fluides plans d = 2

Le cas d'un fluide plan d = 2

Introduction des "tourbillons" $(X, Y) = \operatorname{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d = 2, donc $X = \omega + j$ et $Y = \omega - j$ sont scalaires, et $\mathcal{L} : \mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}$ est une forme bilinéaire anti-symétrique.

$$\mathcal{L}(\nabla \alpha, \nabla \beta) = \mathcal{L}(\nabla (u+b), \nabla (u-b)) = 2\mathcal{L}(\nabla b, \nabla u)$$

$$\left\|X,Y\right\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}} \lesssim \left(1 + \int_{\mathbf{0}}^{t} \|\nabla\alpha,\nabla\beta\|_{\infty}\right) \left\{\|X_{\mathbf{0}},Y_{\mathbf{0}}\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}} + \int_{\mathbf{0}}^{t} \|u\|_{B^{\mathbf{1}}_{\infty,\mathbf{1}}} \|b\|_{B^{\mathbf{1}}_{\infty,\mathbf{1}}}\right\}.$$

Existence et unicité de solutions Le cas des fluides plans d = 2

Le cas d'un fluide plan d = 2

Introduction des "tourbillons" $(X, Y) = \operatorname{curl}(\alpha, \beta)$:

$$\begin{cases} (\partial_t + \beta \cdot \nabla) X = \mathcal{L}(\nabla \alpha, \nabla \beta) \\ (\partial_t + \alpha \cdot \nabla) Y = \mathcal{L}(\nabla \beta, \nabla \alpha). \end{cases}$$

Dimension d = 2, donc $X = \omega + j$ et $Y = \omega - j$ sont scalaires, et $\mathcal{L} : \mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}$ est une forme bilinéaire anti-symétrique.

$$\mathcal{L}(\nabla \alpha, \nabla \beta) = \mathcal{L}(\nabla (u+b), \nabla (u-b)) = 2\mathcal{L}(\nabla b, \nabla u)$$

Estimations linéaires:

$$\|X,Y\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}} \lesssim \left(1 + \int_{\mathbf{0}}^{t} \|\nabla\alpha,\nabla\beta\|_{\infty}\right) \left\{\|X_{\mathbf{0}},Y_{\mathbf{0}}\|_{B^{\mathbf{0}}_{\infty,\mathbf{1}}} + \int_{\mathbf{0}}^{t} \|u\|_{B^{\mathbf{1}}_{\infty,\mathbf{1}}} \|b\|_{B^{\mathbf{1}}_{\infty,\mathbf{1}}}\right\}.$$

Quand b est faible, les estimations sont presque linéaires.

Existence et unicité de solutions Le cas des fluides plans d = 2

Le cas d'un fluide plan d = 2

Théorème (C., Fanelli, 2020)

Soit $u_0, b_0 \in B^2_{\infty,1} \cap L^2$. Le temps de vie de la solution associée est au moins

$$T^* \geq \frac{C}{\left\| (u_0, b_0) \right\|_{L^2 \cap B^2_{\infty, 1}}} \log \left\{ 1 + \log \left[1 + \log \left(1 + C \frac{\left\| (u_0, b_0) \right\|_{L^2 \cap B^2_{\infty, 1}}}{\left\| b_0 \right\|_{B^1_{\infty, 1}}} \right) \right] \right\}.$$

Existence et unicité de solutions Le cas des fluides plans d = 2

Le cas d'un fluide plan d = 2

Théorème (C., Fanelli, 2020)

Soit $u_0, b_0 \in B^2_{\infty,1} \cap L^2$. Le temps de vie de la solution associée est au moins

$$T^* \geq \frac{C}{\left\| (u_0, b_0) \right\|_{L^2 \cap B^2_{\infty, 1}}} \log \left\{ 1 + \log \left[1 + \log \left(1 + C \frac{\left\| (u_0, b_0) \right\|_{L^2 \cap B^2_{\infty, 1}}}{\left\| b_0 \right\|_{B^1_{\infty, 1}}} \right) \right] \right\}.$$

