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Motivation

asymptotic behaviour of solutions of the degenerate Keller-Segel system which is a
nonlinear system modelling chemotaxis

formation of pattern and rigorous mathematical description for the pattern dynamics of
aggregating regions of biological individuals possessing the property of chemotaxis

identify a destabilization mechanism that may lead to spatially non homogeneous
solutions (Turing instability)

Our strategy is to consider any general perturbation of the solution nearby an homogenous
steady state, we prove that its nonlinear evolution is dominated by the corresponding linear
dynamics along the finite number of fastest growing modes.
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Pattern Formation

Patterns are everywhere

Why do leopards have spots and tigers have stripes?
Patterns are the solutions of a reaction-diffusion system which are stable in time and
stationary inhomogeneous in space.

Pattern formation: homogeneous steady states lose stability to stable inhomogeneous
solutions

Animal skin: stripes Sand dunes

Animal skin: spots Tumor cells
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Pattern Formation Turing Principle

Patterns = Alan Turing (1912–1954)

Alan Turing

Models for two chemical species, U (activator) and V (
inhibitor)

Reaction-Diffusion System
∂tU = ∆U + γf (U,V ) in QT ,

∂tV = d∆V︸ ︷︷ ︸
diffusion

+γ g(U,V )︸ ︷︷ ︸
reaction

in QT .

γ : is proportional to the area (scale parameter)
d : diffusion coefficient

• A kinetic system of chemicals, stable, in the absence of diffusion (ODE), becomes
unstable in the presence of diffusion (PDE).

• Stabilizing reaction kinetics + diffusion (stabilizing) −→ instability!

• Diffusion driven pattern formation (nowadays: Turing patterns).

• Counter intuitive: Diffusion was/is thought of having stabilizing effect.

A. Turing, The chemical basis of morphogenesis, Biological Sciences 237 37-72, 1952.
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Pattern Formation The model of Keller-Segel

The model of Keller-Segel

A typical model describing chemotaxis is the Keller-
Segel model : It is the most popular model to the
chemical control of the cell movement.

E.F. Keller and L.A. Segel. The Keller-Segel model

of chemotaxis (1970).

• Evolution of cell density (u) :

∂tu −

diffusion term︷ ︸︸ ︷
div(a(u)∇u) +

chemotaxis term︷ ︸︸ ︷
div(χ(u)∇v) = 0

• Evolution of the concentration of the chemoat-
tractant (v):

∂tv − d∆v = αu − βv︸ ︷︷ ︸
production and death

a(u) : the diffusivity of the cells (mobility)

χ(u) : the chemotactic sensitivity of cells
towards the chemoattractant.

the rate given by α modeling the production
of chemoattractant to attract the other cells.
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Pattern Formation The model of Keller-Segel

The model of Keller-Segel

• Evolution of cell density (u) :

∂tu −

diffusion term︷ ︸︸ ︷
div(a(u)∇u) +

chemotaxis term︷ ︸︸ ︷
div(χ(u)∇v) = 0

• Evolution of the concentration of the chemoattractant (v):

∂tv − d∆v = αu − βv︸ ︷︷ ︸
production and death

Volume-Filling Effect : The particles are assumed of having a finite volume and the cells
cannot move into regions that are already filled by other cells.

Degenerate diffusion and sensitivity

a(u) = a0u(1− u), χ(u) = χ0u
2(1− u)2.

Volume-Filling Effect
u

a χ
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Pattern Formation The instability Criterion

Homogeneous steady state: Keller-Segel

{
∂tU − div(a(U)∇U) + div(χ(U)∇V ) = 0

∂tV − d∆V = αU − βV
(1)

Consider a uniform constant solution (when the diffusion terms are neglected) that forms a
homogeneous steady state verifying

αU = βV , 0 < U < 1

Our target is to study the nonlinear evolution of a perturbation around the homogeneous
steady state

u (x, t) = U (x, t)− U, v (x, t) = V (x, t)− V

The nonlinear evolution (u (x, t) , v (x, t)) satisfies the equivalent system

{
∂tu −∇ ·

(
a(u + U)∇u

)
+∇ ·

(
χ(u + U)∇v

)
= 0

∂tv − d ∆v = αu − βv
(2)
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Pattern Formation The instability Criterion

Matrix From

The system can be written in a matrix form

∂tW =
(
D∆W +AW

)
︸ ︷︷ ︸

Linear operator

+
(
∇ · (D∇W )− D∆W −AW + F

)
︸ ︷︷ ︸

Nonlinear operator

= L (W ) +N (W )

where,

W (x, t) =

(
u (x, t)
v (x, t)

)
, D =

(
a(U) −χ(U)

0 d

)
, A =

(
0 0
α −β

)
.

