## CANUM 2024

Shape optimization of harmonic helicity in toroidal domains

$\qquad$

Robin Roussel ${ }^{1}$
In collaboration with Rémi Robin ${ }^{2}$
May 30, 2024
${ }^{1}$ Laboratoire Jacques-Louis Lions, Sorbonne Université, Inria, Paris
${ }^{2}$ Laboratoire de Physique de l'École Normale Supérieure, Mines Paris, Inria, CNRS, ENS-PSL, Sorbonne Université, PSL Research University, Paris, France

## Contents

## Introduction

PDEs and helicity

Shape differentiation

Numerical scheme

Numerical implementation

## Contents

Introduction
Physical context
Helicity
Harmonic fields

## PDEs and helicity

## Shape differentiation

Numerical scheme

## Tokamaks and Stellarators



Magnetic confinement reactors

- Tokamaks: axisymmetric, current inside the plasma
- Stellarators: non axisymmetric, no current inside the plasma


## MHD and helicity

## Ideal MHD

Fluid model describing interactions between a plasma and the electromagnetic field.

## MHD and helicity

## Ideal MHD

Fluid model describing interactions between a plasma and the electromagnetic field.

- In ideal MHD, helicity is conserved.
- Helicity is related to the linkage of magnetic field lines.
- High helicity $\Longrightarrow$ large magnetic topological structures.


## The Biot-Savart operator and helicity

$\Omega$ bounded domain in $\mathbb{R}^{3}$.

$$
\operatorname{BS}(V)(y)=\frac{1}{4 \pi} \int_{\Omega} \frac{V(x) \times(y-x)}{|y-x|^{3}} d x
$$

## The Biot-Savart operator and helicity

$\Omega$ bounded domain in $\mathbb{R}^{3}$.

$$
\operatorname{BS}(V)(y)=\frac{1}{4 \pi} \int_{\Omega} \frac{V(x) \times(y-x)}{|y-x|^{3}} d x
$$

If $\operatorname{div} V=0$ and $V \cdot n=0(V$ is a magnetic field $)$, the helicity of $V$ is

$$
\mathrm{H}(V)=\langle V, \mathrm{BS}(V)\rangle
$$

## Previous works

For magnetic fields, we have curl $\mathrm{BS}(V)=V$.
This implies that helicity maximizers for fixed energy are eigenfields of the curl.

## Previous works

For magnetic fields, we have curl $\mathrm{BS}(V)=V$.
This implies that helicity maximizers for fixed energy are eigenfields of the curl.
References:

- Theoretical study: J. Cantarella, D. DeTurck, H. Gluck, and M. Teytel. "Isoperimetric problems for the helicity of vector fields and the Biot-Savart and curl operators". In: Journal of Mathematical Physics (2000)
- Numerical methods: A. Alonso-Rodríguez et al. "Finite Element Approximation of the Spectrum of the Curl Operator in a Multiply Connected Domain". In: Foundations of Computational Mathematics (2018)


## Harmonic fields

$\Omega$ bounded domain in $\mathbb{R}^{3}$. $B$ is harmonic if

$$
\begin{aligned}
& \operatorname{div} B=0 \\
& \operatorname{curl} B=0 \\
& B \cdot n=0
\end{aligned}
$$

## Harmonic fields

$\Omega$ bounded domain in $\mathbb{R}^{3}$. $B$ is harmonic if

$$
\begin{aligned}
& \operatorname{div} B=0 \\
& \operatorname{curl} B=0 \\
& B \cdot n=0
\end{aligned}
$$

- If $\Omega$ is diffeomorphic to $\mathbb{D}^{2} \times S^{1}$, the set of harmonic fields is one dimensional.
- We get a unique field by fixing the circulation along a toroidal loop
- In general, the dimension is equal to the number of "holes" in $\Omega$.


## Our work

We want to study the helicity of the harmonic field as a shape functional


- PDE formulation for the helicity
- Shape differentiation of harmonic helicity
- Numerical analysis and implementation


## Contents

## Introduction

PDEs and helicity
Functional spaces
PDE formulations

## Shape differentiation

Numerical scheme

Numerical implementation

## Differential operators

Usual differential operators of electromagnetism.

