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Tokamaks and Stellarators

Magnetic confinement reactors

• Tokamaks: axisymmetric, current inside the plasma

• Stellarators: non axisymmetric, no current inside the plasma
4/37



MHD and helicity

Ideal MHD

Fluid model describing interactions between a plasma and the electromagnetic field.

• In ideal MHD, helicity is conserved.

• Helicity is related to the linkage of magnetic field lines.

• High helicity =⇒ large magnetic topological structures.
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The Biot–Savart operator and helicity

Ω bounded domain in R3.

BS(V )(y) =
1

4π

∫
Ω

V (x)× (y − x)

|y − x |3
dx

If divV = 0 and V · n = 0 (V is a magnetic field), the helicity of V is

H(V ) = 〈V ,BS(V )〉
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Previous works

For magnetic fields, we have curl BS(V ) = V .

This implies that helicity maximizers for fixed energy are eigenfields of the curl.

References:

• Theoretical study: J. Cantarella, D. DeTurck, H. Gluck, and M. Teytel.

“Isoperimetric problems for the helicity of vector fields and the Biot–Savart and

curl operators”. In: Journal of Mathematical Physics (2000)

• Numerical methods: A. Alonso-Rodŕıguez et al. “Finite Element Approximation of

the Spectrum of the Curl Operator in a Multiply Connected Domain”. In:

Foundations of Computational Mathematics (2018)
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Harmonic fields

Ω bounded domain in R3. B is harmonic if

divB = 0

curlB = 0

B · n = 0

• If Ω is diffeomorphic to D2 × S1, the set of harmonic fields is one dimensional.

• We get a unique field by fixing the circulation along a toroidal loop

• In general, the dimension is equal to the number of “holes” in Ω.
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Our work

We want to study the helicity of the harmonic field as a shape functional

Ω B(Ω) H(B(Ω)) =: H(Ω)
HelicityHarmonic field

Harmonic helicity

• PDE formulation for the helicity

• Shape differentiation of harmonic helicity

• Numerical analysis and implementation
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Differential operators

Usual differential operators of electromagnetism.

∇u = (∂xu) ex + (∂yu) ey + (∂zu) ez

curlU = (∂yUz − ∂zUy )ex + (∂zUx − ∂xUz)ey + (∂xUy − ∂yUx)ez

divU = ∂xUx + ∂yUy + ∂zUz

We then have curl∇ = div curl = 0.
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Functional spaces

H(curl ,Ω) =
{
U ∈ L2(Ω)3 | curlU ∈ L2(Ω)3

}
,

H(div ,Ω) =
{
U ∈ L2(Ω)3 | divU ∈ L2(Ω)

}
,

H1(Ω) H(curl ,Ω) H(div ,Ω) L2(Ω).∇ curl div

Tangential trace of H(curl ,Ω) in H−1/2(∂Ω)3 and normal trace of H(div ,Ω) in

H−1/2(∂Ω).
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Gauge invariance of helicity

• Problem: The Biot–Savart of a field is hard to compute numerically

• Solution: Try to compute another vector potential using a PDE

• Question: Do all vector potentials give the same helicity ?

Take A such that curlA = B. A→ A +∇ϕ∫
Ω
B · (A +∇ϕ) =

∫
Ω
B · A +

∫
∂Ω

(B · n)ϕ−
∫

Ω
(divB)ϕ

=

∫
Ω
B · A

Invariance under adding gradients
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Gauge invariance of helicity

We modify the helicity formula to have invariance on the choice of potential vector

(Bevir-Gray formula)

H(B) =

∫
Ω
B · A−

∫
γ
A · dl

∫
γ′
A · dl .

γ
γ′

Figure 1: Diagram of the domain with a toroidal loop γ′ and a poloidal loop gamma.

15/37



PDEs for the potential vector

We set

divA = 0,

curlA = B,

A · n = 0.

Additional constraint for WP

〈A,B〉 = 0, or

∫
γ′
A · dl = 0.
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Comments on well posedness

Harmonic field:

• Two variational formulations:

• Classical formulation: harmonic field is strongly curl free.

• Mixed formulation: harmonic field is strongly divergence free and tangent to the

boundary.

Vector potential:

• Two variation formulations:

• Mixed vector Laplacian formulation: 〈A,B〉 = 0.

• Formulation from A. Valli ’19:
∫
γ′ A · dl = 0.

Using functional injections, we get Poincaré inequalities and Hodge decompositions.

Well posedness by inf–sup inequalities.
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What is shape differentiation ?

A simple example: volume of a domain

• Ω bounded Lipschitz domain

• θ small Lipschitz vector field on R3 such that (I + θ) is a diffeomorphism.

• Question: What is the volume of Ωθ = (I + θ)(Ω) up to first order ?
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What is shape differentiation ?

Vol(Ωθ) =

∫
Ωθ

dx ,

=

∫
Ω

det(I + Dθ)dx .

We have

det(I + Dθ) = 1 + tr(Dθ) + o(||θ||W 1,∞),

= 1 + div θ + o(||θ||W 1,∞),

so that

Vol(Ωθ) =

∫
Ω
dx +

∫
Ω
div θdx + o (||θ||W 1,∞) ,

= Vol(Ω) +

∫
∂Ω
θ · n + o (||θ||W 1,∞) .
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What is shape differentiation ?