Théorème (C., Fanelli, 2021)

So it $u_0 \in B^2_{\infty,1} \cap L^2$ et $b_0 \in B^1_{\infty,1} \cap L^2$. Le temps de vie de la solution associée est au moins

$$T^* \geq \frac{C}{\|u_0\|_{L^2 \cap B^2_{\infty,1}}} \log \left\{ 1 + \log \left[1 + \log \left(1 + C \frac{\|u_0\|_{L^2 \cap B^2_{\infty,1}}}{\|b_0\|_{B^1_{\infty,1}}} \right) \right] \right\}.$$

Existence et unicité de solutions Le cas des fluides plans d = 2

Le cas d'un fluide plan d = 2

Théorème (C., Fanelli, 2020)

Soit $u_0, b_0 \in B^2_{\infty,1} \cap L^2$. Le temps de vie de la solution associée est au moins

$$T^* \geq \frac{C}{\|(u_0, b_0)\|_{L^2 \cap B^2_{\infty, 1}}} \log \left\{ 1 + \log \left[1 + \log \left(1 + C \frac{\|(u_0, b_0)\|_{L^2 \cap B^2_{\infty, 1}}}{\|b_0\|_{B^1_{\infty, 1}}} \right) \right] \right\}.$$

Théorème (C., Fanelli, 2021)

Soit $u_0 \in B^2_{\infty,1} \cap L^2$ et $b_0 \in B^1_{\infty,1} \cap L^2$. Le temps de vie de la solution associée est au moins

$$T^* \geq \frac{C}{\|u_0\|_{L^2 \cap B^2_{\infty,1}}} \log \left\{ 1 + \log \left[1 + \log \left(1 + C \frac{\|u_0\|_{L^2 \cap B^2_{\infty,1}}}{\|b_0\|_{B^1_{\infty,1}}} \right) \right] \right\}.$$

Jeux de variables équivalents ? Théorème d'équivalence

Équivalence des systèmes

Variables d'Elsässer:

 $\alpha = u + b$ and $\beta = u - b$.

Jeux de variables équivalents ? Théorème d'équivalence

Équivalence des systèmes

Variables d'Elsässer:

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \qquad \begin{cases} \partial_t \alpha + (\beta \cdot \nabla)\alpha + \nabla \pi_1 = 0\\ \partial_t \beta + (\alpha \cdot \nabla)\beta + \nabla \pi_2 = 0\\ \operatorname{div}(\alpha) = 0\\ \operatorname{div}(\beta) = 0. \end{cases}$$

Jeux de variables équivalents ? Théorème d'équivalence

Équivalence des systèmes

Variables d'Elsässer:

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \qquad \begin{cases} \partial_t \alpha + (\beta \cdot \nabla)\alpha + \nabla \pi_1 = 0\\ \partial_t \beta + (\alpha \cdot \nabla)\beta + \nabla \pi_2 = 0\\ \operatorname{div}(\alpha) = 0\\ \operatorname{div}(\beta) = 0. \end{cases}$$

Pour revenir à u et b: $u = \frac{1}{2}(\alpha + \beta)$ et $b = \frac{1}{2}(\alpha - \beta)$.

Théorème (C., Fanelli, 2020)

Soit $1 \leq p < +\infty$ et $(\alpha, \beta) \in C^0_T(L^p \cap L^\infty)$ une solution faible.

Jeux de variables équivalents ? Théorème d'équivalence

Équivalence des systèmes

Variables d'Elsässer:

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \qquad \begin{cases} \partial_t \alpha + (\beta \cdot \nabla)\alpha + \nabla \pi_1 = 0\\ \partial_t \beta + (\alpha \cdot \nabla)\beta + \nabla \pi_2 = 0\\ \operatorname{div}(\alpha) = 0\\ \operatorname{div}(\beta) = 0. \end{cases}$$

Pour revenir à u et b: $u = \frac{1}{2}(\alpha + \beta)$ et $b = \frac{1}{2}(\alpha - \beta)$.