## Differential operators

Usual differential operators of electromagnetism.

$$
\nabla u=\left(\partial_{x} u\right) e_{x}+\left(\partial_{y} u\right) e_{y}+\left(\partial_{z} u\right) e_{z}
$$

## Differential operators

Usual differential operators of electromagnetism.

$$
\nabla u=\left(\partial_{x} u\right) e_{x}+\left(\partial_{y} u\right) e_{y}+\left(\partial_{z} u\right) e_{z}
$$

$$
\operatorname{curl} U=\left(\partial_{y} U_{z}-\partial_{z} U_{y}\right) e_{x}+\left(\partial_{z} U_{x}-\partial_{x} U_{z}\right) e_{y}+\left(\partial_{x} U_{y}-\partial_{y} U_{x}\right) e_{z}
$$

## Differential operators

Usual differential operators of electromagnetism.

$$
\nabla u=\left(\partial_{x} u\right) e_{x}+\left(\partial_{y} u\right) e_{y}+\left(\partial_{z} u\right) e_{z}
$$

$$
\operatorname{curl} U=\left(\partial_{y} U_{z}-\partial_{z} U_{y}\right) e_{x}+\left(\partial_{z} U_{x}-\partial_{x} U_{z}\right) e_{y}+\left(\partial_{x} U_{y}-\partial_{y} U_{x}\right) e_{z}
$$

$$
\operatorname{div} U=\partial_{x} U_{x}+\partial_{y} U_{y}+\partial_{z} U_{z}
$$

## Differential operators

Usual differential operators of electromagnetism.

$$
\begin{gathered}
\nabla u=\left(\partial_{x} u\right) e_{x}+\left(\partial_{y} u\right) e_{y}+\left(\partial_{z} u\right) e_{z} \\
\operatorname{curl} U=\left(\partial_{y} U_{z}-\partial_{z} U_{y}\right) e_{x}+\left(\partial_{z} U_{x}-\partial_{x} U_{z}\right) e_{y}+\left(\partial_{x} U_{y}-\partial_{y} U_{x}\right) e_{z} \\
\operatorname{div} U=\partial_{x} U_{x}+\partial_{y} U_{y}+\partial_{z} U_{z}
\end{gathered}
$$

We then have curl $\nabla=\operatorname{div} \operatorname{curl}=0$.

## Functional spaces

$$
\begin{aligned}
H(\operatorname{curl}, \Omega) & =\left\{U \in L^{2}(\Omega)^{3} \mid \operatorname{curl} U \in L^{2}(\Omega)^{3}\right\}, \\
H(\operatorname{div}, \Omega) & =\left\{U \in L^{2}(\Omega)^{3} \mid \operatorname{div} U \in L^{2}(\Omega)\right\},
\end{aligned}
$$

## Functional spaces

$$
\begin{gathered}
H(\operatorname{curl}, \Omega)=\left\{U \in L^{2}(\Omega)^{3} \mid \operatorname{curl} U \in L^{2}(\Omega)^{3}\right\} \\
H(\operatorname{div}, \Omega)=\left\{U \in L^{2}(\Omega)^{3} \mid \operatorname{div} U \in L^{2}(\Omega)\right\} \\
H^{1}(\Omega) \xrightarrow{\nabla} H(\operatorname{curl}, \Omega) \xrightarrow{\operatorname{curl}} H(\operatorname{div}, \Omega) \xrightarrow{\operatorname{div}} L^{2}(\Omega) .
\end{gathered}
$$

## Functional spaces

$$
\begin{gathered}
H(\operatorname{curl}, \Omega)=\left\{U \in L^{2}(\Omega)^{3} \mid \operatorname{curl} U \in L^{2}(\Omega)^{3}\right\} \\
H(\operatorname{div}, \Omega)=\left\{U \in L^{2}(\Omega)^{3} \mid \operatorname{div} U \in L^{2}(\Omega)\right\} \\
H^{1}(\Omega) \xrightarrow{\nabla} H(\operatorname{curl}, \Omega) \xrightarrow{\operatorname{curl}} H(\operatorname{div}, \Omega) \xrightarrow{\operatorname{div}} L^{2}(\Omega) .
\end{gathered}
$$

Tangential trace of $H(\operatorname{curl}, \Omega)$ in $H^{-1 / 2}(\partial \Omega)^{3}$ and normal trace of $H(\operatorname{div}, \Omega)$ in $H^{-1 / 2}(\partial \Omega)$.

## Gauge invariance of helicity

- Problem: The Biot-Savart of a field is hard to compute numerically


## Gauge invariance of helicity

- Problem: The Biot-Savart of a field is hard to compute numerically
- Solution: Try to compute another vector potential using a PDE


## Gauge invariance of helicity

- Problem: The Biot-Savart of a field is hard to compute numerically
- Solution: Try to compute another vector potential using a PDE
- Question: Do all vector potentials give the same helicity ?


