Time-Convolutionless Master Equation Applied to Adiabatic Elimination

CANUM

lle-de-Ré

Angela Riva

Masaaki Tokieda

Quantic team, ENS-PSL, CNRS, Inria, Mines Paris, Université PSL Department of Chemistry, Graduate School of Science, Kyoto University

May 30, 2024

Model reduction for open quantum systems

 $\mathcal{H}_{\mathsf{TOT}} = \mathcal{H} \otimes \mathcal{H}_{\textit{E}}$

By tracing out the environment, an **effective model** of the open quantum system dynamics

$$\frac{d}{dt}\rho = \mathcal{L}\rho$$

Model reduction for open quantum systems

 $\mathcal{H} = \mathcal{H}_{s} \otimes \mathcal{H}_{f}$

Similarly, we can obtain a further **reduced model** \vec{x} of the dynamics for a subsystem

$$rac{d}{dt}
ho = \mathcal{L}
ho \quad o \quad rac{d}{dt}ec{\mathbf{x}} = \mathcal{F}ec{\mathbf{x}}$$

A reduced model of an OQS is useful

► To simulate the effective dynamics of a subsystem.
 Computing the full Lindblad time evolution is hard:
 if H = H₁ ⊗ H₂ ⊗ ... ⇒ dim H = dim H₁ · dim H₂ · ...

A reduced model of an OQS is useful

- ► To simulate the effective dynamics of a subsystem.
 Computing the full Lindblad time evolution is hard:
 if H = H₁ ⊗ H₂ ⊗ ... ⇒ dim H = dim H₁ · dim H₂ · ...
- To engineer a desired coupling to dissipative reservoir. Bosonic codes (cat qubits, GKPs...) rely on the autonomous stabilization of the qubit encoding subspace.

Encoding a cat-qubit in a harmonic oscillator

Fig. from: R. Gautier, A. Sarlette, M. Mirrahimi, PRX Quantum 2022

Cochrane et al., PRA 1999

 $|\pm\alpha\rangle$ coherent states localised on opposite sides of the phase space

$$\left|\mathcal{C}_{\alpha}^{\pm}\right\rangle = (\left|+\alpha\right\rangle \pm \left|-\alpha\right\rangle)/\mathcal{N}_{\pm}$$

Local noise cannot bring one logical state to the other.

Engineering the cat-qubit confinement

.

Exponentially fast convergence to density operators defined on the codespace $\mathcal{H}_{cat} = \text{span}\{|0_L\rangle, |1_L\rangle\}$ through dissipative dynamics:

$$rac{d
ho_B}{dt} = \kappa_2 \mathcal{D}[b^2 - lpha^2]
ho_B \qquad ar{
ho}_B^\infty = \sum_{p,q=\pm} c_{pq} \left|\mathcal{C}^q_lpha
ight
angle \! \left|\mathcal{C}^p_lpha
ight
angle$$

Stabilization through dissipation engineering (buffer mode)

Engineering the cat-qubit confinement

.

Exponentially fast convergence to density operators defined on the codespace $\mathcal{H}_{cat} = \text{span}\{|0_L\rangle, |1_L\rangle\}$ through dissipative dynamics:

$$rac{d
ho_B}{dt} = \kappa_2 \mathcal{D}[b^2 - lpha^2]
ho_B \qquad ar{
ho}_B^\infty = \sum_{p,q=\pm} c_{pq} \left|\mathcal{C}^q_lpha
ight
angle\! \left|\mathcal{C}^p_lpha
ight
angle$$

Stabilization through dissipation engineering (buffer mode)

$$\rho_{AB} \in \mathcal{T}(\mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{B}}) \to \rho_{B} \in \mathcal{T}(\mathcal{H}_{\mathcal{B}})$$