Théorème (C., Fanelli, 2020)

Soit $1 \leq p < +\infty$ et $(\alpha, \beta) \in C^0_T(L^p \cap L^\infty)$ une solution faible. Alors $\pi_1 = \pi_2$.

Jeux de variables équivalents ? Théorème d'équivalence

Equivalence des systèmes

Variables d'Elsässer:

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \qquad \begin{cases} \partial_t \alpha + (\beta \cdot \nabla)\alpha + \nabla \pi_1 = 0\\ \partial_t \beta + (\alpha \cdot \nabla)\beta + \nabla \pi_2 = 0\\ \operatorname{div}(\alpha) = 0\\ \operatorname{div}(\beta) = 0. \end{cases}$$

Pour revenir à u et b: $u = \frac{1}{2}(\alpha + \beta)$ et $b = \frac{1}{2}(\alpha - \beta)$.

Théorème (C., Fanelli, 2020)

So t $1 \le p < +\infty$ et $(\alpha, \beta) \in C_T^0(L^p \cap L^\infty)$ une solution faible. Alors $\pi_1 = \pi_2$. Ainsi (u, b) est une solution faible de la MHD idéale.

Jeux de variables équivalents ? Théorème d'équivalence

Equivalence des systèmes

Variables d'Elsässer:

$$\alpha = u + b$$
 and $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \qquad \begin{cases} \partial_t \alpha + (\beta \cdot \nabla)\alpha + \nabla \pi_1 = 0\\ \partial_t \beta + (\alpha \cdot \nabla)\beta + \nabla \pi_2 = 0\\ \operatorname{div}(\alpha) = 0\\ \operatorname{div}(\beta) = 0. \end{cases}$$

Pour revenir à u et b: $u = \frac{1}{2}(\alpha + \beta)$ et $b = \frac{1}{2}(\alpha - \beta)$.

Théorème (C., Fanelli, 2020)

So t $1 \le p < +\infty$ et $(\alpha, \beta) \in C_T^0(L^p \cap L^\infty)$ une solution faible. Alors $\pi_1 = \pi_2$. Ainsi (u, b) est une solution faible de la MHD idéale.

Question : que dire de $p = +\infty$?
Jeux de variables équivalents ? Théorème d'équivalence

Non-équivalence des systèmes

Variables d'Elsässer :

 $\alpha = u + b$ et $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \qquad \begin{cases} \partial_t \alpha + (\beta \cdot \nabla) \alpha + \nabla \pi_1 = 0\\ \partial_t \beta + (\alpha \cdot \nabla) \beta + \nabla \pi_2 = 0\\ \operatorname{div}(\alpha) = 0\\ \operatorname{div}(\beta) = 0. \end{cases}$$

Jeux de variables équivalents ? Théorème d'équivalence

Non-équivalence des systèmes

Variables d'Elsässer :

 $\alpha = u + b$ et $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \qquad \begin{cases} \partial_t \alpha + (\beta \cdot \nabla) \alpha + \nabla \pi_1 = 0\\ \partial_t \beta + (\alpha \cdot \nabla) \beta + \nabla \pi_2 = 0\\ \operatorname{div}(\alpha) = 0\\ \operatorname{div}(\beta) = 0. \end{cases}$$

Contre-exemple :

Jeux de variables équivalents ? Théorème d'équivalence

Non-équivalence des systèmes

Variables d'Elsässer :

$$\alpha = u + b$$
 et $\beta = u - b$

Alors

$$\exists \pi_1, \pi_2, \qquad \begin{cases} \partial_t \alpha + (\beta \cdot \nabla) \alpha + \nabla \pi_1 = 0\\ \partial_t \beta + (\alpha \cdot \nabla) \beta + \nabla \pi_2 = 0\\ \operatorname{div}(\alpha) = 0\\ \operatorname{div}(\beta) = 0. \end{cases}$$