D =

(
a(u + U) −χ(u + U)

0 d

)
, F =

(
0

αu − βv

)
.

The corresponding linearized Keller-Segel system WL = (uL, vL) takes the form:

{
∂tuL = a

(
U
)

∆uL − χ
(
U
)

∆vL,

∂tvL = d∆vL + αuL − βvL.
(3)
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Pattern Formation Linear Instability

Linear Instability Criterion : Re(λq) > 0 for some q 6= 0

Let Ω = Tn =
∏n

i=1]0, π[ be a n-dimensional box for n = 1, 2 or 3. The corresponding
linearized Keller-Segel system then takes the form:{

∂tuL = a
(
U
)

∆uL − χ
(
U
)

∆vL,

∂tvL = d∆vL + αuL − βvL.
(4)

Let q = (q1, ..., qn) ∈ Nn and let

eq (x) = Πn
i=1 cos (qixi ) .

Then, {eq}q∈Nn forms a Hilbert basis of the space of functions in L2 (Ω).
We look for a normal mode to the linear Keller-Segel system (4) of the following form:

WL (x, t) = [uL (x, t) , vL (x, t)] = exp(λqt) eq (x)~rq , where ~rq is an eigenvector. (5)

Plugging equation (5) into system (4) yields

λq~rq =

[
−a
(
U
)
‖q‖2 χ

(
U
)
‖q‖2

α −d ‖q‖2 − β

]
~rq := B ~rq , where ‖q‖2 =

n∑
i=1

q2
i .

A nontrivial normal mode can be obtained by setting

det

[
λq + a

(
U
)
‖q‖2 −χ

(
U
)
‖q‖2

−α λq + d ‖q‖2 + β

]
= 0.
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Pattern Formation Linear Instability

Linear Instability Criterion : Re(λq) > 0 for some q 6= 0

The corresponding dispersion relation associated to the linearised system is:

P(λq) = λ2
q +

{
‖q‖2

(
d + a

(
U
))

+ β
}

︸ ︷︷ ︸
>0

λq + ‖q‖2 {a
(
U
)(

d ‖q‖2 + β
)
− χ

(
U
)
α}︸ ︷︷ ︸

:=h(‖q‖2)

= 0.

(4)

The discriminant is positive, then we deduce a linear instability by requiring:

Linear Instability condition

h
(
‖q‖2

)
= det (B) = ‖q‖2 {a

(
U
)(

d ‖q‖2 + β
)
− χ

(
U
)
α} < 0. (5)

Therefore, we can denote two distinct real roots for all q by

λ±q = −
1

2

(
‖q‖2

(
d + a

(
U
))

+ β
)
±

1

2

√
D̃.

We have λ−q < 0. And, one has a
(
U
)(

d ‖q‖2 + β
)
− χ

(
U
)
α > 0, for q large. Hence,

there are only finite numbers of q such that h
(
‖q‖2

)
< 0 and λ+

q > 0.

Define the largest eigenvalue λmax > 0 and

Qmax = {q ∈ Nn such that λ+
q = λmax}.
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Pattern Formation Linear Instability

Linear Instability Criterion : Re(λq) > 0 for some q 6= 0

The corresponding linearly independent eigenvectors are given by

r±q =

(
(λ±q + d ‖q‖2 + β)/α

1

)
. (4)

Mazen Saad (ECN) CANUM–2024 9 / 27



Pattern Formation Nonlinear Instability

Transition From Linear to Nonlinear Instability I

Theorem (Weakly asymptotic behavior: Degenerate case )

Assume the instability criterion and given an initial perturbation

W (x, 0) =
∑
q∈Nn

{
w−q r−q + w+

q r+
q

}
eq (x) ∈ L2(Ω),

Then, there exists three positive constants C, ν, and K1 such that∥∥∥∥∥∥e−λmax tW (x, t)−
∑

q∈Qmax

w+
q r+

q eq (x)

∥∥∥∥∥∥
?