Engineering the cat-qubit confinement

Exponentially fast convergence to density operators defined on the codespace $\mathcal{H}_{cat} = \text{span}\{|0_L\rangle, |1_L\rangle\}$ through dissipative dynamics:

$$rac{d
ho_B}{dt} = \kappa_2 \mathcal{D}[b^2 - lpha^2]
ho_B \qquad ar{
ho}_B^\infty = \sum_{p,q=\pm} c_{pq} \left|\mathcal{C}^q_lpha
ight
angle\! \left|\mathcal{C}^p_lpha
ight
angle$$

Stabilization through dissipation engineering (buffer mode)

$$\rho_{AB} \in \mathcal{T}(\mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{B}}) \to \rho_{B} \in \mathcal{T}(\mathcal{H}_{\mathcal{B}})$$

$$egin{aligned} rac{d
ho_{AB}}{dt} &= -ig[a^{\dagger}\otimes(b^2-lpha^2) + ext{h.c.}, \,
ho_{AB}] + \kappa \mathcal{D}[a]
ho_{AB} \ g/\kappa \ll 1 &
ightarrow rac{d
ho_B}{dt} \sim rac{4g^2}{\kappa} \mathcal{D}[b^2-lpha^2]
ho_B \end{aligned}$$

M. Mirrahimi et al., New J. Phys 2014

.

► Goal: bridging the gap between two model reduction methods

1. Geometric approach to adiabatic elimination (AE)

2. Time convolutionless (TCL) master equation

► Goal: bridging the gap between two model reduction methods

1. Geometric approach to adiabatic elimination (AE)

2. Time convolutionless (TCL) master equation

► Goal: bridging the gap between two model reduction methods

1. Geometric approach to adiabatic elimination (AE)

2. Time convolutionless (TCL) master equation

Result: TCL approach to AE

Example: retrieving the cat qubit confinement

► Goal: bridging the gap between two model reduction methods

1. Geometric approach to adiabatic elimination (AE)

2. Time convolutionless (TCL) master equation

Result: TCL approach to AE

Example: retrieving the cat qubit confinement

Conclusion: discussion and outlook

$$rac{d}{dt}
ho(t)=\mathcal{L}
ho(t)=(\mathcal{L}_0+\epsilon\mathcal{L}_1)
ho(t)\qquad
ho(t)\in\,\mathcal{T}(\mathcal{H})$$

• The **spectrum** of \mathcal{L}_0 is **gapped** on the real axis

$$rac{d}{dt}
ho(t)=\mathcal{L}
ho(t)=(\mathcal{L}_0+\epsilon\mathcal{L}_1)
ho(t)\qquad
ho(t)\in\,T(\mathcal{H})$$

• The **spectrum** of \mathcal{L}_0 is **gapped** on the real axis

• For $0 < \epsilon |\mathcal{L}_1| \ll \Delta$ the spectrum of \mathcal{L} is still gapped

,

$$rac{d}{dt}
ho(t)=\mathcal{L}
ho(t)=(\mathcal{L}_0+\epsilon\mathcal{L}_1)
ho(t)\qquad
ho(t)\in T(\mathcal{H})$$

Goal: reduced model $\vec{x}(t)$ of the dynamics on the invariant subspace.

$$rac{d}{dt}
ho(t)=\mathcal{L}
ho(t)=(\mathcal{L}_0+\epsilon\mathcal{L}_1)
ho(t)\qquad
ho(t)\in\,\mathcal{T}(\mathcal{H})$$

Goal: reduced model $\vec{x}(t)$ of the dynamics on the invariant subspace.

$$\frac{d}{dt}\vec{x}(t) = \mathcal{F}^{(\epsilon)}\vec{x}(t)$$

$$\rho(t) = \mathcal{K}^{(\epsilon)} \vec{x}(t)$$

$$rac{d}{dt}
ho(t)=\mathcal{L}
ho(t)=(\mathcal{L}_0+\epsilon\mathcal{L}_1)
ho(t)\qquad
ho(t)\in\mathcal{T}(\mathcal{H})$$

Goal: reduced model $\vec{x}(t)$ of the dynamics on the invariant subspace.