Contre-exemple : d = 2,

Jeux de variables équivalents ? Théorème d'équivalence

Non-équivalence des systèmes

Variables d'Elsässer :

$$\alpha = u + b$$
 et $\beta = u - b$

Alors

$$\exists \pi_1, \pi_2, \qquad \begin{cases} \partial_t \alpha + (\beta \cdot \nabla) \alpha + \nabla \pi_1 = 0\\ \partial_t \beta + (\alpha \cdot \nabla) \beta + \nabla \pi_2 = 0\\ \operatorname{div}(\alpha) = 0\\ \operatorname{div}(\beta) = 0. \end{cases}$$

Contre-exemple : d = 2,

$$\alpha(t,x) = (f(t),0)$$
 et $\beta(t,x) = -(f(t),0).$

Jeux de variables équivalents ? Théorème d'équivalence

Non-équivalence des systèmes

Variables d'Elsässer :

 $\alpha = u + b \quad \text{et} \quad \beta = u - b.$ $\exists \pi_1, \pi_2, \quad \begin{cases} \partial_t \alpha + \nabla \pi_1 = 0\\ \partial_t \beta + \nabla \pi_2 = 0\\ \operatorname{div}(\alpha) = 0\\ \operatorname{div}(\beta) = 0 \end{cases}$

Alors

Contre-exemple : d = 2,

 $\alpha(t, x) = (f(t), 0)$ et $\beta(t, x) = -(f(t), 0).$

Jeux de variables équivalents ? Théorème d'équivalence

Non-équivalence des systèmes

Variables d'Elsässer :

 $\alpha = u + b$ et $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \qquad \begin{cases} (f'(t), 0) + \nabla(-x_1 f'(t)) = 0\\ -(f'(t), 0) + \nabla(x_1 f(t)) = 0\\ \operatorname{div}(\alpha) = 0\\ \operatorname{div}(\beta) = 0. \end{cases}$$

Contre-exemple : d = 2,

$$\alpha(t, x) = (f(t), 0)$$
 et $\beta(t, x) = -(f(t), 0).$

Jeux de variables équivalents ? Théorème d'équivalence

Non-équivalence des systèmes

Variables d'Elsässer :

$$\alpha = u + b$$
 et $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \qquad \begin{cases} (f'(t), 0) + \nabla(-x_1 f'(t)) = 0\\ -(f'(t), 0) + \nabla(x_1 f(t)) = 0\\ \operatorname{div}(\alpha) = 0\\ \operatorname{div}(\beta) = 0. \end{cases}$$

Contre-exemple : d = 2,

$$\alpha(t,x) = (f(t),0)$$
 et $\beta(t,x) = -(f(t),0).$

L'équation du champ magnétique $b = \frac{1}{2}(\alpha - \beta)$ devient

$$\partial_t b + (u \cdot \nabla)b - (b \cdot \nabla)u = rac{1}{2}
abla (\pi_2 - \pi_1)$$

Jeux de variables équivalents ? Théorème d'équivalence

Non-équivalence des systèmes

Variables d'Elsässer :

$$\alpha = u + b$$
 et $\beta = u - b$.

Alors

$$\exists \pi_1, \pi_2, \qquad \begin{cases} (f'(t), 0) + \nabla(-x_1 f'(t)) = 0\\ -(f'(t), 0) + \nabla(x_1 f(t)) = 0\\ \operatorname{div}(\alpha) = 0\\ \operatorname{div}(\beta) = 0. \end{cases}$$

Contre-exemple : d = 2,

$$\alpha(t,x) = (f(t),0)$$
 et $\beta(t,x) = -(f(t),0)$

L'équation du champ magnétique $b = \frac{1}{2}(\alpha - \beta)$ devient

$$\partial_t b + (u \cdot \nabla)b - (b \cdot \nabla)u = (f'(t), 0) \neq 0.$$

C'est une solution lisse $C^{\infty} \cap L^{\infty}$ qui montre que les systèmes ne sont pas équivalents.