≤ C ‖W0‖L2(Ω)

{
e−νt + eK1t

}
, for all t > 0

with Qmax = {q ∈ Nn; λ+
q = λmax}, ν = minq/∈Qmax

|λmax − λq | > 0 is the gap between λmax

and the rest and ‖w‖? = ‖(−∆)−
1
2 u‖L2(Ω) + ‖v‖L2(Ω),

Idea of proofs.

The solution of the chemoattractant concentration is regular.

Consider (−∆)−1u and v as test functions to compare the nonlinear system and the
linearised one.

Compare the nonlinear system to the linear fastest growing modes.

Chamoun, M. Ibrahim, M. Saad, R. Talhouk, Asymptotic behavior of solutions of a nonlinear

degenerate chemotaxis model. Discrete and Continuous Dynamical Systems, 2020.
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Numerical results

The Mesh

Portion of the triangular mesh for the space domain Ω = (0, 1)× (0, 1) with 14336 acute
angle triangles.

Fixed step time ∆t = 0.01.
The mesh satisfy the orthogonality condition, and ∆x ≈ 0.01.
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Numerical results

Data and Bifurcation: Test 1

To determine explicitly the critical value, we fix all parameters of system except the
chemotactic sensitivity.{

∂tU −∇ · (a(U)∇U) +∇ · (χ(U)∇v) = 0

∂tV − dV ∆V = αU − βV

Steady State: αU = βV .
Data: α = 5, β = 11, a (U) = dU (U (1− U))2, χ (U) = ζ U (1− U)︸ ︷︷ ︸

:=ϕ(U)

, and dU = 0.001,

dV = 0.01.
Linear instability:

h
(
‖q‖2

)
= ‖q‖2

{
a
(
U
)
d ‖q‖2 + a

(
U
)
β − ζϕ

(
U
)
α
}
< 0. (5)

the critical chemosensitivity ζc is given by ζc =
a(U)β
ϕ(U)α

.

For U = 0.5, we evaluate the critical chemosensitivity and we get ζc = 10−4.
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Numerical results

Data and Bifurcation: Test 1
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ζ > ζc

ζ = ζc

ζ < ζc

‖q‖2

h(‖q‖2)
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There is a critical value ζc such that

No pattern formation if ζ is below this
critical value ζc

Pattern formation can be expected if ζ
is somewhere else above the critical
value

When the chemosensitivity strength ζ
increases beyond the critical value ζc , a
finite range of unstable wave numbers
‖q‖2 exist.

Range of unstable wave numbers:

0 < ‖q‖2 < −
a
(
U
)
β − χ

(
U
)
α

a
(
U
)
d︸ ︷︷ ︸

:=‖q?‖2

.
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Numerical results

Positive and Negative Eigenvalues: ζ = 10−3 > ζc .

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

λmax5.34× 10−3

λ+
q

λ−q

‖q‖2

−5

Distribution of positive eigenvalues λ+
q and negative eigenvalues λ−q with respect to the

range of unstable wave numbers ‖q‖2. We have ‖q?‖2 = 50, ‖q‖2
max = 20

The set of maximal wave numbers : Qmax = {(2, 4), (4, 2)}.
The number of unstable wave number is 42.
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Numerical results

Initial Condition for the Cell Density

Consider a perturbation with an order of magnitude equal to 8× 10−2 around the steady
state U given by:

W0 (x) =
∑

q∈Nn ;h(‖q‖2)≤0

δq
{
w−q r−q + w+

q r+
q

}
eq (x) ∈ L2 (Ω) , δq a randum number

U(0, x) = U + W0

Initial perturbation around U
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Numerical results The Heterogeneous State

Heterogeneous State:=Pattern

We want to show that the behavior of the nonlinear evolution is similar to a heterogeneous
stationary solution given by

eλmax t
∑

q∈Qmax
w+
q r+

q eq (x)

This solution can be computed based on the bifurcation analysis without any simulation of
the nonlinear Keller-Segel system.
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Numerical results The Heterogeneous State

Spatial Evolution of u (x, t) vs Heterogeneous State : Test 1

First row from left to right: Nonlinear evolution of the function u (x, t) at t = 2.5, t = 325,
and t = 997.5.
Second row from left to right: Evolution of the heterogeneous state at the same moments as
for the evolution of u (x, t).
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Numerical results The Heterogeneous State