$$rac{d}{dt}ec{x}(t) = \mathcal{F}^{(\epsilon)}ec{x}(t)$$

$$\rho(t) = \mathcal{K}^{(\epsilon)} \vec{x}(t)$$

Invariance condition: $\mathcal{K}^{(\epsilon)}\mathcal{F}^{(\epsilon)} = \mathcal{L}\mathcal{K}^{(\epsilon)}$

Rémi Azouit et al. 2016 IEEE 55th CDC

$$rac{d}{dt}
ho(t)=\mathcal{L}
ho(t)=(\mathcal{L}_0+\epsilon\mathcal{L}_1)
ho(t)\qquad
ho(t)\in\,\mathcal{T}(\mathcal{H})$$

$$rac{d}{dt}
ho(t)=\mathcal{L}
ho(t)=(\mathcal{L}_0+\epsilon\mathcal{L}_1)
ho(t)\qquad
ho(t)\in T(\mathcal{H})$$

Projected dynamics $\mathcal{P}^2 = \mathcal{P}$, $\mathcal{Q} = \mathcal{I} - \mathcal{P}$, $\mathcal{Q}\mathcal{P} = \mathcal{P}\mathcal{Q} = 0$.

$$rac{d}{dt} \mathcal{P}
ho(t) = \mathcal{P} \mathcal{L}(\mathcal{P} + \mathcal{Q})
ho(t) \qquad rac{d}{dt} \mathcal{Q}
ho(t) = \mathcal{Q} \mathcal{L}(\mathcal{P} + \mathcal{Q})
ho(t)$$

$$rac{d}{dt}
ho(t)=\mathcal{L}
ho(t)=(\mathcal{L}_0+\epsilon\mathcal{L}_1)
ho(t)\qquad
ho(t)\in\mathcal{T}(\mathcal{H})$$

Projected dynamics $\mathcal{P}^2 = \mathcal{P}$, $\mathcal{Q} = \mathcal{I} - \mathcal{P}$, $\mathcal{QP} = \mathcal{PQ} = 0$.

$$rac{d}{dt} \mathcal{P}
ho(t) = \mathcal{P} \mathcal{L}(\mathcal{P} + \mathcal{Q})
ho(t) \qquad rac{d}{dt} \mathcal{Q}
ho(t) = \mathcal{Q} \mathcal{L}(\mathcal{P} + \mathcal{Q})
ho(t)$$

$$\rho(t) = \mathcal{P}\rho(t) + \overbrace{\mathcal{Q}\rho(t)}^{\text{formal solution}} \rightarrow \text{TCL master eq (exact, time local)}$$

$$rac{d}{dt}
ho(t)=\mathcal{L}
ho(t)=(\mathcal{L}_0+\epsilon\mathcal{L}_1)
ho(t)\qquad
ho(t)\in T(\mathcal{H})$$

Projected dynamics $\mathcal{P}^2 = \mathcal{P}$, $\mathcal{Q} = \mathcal{I} - \mathcal{P}$, $\mathcal{Q}\mathcal{P} = \mathcal{P}\mathcal{Q} = 0$.

$$rac{d}{dt} \mathcal{P}
ho(t) = \mathcal{P} \mathcal{L}(\mathcal{P} + \mathcal{Q})
ho(t) \qquad rac{d}{dt} \mathcal{Q}
ho(t) = \mathcal{Q} \mathcal{L}(\mathcal{P} + \mathcal{Q})
ho(t)$$

 $\rho(t) = \mathcal{P}\rho(t) + \underbrace{\mathcal{Q}\rho(t)}_{s} \rightarrow \text{TCL master eq (exact, time local)}$ $\mathcal{P} = \sum_{s} |X_{s}^{R}\rangle \langle \langle X_{s}^{L}| \qquad \mathcal{Q}\rho(0) = 0$

Breuer & Petruccione, Open quantum systems theory (2004).