## Gauge invariance of helicity

- Problem: The Biot-Savart of a field is hard to compute numerically
- Solution: Try to compute another vector potential using a PDE
- Question: Do all vector potentials give the same helicity ?

Take $A$ such that $\operatorname{curl} A=B . A \rightarrow A+\nabla \varphi$

## Gauge invariance of helicity

- Problem: The Biot-Savart of a field is hard to compute numerically
- Solution: Try to compute another vector potential using a PDE
- Question: Do all vector potentials give the same helicity ?

Take $A$ such that $\operatorname{curl} A=B . A \rightarrow A+\nabla \varphi$

$$
\int_{\Omega} B \cdot(A+\nabla \varphi)=\int_{\Omega} B \cdot A+\int_{\partial \Omega}(B \cdot n) \varphi-\int_{\Omega}(\operatorname{div} B) \varphi
$$

## Gauge invariance of helicity

- Problem: The Biot-Savart of a field is hard to compute numerically
- Solution: Try to compute another vector potential using a PDE
- Question: Do all vector potentials give the same helicity ?

Take $A$ such that $\operatorname{curl} A=B . A \rightarrow A+\nabla \varphi$

$$
\begin{aligned}
\int_{\Omega} B \cdot(A+\nabla \varphi) & =\int_{\Omega} B \cdot A+\int_{\partial \Omega}(B \cdot n) \varphi-\int_{\Omega}(\operatorname{div} B) \varphi \\
& =\int_{\Omega} B \cdot A
\end{aligned}
$$

## Gauge invariance of helicity

- Problem: The Biot-Savart of a field is hard to compute numerically
- Solution: Try to compute another vector potential using a PDE
- Question: Do all vector potentials give the same helicity ?

Take $A$ such that curl $A=B . A \rightarrow A+\nabla \varphi$

$$
\begin{aligned}
\int_{\Omega} B \cdot(A+\nabla \varphi) & =\int_{\Omega} B \cdot A+\int_{\partial \Omega}(B \cdot n) \varphi-\int_{\Omega}(\operatorname{div} B) \varphi \\
& =\int_{\Omega} B \cdot A
\end{aligned}
$$

Invariance under adding gradients

## Gauge invariance of helicity

- Problem: The Biot-Savart of a field is hard to compute numerically
- Solution: Try to compute another vector potential using a PDE
- Question: Do all vector potentials give the same helicity ?

Take $A$ such that $\operatorname{curl} A=B . A \rightarrow A+\lambda B$

## Gauge invariance of helicity

- Problem: The Biot-Savart of a field is hard to compute numerically
- Solution: Try to compute another vector potential using a PDE
- Question: Do all vector potentials give the same helicity ?

Take $A$ such that $\operatorname{curl} A=B . A \rightarrow A+\lambda B$

$$
\int_{\Omega} B \cdot(A+\lambda B)=\int_{\Omega} B \cdot A+\lambda\|B\|^{2}
$$

## Gauge invariance of helicity

- Problem: The Biot-Savart of a field is hard to compute numerically
- Solution: Try to compute another vector potential using a PDE
- Question: Do all vector potentials give the same helicity ?

Take $A$ such that $\operatorname{curl} A=B . A \rightarrow A+\lambda B$

$$
\int_{\Omega} B \cdot(A+\lambda B)=\int_{\Omega} B \cdot A+\lambda\|B\|^{2}
$$

No invariance under adding harmonic fields

## Gauge invariance of helicity

We modify the helicity formula to have invariance on the choice of potential vector (Bevir-Gray formula)

$$
\mathrm{H}(B)=\int_{\Omega} B \cdot A-\int_{\gamma} A \cdot d l \int_{\gamma^{\prime}} A \cdot d l
$$



Figure 1: Diagram of the domain with a toroidal loop $\gamma^{\prime}$ and a poloidal loop gamma.

## PDEs for the potential vector

We set

$$
\begin{aligned}
& \operatorname{div} A=0 \\
& \operatorname{curl} A=B, \\
& A \cdot n=0
\end{aligned}
$$

## PDEs for the potential vector

We set

$$
\begin{aligned}
& \operatorname{div} A=0 \\
& \operatorname{curl} A=B, \\
& A \cdot n=0 .
\end{aligned}
$$

Additional constraint for WP

$$
\langle A, B\rangle=0, \quad \text { or } \quad \int_{\gamma^{\prime}} A \cdot d l=0
$$

## Comments on well posedness

Harmonic field:

- Two variational formulations:
- Classical formulation: harmonic field is strongly curl free.
- Mixed formulation: harmonic field is strongly divergence free and tangent to the boundary.