We therefore have

Vol(Ωθ) = Vol(Ω) + Vol′(Ω; θ) + o(||θ||W 1,∞),

where

Vol′(Ω; θ) =

∫
∂Ω
θ · n

is the shape derivative of the volume.
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Formula of shape differential

Theorem (R., Robin, 2023)
Let Ω be a Lipschitz toroidal domain. Then, the harmonic helicity is differentiable at Ω

under W 1,∞ deformations. Furthermore, if Ω is s-regular for s > 1/2, we have for all θ

in W 1,∞(R3)3

H′(Ω; θ) = 2

∫
∂Ω

B(Ω) · A(Ω)θ · n.

22/37



Vector fields pullbacks

• Problem for the harmonic helicity: Bθ and Aθ are defined in Ωθ, but we want to

work with integrals on a fixed domain.

• Solution: Define ways to pull vector fields back to Ω which have nice properties

with the differential operators.

H1(Ωθ) H(curl ,Ωθ) H(div ,Ωθ) L2(Ωθ)

H1(Ω) H(curl ,Ω) H(div ,Ω) L2(Ω)

∇ curl div

Φ0
θ Φ1

θ Φ2
θ

Φ3
θ

∇ curl div

where the Φk
θ are the Piola transformations from FEEC.
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Giving a taste of the computations

Using the following formulas

• Φ3
θu = det(I + Dθ)u ◦ (I + θ),

• Φ3
θ(U · V ) = Φ2

θU · Φ1
θV ,

we get

H(Ωθ) =

∫
Ωθ

Bθ · Aθ,

=

∫
Ω

Φ3
θ(Bθ · Aθ),

=

∫
Ω

Φ2
θBθ · Φ1

θAθ.
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Giving a taste of the computations

If

Φ2
θBθ = B0 + B ′(Ω; θ) + o(||θ||),

Φ1
θAθ = A0 + A′(Ω; θ) + o(||θ||),

we get

H′(Ω; θ) =

∫
Ω
B ′(Ω; θ) · A0 +

∫
Ω
B0 · A′(Ω; θ).

To conclude the proof

• We pull the VF for B and A back onto Ω using the Φk
θ

• We use the implicit function theorem to prove differentiability of Φ2
θBθ and Φ1

θAθ

wrt θ

• We differentiate the VF, and plug the result into the last formula
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Discretization of the De Rham complex

Now that we can view the computation of the harmonic helicity and its shape

derivative using PDEs, we can design a scheme to compute numerical solutions.

We construct finite element spaces to have the following commutative diagram (FEEC)

H1(Ω) H(curl ,Ω) H(div ,Ω) L2(Ω)

V 0
h (Ω) V 1

h (Ω) V 2
h (Ω) V 3

h (Ω)

∇ curl div

Π0
h Π1

h Π2
h Π3

h

∇ curl div

.

27/37
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Convergence of harmonic fields and vector potentials

• We take our variational formulations, and solve them in our discrete spaces

• Well posedness is similar to continuous case: Discrete Hodge decompositions and

Poincaré inequalities leads to inf–sup conditions

• Convergence of Ah and Bh in L2

‖B − Bh‖L2 ≤ Chs‖B‖L2 ,

‖A− Ah‖L2 ≤ Chs‖B‖L2 .

• Convergence in L2 implies convergence of the harmonic helicity
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Issues for the convergence of the shape derivative

Reminder:

H′(Ω; θ) = 2

∫
∂Ω

(B · A)θ · n.

What does B · A even mean on the boundary ?

• We have A and B in both H(curl ,Ω) and H(div ,Ω) with zero tangential trace,

• We say that Ω is s–regular if this space injects in Hs(Ω)3,
• For example:

• Lipschitz domains are 1/2–regular,

• Polyhedral domains are s–regular with s > 1/2,

• C1,1 domains are 1–regular.

• If Ω is s–regular with s > 1/2, A and B have traces in L2(∂Ω)3.

Problem: Ah and Bh do not have the same regularity, and the convergences found

earlier do not give L2(∂Ω)3 convergence directly.
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Numerical implementation

The numerical scheme was implemented in python.

Libraries

• gmsh for meshing

• dolfinx for FEM

• petsc4py for matrix manipulation and system solving

• scipy.optimize for optimization

• mayavi and pyvista for 3D visualization

Surfaces parametrized with Fourier coefficients.
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Numerical implementation

Figure 2: Plot of Bh
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Numerical implementation

Figure 3: Plot of Ah
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Numerical implementation

Figure 4: Plot of Bh · Ah on the boundary
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Numerical implementation

Figure 5: Original NCSX shape in orange, new shape in blue after a few steps of gradient

descent (volume and curvature constraint) 35/37



Conclusions and perspectives

Conclusions:

• Introduction of the harmonic helicity shape functional, and formulation through

solutions of PDEs.

• Derivation of a shape gradient formula for domains with low regularity using

vector field pullbacks.

• Numerical analysis and implementation of a numerical scheme to compute shape

helicity and perform numerical optimization.

Perspectives:

• Convergence of Bh and Ah in L2(∂Ω)

• Existence of optimal shapes: strong regularity (reach constraints) or low regularity

(Lipschitz domains)
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THANK YOU FOR YOU ATTENTION
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