$$\rho(t) = [1 - \Sigma(t)]^{-1} \mathcal{P}\rho(t)$$
$$\frac{d}{dt} \mathcal{P}\rho(t) = \mathcal{P}\mathcal{L}[1 - \Sigma(t)]^{-1} \mathcal{P}\rho(t)$$

$$\rho(t) = [1 - \Sigma(t)]^{-1} \mathcal{P}\rho(t)$$
$$\frac{d}{dt} \mathcal{P}\rho(t) = \mathcal{P}\mathcal{L}[1 - \Sigma(t)]^{-1} \mathcal{P}\rho(t)$$

For simplicity, we consider $\Sigma(t)$ up to first order:

$$[\mathcal{P},\mathcal{L}_0] = 0 \quad o \quad \Sigma_1(t) = \epsilon \int_0^t d au \, e^{\mathcal{L}_0 au} \mathcal{QL}_1 e^{-\mathcal{L}_0 au} \mathcal{P} + \mathcal{O}(\epsilon^2)$$

$$\rho(t) = [1 + \Sigma_1(t)] \mathcal{P}\rho(t) + \mathcal{O}(\epsilon^2)$$
$$\frac{d}{dt} \mathcal{P}\rho(t) = \mathcal{P}\mathcal{L}[1 + \Sigma_1(t)] \mathcal{P}\rho(t) + \mathcal{O}(\epsilon^3)$$

For simplicity, we consider $\Sigma(t)$ up to first order:

$$[\mathcal{P},\mathcal{L}_0] = 0 \quad o \quad \Sigma_1(t) = \epsilon \int_0^t d au \, e^{\mathcal{L}_0 au} \mathcal{QL}_1 e^{-\mathcal{L}_0 au} \mathcal{P} + \mathcal{O}(\epsilon^2)$$

$$\rho(t) = [1 + \Sigma_1(t)] \mathcal{P}\rho(t) + \mathcal{O}(\epsilon^2)$$
$$\frac{d}{dt} \mathcal{P}\rho(t) = \mathcal{P}\mathcal{L}[1 + \Sigma_1(t)] \mathcal{P}\rho(t) + \mathcal{O}(\epsilon^3)$$

For simplicity, we consider $\Sigma(t)$ up to first order:

$$[\mathcal{P},\mathcal{L}_0] = 0 \quad o \quad \Sigma_1(t) = \epsilon \int_0^t d\tau \, e^{\mathcal{L}_0 \tau} \mathcal{QL}_1 e^{-\mathcal{L}_0 \tau} \mathcal{P} + \mathcal{O}(\epsilon^2)$$

After the fast relaxation phase, $t\gg\Delta^{-1}$, we expect

$$\Sigma_1(t) pprox \Sigma_1 = \textit{lim}_{t
ightarrow \infty} \Sigma_1(t)$$

$$\rho(t) = [1 + \Sigma_1(t)] \mathcal{P}\rho(t) + \mathcal{O}(\epsilon^2)$$
$$\frac{d}{dt} \mathcal{P}\rho(t) = \mathcal{P}\mathcal{L}[1 + \Sigma_1(t)] \mathcal{P}\rho(t) + \mathcal{O}(\epsilon^3)$$

For simplicity, we consider $\Sigma(t)$ up to first order:

$$[\mathcal{P}, \mathcal{L}_0] = 0 \quad \rightarrow \quad \Sigma_1 = \epsilon \int_0^{+\infty} d\tau \, e^{\mathcal{L}_0 \tau} \mathcal{Q} \mathcal{L}_1 e^{-\mathcal{L}_0 \tau} \mathcal{P} + \mathcal{O}(\epsilon^2)$$