## Comments on well posedness

Harmonic field:

- Two variational formulations:
- Classical formulation: harmonic field is strongly curl free.
- Mixed formulation: harmonic field is strongly divergence free and tangent to the boundary.

Vector potential:

- Two variation formulations:
- Mixed vector Laplacian formulation: $\langle A, B\rangle=0$.
- Formulation from A. Valli '19: $\int_{\gamma^{\prime}} A \cdot d l=0$.


## Comments on well posedness

Harmonic field:

- Two variational formulations:
- Classical formulation: harmonic field is strongly curl free.
- Mixed formulation: harmonic field is strongly divergence free and tangent to the boundary.

Vector potential:

- Two variation formulations:
- Mixed vector Laplacian formulation: $\langle A, B\rangle=0$.
- Formulation from A. Valli ' $19: \int_{\gamma^{\prime}} A \cdot d l=0$.

Using functional injections, we get Poincaré inequalities and Hodge decompositions.
Well posedness by inf-sup inequalities.

## Contents

Introduction
PDEs and helicity
Shape differentiation
Notions of shape differentiation
Shape differential of harmonic helicity

Numerical scheme

Numerical implementation

## What is shape differentiation ?

A simple example: volume of a domain

- $\Omega$ bounded Lipschitz domain


## What is shape differentiation ?

A simple example: volume of a domain

- $\Omega$ bounded Lipschitz domain
- $\theta$ small Lipschitz vector field on $\mathbb{R}^{3}$ such that $(I+\theta)$ is a diffeomorphism.


## What is shape differentiation ?

A simple example: volume of a domain

- $\Omega$ bounded Lipschitz domain
- $\theta$ small Lipschitz vector field on $\mathbb{R}^{3}$ such that $(I+\theta)$ is a diffeomorphism.
- Question: What is the volume of $\Omega_{\theta}=(\mathrm{I}+\theta)(\Omega)$ up to first order ?


## What is shape differentiation ?

$$
\begin{aligned}
\operatorname{Vol}\left(\Omega_{\theta}\right) & =\int_{\Omega_{\theta}} d x \\
& =\int_{\Omega} \operatorname{det}(I+D \theta) d x
\end{aligned}
$$

## What is shape differentiation ?

$$
\begin{aligned}
\operatorname{Vol}\left(\Omega_{\theta}\right) & =\int_{\Omega_{\theta}} d x \\
& =\int_{\Omega} \operatorname{det}(\mathrm{I}+D \theta) d x
\end{aligned}
$$

We have

$$
\begin{aligned}
\operatorname{det}(\mathrm{I}+D \theta) & =1+\operatorname{tr}(D \theta)+o\left(\|\theta\|_{W^{1, \infty}}\right) \\
& =1+\operatorname{div} \theta+o\left(\|\theta\|_{W^{1, \infty}}\right)
\end{aligned}
$$

## What is shape differentiation ?

$$
\begin{aligned}
\operatorname{Vol}\left(\Omega_{\theta}\right) & =\int_{\Omega_{\theta}} d x \\
& =\int_{\Omega} \operatorname{det}(I+D \theta) d x
\end{aligned}
$$

We have

$$
\begin{aligned}
\operatorname{det}(\mathrm{I}+D \theta) & =1+\operatorname{tr}(D \theta)+o\left(\|\theta\|_{W^{1, \infty}}\right) \\
& =1+\operatorname{div} \theta+o\left(\|\theta\|_{W^{1, \infty}}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
\operatorname{Vol}\left(\Omega_{\theta}\right) & =\int_{\Omega} d x+\int_{\Omega} \operatorname{div} \theta d x+o\left(\|\theta\|_{W^{1, \infty}}\right) \\
& =\operatorname{Vol}(\Omega)+\int_{\partial \Omega} \theta \cdot n+o\left(\|\theta\|_{W^{1, \infty}}\right)
\end{aligned}
$$

## What is shape differentiation ?

We therefore have

$$
\operatorname{Vol}\left(\Omega_{\theta}\right)=\operatorname{Vol}(\Omega)+\operatorname{Vol}^{\prime}(\Omega ; \theta)+o\left(\|\theta\|_{W^{1, \infty}}\right)
$$

where

$$
\operatorname{Vol}^{\prime}(\Omega ; \theta)=\int_{\partial \Omega} \theta \cdot n
$$

is the shape derivative of the volume.