Jeux de variables équivalents à Théorème d'équivalence

Théorème d'équivalence

Dans le cas $p = +\infty$, on établit un théorème d'équivalence optimal.

Jeux de variables équivalents ? Théorème d'équivalence

Théorème d'équivalence

Dans le cas $p = +\infty$, on établit un théorème d'équivalence optimal.

Théorème (C., 2021)

Soit $(\alpha, \beta) \in C^0([0, T[; L^{\infty})$ une solution faible du système d'Elsässer et $(u, b) = \frac{1}{2}(\alpha + \beta, \alpha - \beta)$. Les affirmations suivantes sont équivalentes :

Jeux de variables équivalents ? Théorème d'équivalence

Théorème d'équivalence

Dans le cas $p = +\infty$, on établit un théorème d'équivalence optimal.

Théorème (C., 2021)

Soit $(\alpha, \beta) \in C^0([0, T[; L^{\infty})$ une solution faible du système d'Elsässer et $(u, b) = \frac{1}{2}(\alpha + \beta, \alpha - \beta)$. Les affirmations suivantes sont équivalentes :

• Le couple (u, b) est une solution de la MHD idéale.

Jeux de variables équivalents ? Théorème d'équivalence

Théorème d'équivalence

Dans le cas $p = +\infty$, on établit un théorème d'équivalence optimal.

Théorème (C., 2021)

Soit $(\alpha, \beta) \in C^0([0, T[; L^{\infty})$ une solution faible du système d'Elsässer et $(u, b) = \frac{1}{2}(\alpha + \beta, \alpha - \beta)$. Les affirmations suivantes sont équivalentes :

• Le couple (u, b) est une solution de la MHD idéale.

2 pour tout temps $t \in [0, T[$, la condition $b(t) - b(0) \in S'_{b}$ est vérifiée.

Jeux de variables équivalents ? Théorème d'équivalence

Théorème d'équivalence

Dans le cas $p = +\infty$, on établit un théorème d'équivalence optimal.

Théorème (C., 2021)

Soit $(\alpha, \beta) \in C^0([0, T[; L^{\infty})$ une solution faible du système d'Elsässer et $(u, b) = \frac{1}{2}(\alpha + \beta, \alpha - \beta)$. Les affirmations suivantes sont équivalentes :

() Le couple (u, b) est une solution de la MHD idéale.

2 pour tout temps $t \in [0, T[$, la condition $b(t) - b(0) \in S'_{b}$ est vérifiée.

L'espace S'_h contient les distributions tempérées $f \in S'_h$ de transformée de Fourier "petite" autour de $\xi = 0$.

Jeux de variables équivalents ? Théorème d'équivalence

Théorème d'équivalence

Dans le cas $p = +\infty$, on établit un théorème d'équivalence optimal.

Théorème (C., 2021)

Soit $(\alpha, \beta) \in C^0([0, T[; L^{\infty})$ une solution faible du système d'Elsässer et $(u, b) = \frac{1}{2}(\alpha + \beta, \alpha - \beta)$. Les affirmations suivantes sont équivalentes :

- **(**) Le couple (u, b) est une solution de la MHD idéale.
- **2** pour tout temps $t \in [0, T[$, la condition $b(t) b(0) \in S'_{b}$ est vérifiée.

L'espace S'_h contient les distributions tempérées $f \in S'_h$ de transformée de Fourier "petite" autour de $\xi = 0$.

Définition (Chemin)

Fixons une fonction de troncature $\chi \in \mathcal{D}$. On note \mathcal{S}'_h l'espace des $f \in \mathcal{S}'$ telles que

 $\chi(\lambda\xi)\widehat{f}(\xi) \longrightarrow 0$ lorsque $\lambda \to 0^+$.