After the fast relaxation phase, $t \gg \Delta^{-1}$, we expect

$$\Sigma_1(t) pprox \Sigma_1 = \textit{lim}_{t
ightarrow \infty} \Sigma_1(t)$$

$$\rho(t) = [1 + \Sigma_1] \mathcal{P}\rho(t) + \mathcal{O}(\epsilon^2)$$
$$\frac{d}{dt} \mathcal{P}\rho(t) = \mathcal{P}\mathcal{L}[1 + \Sigma_1] \mathcal{P}\rho(t) + \mathcal{O}(\epsilon^3)$$

$$\rho(t) = [1 + \Sigma_1] \mathcal{P}\rho(t) + \mathcal{O}(\epsilon^2)$$
$$\frac{d}{dt} \mathcal{P}\rho(t) = \mathcal{P}\mathcal{L}[1 + \Sigma_1] \mathcal{P}\rho(t) + \mathcal{O}(\epsilon^3)$$

We parametrize the reduced dynamics $\vec{x}(t)$ on the invariant subspace of the slow modes $\mathcal{P} |\rho(t)\rangle = \sum_{s} x_{s}(t) |X_{s}^{R}\rangle$:

$$\mathbf{x}_{s}(t) = \langle\!\langle X_{s}^{L} | \rho(t) \rangle\!\rangle$$

$$\rho(t) = [1 + \Sigma_1] \chi_R \vec{x}(t) + \mathcal{O}(\epsilon^2)$$
$$\frac{d}{dt} \vec{x}(t) = \chi_L^{\dagger} \mathcal{L} [1 + \Sigma_1] \chi_R \vec{x}(t) + \mathcal{O}(\epsilon^3)$$

We parametrize the reduced dynamics $\vec{x}(t)$ on the invariant subspace of the slow modes $\mathcal{P} |\rho(t)\rangle = \sum_{s} x_{s}(t) |X_{s}^{R}\rangle$:

$$\mathbf{x}_{\mathbf{s}}(t) = \langle \langle X_{\mathbf{s}}^{L} | \rho(t) \rangle \rangle$$

$$\rho(t) = \begin{bmatrix} 1 + \Sigma_1 \end{bmatrix} \chi_R \vec{x}(t) \quad \to \quad \rho(t) = \mathcal{K}_{\mathsf{TCL}}^{(\epsilon)} \vec{x}(t)$$
$$\frac{d}{dt} \vec{x}(t) = \chi_L^{\dagger} \mathcal{L} \begin{bmatrix} 1 + \Sigma_1 \end{bmatrix} \chi_R \vec{x}(t) \quad \to \quad \frac{d}{dt} \vec{x}(t) = \mathcal{F}_{\mathsf{TCL}}^{(\epsilon)} \vec{x}(t)$$

We parametrize the reduced dynamics $\vec{x}(t)$ on the invariant subspace of the slow modes $\mathcal{P} |\rho(t)\rangle = \sum_{s} x_{s}(t) |X_{s}^{R}\rangle$:

$$\mathbf{x}_{s}(t) = \langle\!\langle X_{s}^{L} | \rho(t) \rangle\!\rangle$$

$$\rho(t) = [1 + \Sigma_1] \mathcal{P}\rho(t) + \mathcal{O}(\epsilon^2)$$
$$\frac{d}{dt} \mathcal{P}\rho(t) = \mathcal{P}\mathcal{L}[1 + \Sigma_1] \mathcal{P}\rho(t) + \mathcal{O}(\epsilon^3)$$

We define χ_R and χ_L^{\dagger} such that $\mathcal{P} = \chi_R \chi_L^{\dagger}$, $\chi_L^{\dagger} \chi_R = 1$: $\chi_R = \left[|X_{s=1}^R \rangle \rangle |X_{s=2}^R \rangle \cdots \right] \quad \chi_L^{\dagger} = \left[|X_{s=1}^L \rangle \rangle |X_{s=2}^L \rangle \cdots \right]^{\dagger}$

$$\rho(t) = \left[1 + \Sigma\right] \chi_{R} \chi_{L}^{\dagger} \rho(t) + \mathcal{O}(\epsilon^{2})$$
$$\frac{d}{dt} \chi_{R} \chi_{L}^{\dagger} \rho(t) = \chi_{R} \chi_{L}^{\dagger} \mathcal{L} \left[1 + \Sigma\right] \chi_{R} \chi_{L}^{\dagger} \rho(t) + \mathcal{O}(\epsilon^{3})$$