## Formula of shape differential

Theorem (R., Robin, 2023)
Let $\Omega$ be a Lipschitz toroidal domain. Then, the harmonic helicity is differentiable at $\Omega$ under $W^{1, \infty}$ deformations. Furthermore, if $\Omega$ is s-regular for $s>1 / 2$, we have for all $\theta$ in $W^{1, \infty}\left(\mathbb{R}^{3}\right)^{3}$

$$
\mathcal{H}^{\prime}(\Omega ; \theta)=2 \int_{\partial \Omega} B(\Omega) \cdot A(\Omega) \theta \cdot n .
$$

## Vector fields pullbacks

- Problem for the harmonic helicity: $B_{\theta}$ and $A_{\theta}$ are defined in $\Omega_{\theta}$, but we want to work with integrals on a fixed domain.


## Vector fields pullbacks

- Problem for the harmonic helicity: $B_{\theta}$ and $A_{\theta}$ are defined in $\Omega_{\theta}$, but we want to work with integrals on a fixed domain.
- Solution: Define ways to pull vector fields back to $\Omega$ which have nice properties with the differential operators.


## Vector fields pullbacks

- Problem for the harmonic helicity: $B_{\theta}$ and $A_{\theta}$ are defined in $\Omega_{\theta}$, but we want to work with integrals on a fixed domain.
- Solution: Define ways to pull vector fields back to $\Omega$ which have nice properties with the differential operators.

$$
\begin{array}{ccc}
H^{1}\left(\Omega_{\theta}\right) \xrightarrow{\nabla} H\left(\operatorname{curl}, \Omega_{\theta}\right) \xrightarrow{\text { curl }} H\left(\operatorname{div}, \Omega_{\theta}\right) \xrightarrow{\text { div }} & L^{2}\left(\Omega_{\theta}\right) \\
\Phi_{\theta}^{0} \downarrow \\
\Phi_{\theta}^{1} \downarrow & \Phi_{\theta}^{2} \downarrow & \\
H^{1}(\Omega) \xrightarrow{\nabla} H(\operatorname{curl}, \Omega) \xrightarrow{\text { curl }} H(\operatorname{div}, \Omega) \xrightarrow{\text { div }} & \Phi^{2}(\Omega)
\end{array}
$$

where the $\Phi_{\theta}^{k}$ are the Piola transformations from FEEC.

## Giving a taste of the computations

Using the following formulas

- $\Phi_{\theta}^{3} u=\operatorname{det}(\mathrm{I}+D \theta) u \circ(\mathrm{I}+\theta)$,
- $\Phi_{\theta}^{3}(U \cdot V)=\Phi_{\theta}^{2} U \cdot \Phi_{\theta}^{1} V$,
we get

$$
\mathcal{H}\left(\Omega_{\theta}\right)=\int_{\Omega_{\theta}} B_{\theta} \cdot A_{\theta}
$$

## Giving a taste of the computations

Using the following formulas

- $\Phi_{\theta}^{3} u=\operatorname{det}(\mathrm{I}+D \theta) u \circ(\mathrm{I}+\theta)$,
- $\Phi_{\theta}^{3}(U \cdot V)=\Phi_{\theta}^{2} U \cdot \Phi_{\theta}^{1} V$,
we get

$$
\begin{aligned}
\mathcal{H}\left(\Omega_{\theta}\right) & =\int_{\Omega_{\theta}} B_{\theta} \cdot A_{\theta} \\
& =\int_{\Omega} \Phi_{\theta}^{3}\left(B_{\theta} \cdot A_{\theta}\right),
\end{aligned}
$$

## Giving a taste of the computations

Using the following formulas

- $\Phi_{\theta}^{3} u=\operatorname{det}(\mathrm{I}+D \theta) u \circ(\mathrm{I}+\theta)$,
- $\Phi_{\theta}^{3}(U \cdot V)=\Phi_{\theta}^{2} U \cdot \Phi_{\theta}^{1} V$,
we get

$$
\begin{aligned}
\mathcal{H}\left(\Omega_{\theta}\right) & =\int_{\Omega_{\theta}} B_{\theta} \cdot A_{\theta}, \\
& =\int_{\Omega} \Phi_{\theta}^{3}\left(B_{\theta} \cdot A_{\theta}\right), \\
& =\int_{\Omega} \Phi_{\theta}^{2} B_{\theta} \cdot \Phi_{\theta}^{1} A_{\theta} .
\end{aligned}
$$