Spatial Evolution of u (x, t) vs Heterogeneous State: Test 1

Similarities of patterns between the nonlinear evolution u (x, t) (to the left)
and the heterogeneous state (to the right). The L2 error norm is 0.02 at time
T=1000.
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Numerical results The Heterogeneous State

Time Evolution of u (x, t) vs Heterogeneous State: Test 1

E (t) =

∥∥∥W (x, t)− eλmax t
∑

q∈Qmax
w+
q r+

q eq (x)
∥∥∥
L2(Ω)

‖W (x, t) ‖L2(Ω)

The two solutions are very close for a long time but when the nonlinear solution reaches its
final state by forming pattern, the expected solution with the exponential continues to grow.
For that reason, there is a critical time for which the theorem is valid depending on initial
conditions.
The relative error increases after T δ ≈ 1000 since the nonlinear solution is steady stable and
eλmax t →∞.
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Numerical results The Heterogeneous State

Data and Bifurcation: Test 2

To determine explicitly the critical value, we fix all parameters of system except the death
rate. {

∂tU −∇ · (a(U)∇U) +∇ · (χ(U)∇v) = 0

∂tV − dV ∆V = αU − βV

Steady State: αU = βV .
Data:
In this numerical test, we fix α = 2, a (U) = dU (U (1− U))3, dU = 0.01,
χ (U) = ζ (U (1− U))3, ζ = 0.001 and dV = 0.01.
Linear instability:

h
(
‖q‖2

)
= ‖q‖2

{
a
(
U
)
d ‖q‖2 + a

(
U
)
β − ζϕ

(
U
)
α
}
< 0. (5)

the critical death βc is given by βc =
ζϕ(U)α
a(U)

.

For U = 0.5, we evaluate the critical chemosensitivity and we get βc = 20.
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Numerical results The Heterogeneous State

Data and Bifurcation: Test 2

β < βc

β = βc

β > βc

‖q‖2

h(‖q‖2)
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−0.1
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0.6

0.8

No pattern formation if beta is above this critical value βc

Pattern formation can be expected if β is somewhere else below the critical value

When the death rate β decreases beyond the critical value βc , a finite range of unstable
wave numbers ‖q‖2 exist.
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Numerical results The Heterogeneous State

Positive and Negative Eigenvalues: β = 6 > βc

0 20 40 60 80 100 120 140‖q‖2

0 20 40 60 80 100 120 140‖q‖2

λmax

λ+
q

λ−q

−6

6.38× 10−3

To the top: Distribution of positive eigenvalues λ+
q with respect to the range of unstable wave numbers ‖q‖2. To the

bottom: Distribution of negative eigenvalues λ−
q with respect to the range of unstable wave numbers ‖q‖2.

‖q?‖2 = 141, ‖qmax‖2 = 50 The set of wave numbers max : Qmax = {(1, 7), (5, 5), (7, 1)}.
The number of unstable wave number is 58.
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Numerical results The Heterogeneous State

Initial Condition for the Cell Density: Test 2

Consider a perturbation with an order of magnitude equal to 10−2 around the steady state U
given by:

W0 (x) =
∑

q∈Nn ;h(‖q‖2)≤0

δq
{
w−q r−q + w+

q r+
q

}
eq (x) ∈ L2 (Ω) , δq a randum number

U(0, x) = U + W0

Initial condition of the function u (x, t) with a small perturbation around zero. 2D view of
the function u (x, t) (to the left) and a 3D view of its magnitude (to the right).
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Numerical results The Numerical Test: Test 2

Spatial Evolution of u (x, t) vs Heterogeneous State: Test 2

First row from left to right. Nonlinear evolution of the function u (x, t) at t = 10, t = 70,
and t = 750. Second row from left to right. Evolution of the heterogeneous stationary
solutions at the same moments as for u (x, t).
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Numerical results The Numerical Test: Test 2

Spatial Evolution of u (x, t) vs Heterogeneous State: Test 2

Similarities of patterns between the nonlinear evolution u((x, t) (to the left) and the
heterogeneous state (to the right).
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Numerical results The Numerical Test: Test 2

Conclusion

Initial condition is prepared to be a perturbation around the steady state

Study of linearised system to be able to the determine bifurcation parameters

A lot of parameters to be determined

The nonlinear evolution is dominated by the corresponding linear dynamics along the
finite number of fastest growing modes
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