We define χ_R and χ_L^{\dagger} such that $\mathcal{P} = \chi_R \chi_L^{\dagger}$, $\chi_L^{\dagger} \chi_R = 1$: $\chi_R = \left[|X_{s=1}^R \rangle \rangle |X_{s=2}^R \rangle \cdots \right] \quad \chi_L^{\dagger} = \left[|X_{s=1}^L \rangle \rangle |X_{s=2}^L \rangle \cdots \right]^{\dagger}$

$$\rho(t) = \left[1 + \Sigma\right] \chi_{R} \chi_{L}^{\dagger} \rho(t) + \mathcal{O}(\epsilon^{2})$$
$$\frac{d}{dt} \chi_{R} \chi_{L}^{\dagger} \rho(t) = \chi_{R} \chi_{L}^{\dagger} \mathcal{L} \left[1 + \Sigma\right] \chi_{R} \chi_{L}^{\dagger} \rho(t) + \mathcal{O}(\epsilon^{3})$$

We define χ_R and χ_L^{\dagger} such that $\mathcal{P} = \chi_R \chi_L^{\dagger}$, $\chi_L^{\dagger} \chi_R = 1$: $\chi_R = \left[|X_{s=1}^R \rangle \rangle |X_{s=2}^R \rangle \cdots \right] \quad \chi_L^{\dagger} = \left[|X_{s=1}^L \rangle \rangle |X_{s=2}^L \rangle \cdots \right]^{\dagger}$

We choose a parametrization $\vec{x}(t) = \chi_L^{\dagger} |\rho(t)\rangle$.

$$\rho(t) = [1 + \Sigma] \chi_R \chi_L^{\dagger} \rho(t) + \mathcal{O}(\epsilon^2)$$
$$\frac{d}{dt} \chi_R \chi_L^{\dagger} \rho(t) = \chi_R \chi_L^{\dagger} \mathcal{L} [1 + \Sigma] \chi_R \chi_L^{\dagger} \rho(t) + \mathcal{O}(\epsilon^3)$$

We define χ_R and χ_L^{\dagger} such that $\mathcal{P} = \chi_R \chi_L^{\dagger}$, $\chi_L^{\dagger} \chi_R = 1$: $\chi_R = \begin{bmatrix} |X_{s=1}^R \rangle \rangle |X_{s=2}^R \rangle \cdots \end{bmatrix} \quad \chi_L^{\dagger} = \begin{bmatrix} |X_{s=1}^L \rangle \rangle |X_{s=2}^L \rangle \cdots \end{bmatrix}^{\dagger}$

We choose a parametrization $\vec{x}(t) = \chi_L^{\dagger} |\rho(t)\rangle$.

$$\rho(t) = [1 + \Sigma] \chi_R \vec{x}(t) + \mathcal{O}(\epsilon^2)$$
$$\frac{d}{dt} \vec{x}(t) = \chi_L^{\dagger} \mathcal{L} [1 + \Sigma] \chi_R \vec{x}(t) + \mathcal{O}(\epsilon^3)$$

We define χ_R and χ_L^{\dagger} such that $\mathcal{P} = \chi_R \chi_L^{\dagger}$, $\chi_L^{\dagger} \chi_R = 1$: $\chi_R = \begin{bmatrix} |X_{s=1}^R \rangle \rangle |X_{s=2}^R \rangle \cdots \end{bmatrix} \quad \chi_L^{\dagger} = \begin{bmatrix} |X_{s=1}^L \rangle \rangle |X_{s=2}^L \rangle \cdots \end{bmatrix}^{\dagger}$

We choose a parametrization $\vec{x}(t) = \chi_L^{\dagger} |\rho(t)\rangle$.