## Giving a taste of the computations

If

$$
\begin{aligned}
& \Phi_{\theta}^{2} B_{\theta}=B_{0}+B^{\prime}(\Omega ; \theta)+o(\|\theta\|), \\
& \Phi_{\theta}^{1} A_{\theta}=A_{0}+A^{\prime}(\Omega ; \theta)+o(\|\theta\|),
\end{aligned}
$$

we get

$$
\mathcal{H}^{\prime}(\Omega ; \theta)=\int_{\Omega} B^{\prime}(\Omega ; \theta) \cdot A_{0}+\int_{\Omega} B_{0} \cdot A^{\prime}(\Omega ; \theta) .
$$

## Giving a taste of the computations

If

$$
\begin{aligned}
& \Phi_{\theta}^{2} B_{\theta}=B_{0}+B^{\prime}(\Omega ; \theta)+o(\|\theta\|), \\
& \Phi_{\theta}^{1} A_{\theta}=A_{0}+A^{\prime}(\Omega ; \theta)+o(\|\theta\|),
\end{aligned}
$$

we get

$$
\mathcal{H}^{\prime}(\Omega ; \theta)=\int_{\Omega} B^{\prime}(\Omega ; \theta) \cdot A_{0}+\int_{\Omega} B_{0} \cdot A^{\prime}(\Omega ; \theta) .
$$

To conclude the proof

- We pull the VF for $B$ and $A$ back onto $\Omega$ using the $\Phi_{\theta}^{k}$


## Giving a taste of the computations

If

$$
\begin{aligned}
\Phi_{\theta}^{2} B_{\theta} & =B_{0}+B^{\prime}(\Omega ; \theta)+o(\|\theta\|), \\
\Phi_{\theta}^{1} A_{\theta} & =A_{0}+A^{\prime}(\Omega ; \theta)+o(\|\theta\|),
\end{aligned}
$$

we get

$$
\mathcal{H}^{\prime}(\Omega ; \theta)=\int_{\Omega} B^{\prime}(\Omega ; \theta) \cdot A_{0}+\int_{\Omega} B_{0} \cdot A^{\prime}(\Omega ; \theta) .
$$

To conclude the proof

- We pull the VF for $B$ and $A$ back onto $\Omega$ using the $\Phi_{\theta}^{k}$
- We use the implicit function theorem to prove differentiability of $\Phi_{\theta}^{2} B_{\theta}$ and $\Phi_{\theta}^{1} A_{\theta}$ wrt $\theta$


## Giving a taste of the computations

If

$$
\begin{aligned}
& \Phi_{\theta}^{2} B_{\theta}=B_{0}+B^{\prime}(\Omega ; \theta)+o(\|\theta\|), \\
& \Phi_{\theta}^{1} A_{\theta}=A_{0}+A^{\prime}(\Omega ; \theta)+o(\|\theta\|),
\end{aligned}
$$

we get

$$
\mathcal{H}^{\prime}(\Omega ; \theta)=\int_{\Omega} B^{\prime}(\Omega ; \theta) \cdot A_{0}+\int_{\Omega} B_{0} \cdot A^{\prime}(\Omega ; \theta) .
$$

To conclude the proof

- We pull the VF for $B$ and $A$ back onto $\Omega$ using the $\Phi_{\theta}^{k}$
- We use the implicit function theorem to prove differentiability of $\Phi_{\theta}^{2} B_{\theta}$ and $\Phi_{\theta}^{1} A_{\theta}$ wrt $\theta$
- We differentiate the VF, and plug the result into the last formula


## Contents

## Introduction

PDEs and helicity

## Shape differentiation

Numerical scheme
Finite elements exterior calculus
Convergence of harmonic fields and vector potentials

Numerical implementation

## Discretization of the De Rham complex

Now that we can view the computation of the harmonic helicity and its shape derivative using PDEs, we can design a scheme to compute numerical solutions.

## Discretization of the De Rham complex

Now that we can view the computation of the harmonic helicity and its shape derivative using PDEs, we can design a scheme to compute numerical solutions.