Jeux de variables équivalents ? Théorème d'équivalence

Théorème d'équivalence

Dans le cas $p = +\infty$, on établit un théorème d'équivalence optimal.

Théorème (C., 2021)

Soit $(\alpha, \beta) \in C^0([0, T[; L^{\infty})$ une solution faible du système d'Elsässer et $(u, b) = \frac{1}{2}(\alpha + \beta, \alpha - \beta)$. Les affirmations suivantes sont équivalentes :

• Le couple (u, b) est une solution de la MHD idéale.

2 pour tout temps $t \in [0, T[$, la condition $b(t) - b(0) \in S'_{b}$ est vérifiée.

L'espace S'_h contient les distributions tempérées $f \in S'_h$ de transformée de Fourier "petite" autour de $\xi = 0$.

Définition (Chemin)

Fixons une fonction de troncature $\chi \in \mathcal{D}$. On note \mathcal{S}'_h l'espace des $f \in \mathcal{S}'$ telles que

 $\chi(\lambda\xi)\widehat{f}(\xi) \longrightarrow 0$ lorsque $\lambda \to 0^+$.

Exemples...

Jeux de variables équivalents ? Théorème d'équivalence

Théorème d'équivalence

Dans le cas $p = +\infty$, on établit un théorème d'équivalence optimal.

Théorème (C., 2021)

Soit $(\alpha, \beta) \in C^0([0, T[; L^{\infty})$ une solution faible du système d'Elsässer et $(u, b) = \frac{1}{2}(\alpha + \beta, \alpha - \beta)$. Les affirmations suivantes sont équivalentes :

- Le couple (u, b) est une solution de la MHD idéale.
- **2** pour tout temps $t \in [0, T[$, la condition $b(t) b(0) \in S'_{b}$ est vérifiée.

L'espace S'_h contient les distributions tempérées $f \in S'_h$ de transformée de Fourier "petite" autour de $\xi = 0$.

Définition (Chemin)

Fixons une fonction de troncature $\chi \in \mathcal{D}$. On note \mathcal{S}'_h l'espace des $f \in \mathcal{S}'$ telles que

 $\chi(\lambda\xi)\widehat{f}(\xi) \longrightarrow 0$ lorsque $\lambda \to 0^+$.

Exemples...

• Fonctions périodiques sans valeur moyenne : $sin(ax_1) \in S'_h$,

Jeux de variables équivalents ? Théorème d'équivalence

Théorème d'équivalence

Dans le cas $p = +\infty$, on établit un théorème d'équivalence optimal.

Théorème (C., 2021)

Soit $(\alpha, \beta) \in C^0([0, T[; L^{\infty})$ une solution faible du système d'Elsässer et $(u, b) = \frac{1}{2}(\alpha + \beta, \alpha - \beta)$. Les affirmations suivantes sont équivalentes :

- Le couple (u, b) est une solution de la MHD idéale.
- **2** pour tout temps $t \in [0, T[$, la condition $b(t) b(0) \in S'_{b}$ est vérifiée.

L'espace S'_h contient les distributions tempérées $f \in S'_h$ de transformée de Fourier "petite" autour de $\xi = 0$.

Définition (Chemin)

Fixons une fonction de troncature $\chi \in \mathcal{D}$. On note \mathcal{S}'_h l'espace des $f \in \mathcal{S}'$ telles que

 $\chi(\lambda\xi)\widehat{f}(\xi) \longrightarrow 0$ lorsque $\lambda \to 0^+$.

Exemples...

9 Fonctions périodiques sans valeur moyenne : $sin(ax_1) \in S'_h$,

3 Fonction signe
$$\sigma = \mathbb{1}_{\mathbb{R}_+} - \mathbb{1}_{\mathbb{R}_-} \in \mathcal{S}'_h$$
.

Jeux de variables équivalents ? Théorème d'équivalence

Merci pour votre attention !