We construct finite element spaces to have the following commutative diagram (FEEC)

$$
\begin{aligned}
& H^{1}(\Omega) \xrightarrow{\nabla} H(\operatorname{curl}, \Omega) \xrightarrow{\text { curl }} H(\operatorname{div}, \Omega) \xrightarrow{\operatorname{div}} L^{2}(\Omega) \\
& \Pi_{h}^{0} \downarrow \\
& \Pi_{h}^{1} \downarrow \\
& V_{h}^{0}(\Omega) \xrightarrow{\nabla}(\Omega) \xrightarrow{\operatorname{curl}} V_{h}^{1}(\Omega) \xrightarrow{\Pi_{h}^{2}} \xrightarrow{\operatorname{div}} V_{h}^{3}(\Omega)
\end{aligned}
$$

## Convergence of harmonic fields and vector potentials

- We take our variational formulations, and solve them in our discrete spaces


## Convergence of harmonic fields and vector potentials

- We take our variational formulations, and solve them in our discrete spaces
- Well posedness is similar to continuous case: Discrete Hodge decompositions and Poincaré inequalities leads to inf-sup conditions


## Convergence of harmonic fields and vector potentials

- We take our variational formulations, and solve them in our discrete spaces
- Well posedness is similar to continuous case: Discrete Hodge decompositions and Poincaré inequalities leads to inf-sup conditions
- Convergence of $A_{h}$ and $B_{h}$ in $L^{2}$

$$
\begin{aligned}
\left\|B-B_{h}\right\|_{L^{2}} & \leq C h^{5}\|B\|_{L^{2}}, \\
\left\|A-A_{h}\right\|_{L^{2}} & \leq C h^{5}\|B\|_{L^{2}} .
\end{aligned}
$$

## Convergence of harmonic fields and vector potentials

- We take our variational formulations, and solve them in our discrete spaces
- Well posedness is similar to continuous case: Discrete Hodge decompositions and Poincaré inequalities leads to inf-sup conditions
- Convergence of $A_{h}$ and $B_{h}$ in $L^{2}$

$$
\begin{aligned}
\left\|B-B_{h}\right\|_{L^{2}} & \leq C h^{5}\|B\|_{L^{2}}, \\
\left\|A-A_{h}\right\|_{L^{2}} & \leq C h^{5}\|B\|_{L^{2}} .
\end{aligned}
$$

- Convergence in $L^{2}$ implies convergence of the harmonic helicity


## Issues for the convergence of the shape derivative

Reminder:

$$
\mathcal{H}^{\prime}(\Omega ; \theta)=2 \int_{\partial \Omega}(B \cdot A) \theta \cdot n .
$$

## Issues for the convergence of the shape derivative

Reminder:

$$
\mathcal{H}^{\prime}(\Omega ; \theta)=2 \int_{\partial \Omega}(B \cdot A) \theta \cdot n .
$$

What does $B \cdot A$ even mean on the boundary ?

## Issues for the convergence of the shape derivative

Reminder:

$$
\mathcal{H}^{\prime}(\Omega ; \theta)=2 \int_{\partial \Omega}(B \cdot A) \theta \cdot n .
$$

What does $B \cdot A$ even mean on the boundary ?

- We have $A$ and $B$ in both $H(\operatorname{curl}, \Omega)$ and $H(\operatorname{div}, \Omega)$ with zero tangential trace,


## Issues for the convergence of the shape derivative

Reminder:

$$
\mathcal{H}^{\prime}(\Omega ; \theta)=2 \int_{\partial \Omega}(B \cdot A) \theta \cdot n .
$$

What does $B \cdot A$ even mean on the boundary ?

- We have $A$ and $B$ in both $H(\operatorname{curl}, \Omega)$ and $H(\operatorname{div}, \Omega)$ with zero tangential trace,
- We say that $\Omega$ is $s$-regular if this space injects in $H^{s}(\Omega)^{3}$,


## Issues for the convergence of the shape derivative

Reminder:

$$
\mathcal{H}^{\prime}(\Omega ; \theta)=2 \int_{\partial \Omega}(B \cdot A) \theta \cdot n .
$$

What does $B \cdot A$ even mean on the boundary ?

- We have $A$ and $B$ in both $H(\operatorname{curl}, \Omega)$ and $H(\operatorname{div}, \Omega)$ with zero tangential trace,
- We say that $\Omega$ is s-regular if this space injects in $H^{s}(\Omega)^{3}$,
- For example:
- Lipschitz domains are $1 / 2-r e g u l a r$,
- Polyhedral domains are $s$-regular with $s>1 / 2$,
- $\mathcal{C}^{1,1}$ domains are 1 -regular.


## Issues for the convergence of the shape derivative

Reminder:

$$
\mathcal{H}^{\prime}(\Omega ; \theta)=2 \int_{\partial \Omega}(B \cdot A) \theta \cdot n .
$$

What does $B \cdot A$ even mean on the boundary ?

- We have $A$ and $B$ in both $H(\operatorname{curl}, \Omega)$ and $H(\operatorname{div}, \Omega)$ with zero tangential trace,
- We say that $\Omega$ is s-regular if this space injects in $H^{s}(\Omega)^{3}$,
- For example:
- Lipschitz domains are $1 / 2-r e g u l a r$,
- Polyhedral domains are $s$-regular with $s>1 / 2$,
- $\mathcal{C}^{1,1}$ domains are 1-regular.
- If $\Omega$ is $s$-regular with $s>1 / 2, A$ and $B$ have traces in $L^{2}(\partial \Omega)^{3}$.


## Issues for the convergence of the shape derivative

Reminder:

$$
\mathcal{H}^{\prime}(\Omega ; \theta)=2 \int_{\partial \Omega}(B \cdot A) \theta \cdot n .
$$

What does $B \cdot A$ even mean on the boundary ?

- We have $A$ and $B$ in both $H(\operatorname{curl}, \Omega)$ and $H(\operatorname{div}, \Omega)$ with zero tangential trace,
- We say that $\Omega$ is s-regular if this space injects in $H^{s}(\Omega)^{3}$,
- For example:
- Lipschitz domains are $1 / 2-r e g u l a r$,
- Polyhedral domains are $s$-regular with $s>1 / 2$,
- $\mathcal{C}^{1,1}$ domains are 1 -regular.
- If $\Omega$ is $s$-regular with $s>1 / 2, A$ and $B$ have traces in $L^{2}(\partial \Omega)^{3}$.

Problem: $A_{h}$ and $B_{h}$ do not have the same regularity, and the convergences found earlier do not give $L^{2}(\partial \Omega)^{3}$ convergence directly.

## Contents

Introduction<br>PDEs and helicity<br>Shape differentiation<br>Numerical scheme

Numerical implementation

## Numerical implementation

The numerical scheme was implemented in python.
Libraries

- gmsh for meshing
- dolfinx for FEM
- petsc4py for matrix manipulation and system solving
- scipy.optimize for optimization
- mayavi and pyvista for 3D visualization


## Numerical implementation

The numerical scheme was implemented in python.
Libraries

- gmsh for meshing
- dolfinx for FEM
- petsc4py for matrix manipulation and system solving
- scipy.optimize for optimization
- mayavi and pyvista for 3D visualization

Surfaces parametrized with Fourier coefficients.

## Numerical implementation



Figure 2: Plot of $B_{h}$

## Numerical implementation



Figure 3: Plot of $A_{h}$

## Numerical implementation



Figure 4: Plot of $B_{h} \cdot A_{h}$ on the boundary

## Numerical implementation



Figure 5: Original NCSX shape in orange, new shape in blue after a few steps of gradient descent (volume and curvature constraint)

## Conclusions and perspectives

Conclusions:

- Introduction of the harmonic helicity shape functional, and formulation through solutions of PDEs.
- Derivation of a shape gradient formula for domains with low regularity using vector field pullbacks.
- Numerical analysis and implementation of a numerical scheme to compute shape helicity and perform numerical optimization.


## Conclusions and perspectives

Conclusions:

- Introduction of the harmonic helicity shape functional, and formulation through solutions of PDEs.
- Derivation of a shape gradient formula for domains with low regularity using vector field pullbacks.
- Numerical analysis and implementation of a numerical scheme to compute shape helicity and perform numerical optimization.

Perspectives:

- Convergence of $B_{h}$ and $A_{h}$ in $L^{2}(\partial \Omega)$


## Conclusions and perspectives

Conclusions:

- Introduction of the harmonic helicity shape functional, and formulation through solutions of PDEs.
- Derivation of a shape gradient formula for domains with low regularity using vector field pullbacks.
- Numerical analysis and implementation of a numerical scheme to compute shape helicity and perform numerical optimization.

Perspectives:

- Convergence of $B_{h}$ and $A_{h}$ in $L^{2}(\partial \Omega)$
- Existence of optimal shapes: strong regularity (reach constraints) or low regularity (Lipschitz domains)


## THANK YOU FOR YOU ATTENTION