$$\rho(t) = \left[1 + \Sigma\right] \chi_R \vec{x}(t) + \mathcal{O}(\epsilon^2)$$
$$\frac{d}{dt} \vec{x}(t) = \chi_L^{\dagger} \mathcal{L} \left[1 + \Sigma\right] \chi_R \vec{x}(t) + \mathcal{O}(\epsilon^3)$$

We define χ_R and χ_L^{\dagger} such that $\mathcal{P} = \chi_R \chi_L^{\dagger}, \chi_L^{\dagger} \chi_R = 1$: $\chi_R = \begin{bmatrix} |X_{s=1}^R \rangle \rangle |X_{s=2}^R \rangle \cdots \end{bmatrix} \quad \chi_L^{\dagger} = \begin{bmatrix} |X_{s=1}^L \rangle \rangle |X_{s=2}^L \rangle \cdots \end{bmatrix}^{\dagger}$

We choose a parametrization $\vec{x}(t) = \chi_L^{\dagger} |\rho(t)\rangle$.

 $\mathcal{K}_{\mathsf{TCL}}^{(\epsilon)} = \begin{bmatrix} 1 + \Sigma \end{bmatrix} \chi_R \quad \mathcal{F}_{\mathsf{TCL}}^{(\epsilon)} = \chi_L^{\dagger} \mathcal{L} \begin{bmatrix} 1 + \Sigma \end{bmatrix} \chi_R \quad \text{correspond to AE!}$

Theorem. $\mathcal{K}_{\mathsf{TCL}}^{(\epsilon)}$ and $\mathcal{F}_{\mathsf{TCL}}^{(\epsilon)}$ satisfy the invariance condition: $\mathcal{K}_{\mathsf{TCL}}^{(\epsilon)}\mathcal{F}_{\mathsf{TCL}}^{(\epsilon)} = \mathcal{L}\mathcal{K}_{\mathsf{TCL}}^{(\epsilon)} + \mathcal{O}(\epsilon^2)$ **Theorem**. $\mathcal{K}_{\mathsf{TCL}}^{(\epsilon)}$ and $\mathcal{F}_{\mathsf{TCL}}^{(\epsilon)}$ satisfy the invariance condition: $\mathcal{K}_{\mathsf{TCL}}^{(\epsilon)}\mathcal{F}_{\mathsf{TCL}}^{(\epsilon)} = \mathcal{L}\mathcal{K}_{\mathsf{TCL}}^{(\epsilon)} + \mathcal{O}(\epsilon^2)$

At long times $t \gg \Delta^{-1}$, the dynamics are constrained on the invariant subspace with $\epsilon > 0$, preserved by \mathcal{L} .

Theorem. $\mathcal{K}_{\mathsf{TCL}}^{(\epsilon)}$ and $\mathcal{F}_{\mathsf{TCL}}^{(\epsilon)}$ satisfy the invariance condition: $\mathcal{K}_{\mathsf{TCL}}^{(\epsilon)}\mathcal{F}_{\mathsf{TCL}}^{(\epsilon)} = \mathcal{L}\mathcal{K}_{\mathsf{TCL}}^{(\epsilon)}$

At long times $t \gg \Delta^{-1}$, the dynamics are constrained on the invariant subspace with $\epsilon > 0$, preserved by \mathcal{L} .

With similar arguments we can treat higher order terms:

Theorem. $\mathcal{K}_{\mathsf{TCL}}^{(\epsilon)}$ and $\mathcal{F}_{\mathsf{TCL}}^{(\epsilon)}$ satisfy the invariance condition: $\mathcal{K}_{\mathsf{TCL}}^{(\epsilon)}\mathcal{F}_{\mathsf{TCL}}^{(\epsilon)} = \mathcal{L}\mathcal{K}_{\mathsf{TCL}}^{(\epsilon)}$

At long times $t \gg \Delta^{-1}$, the dynamics are constrained on the invariant subspace with $\epsilon > 0$, preserved by \mathcal{L} .

With similar arguments we can treat higher order terms:

The theorem is proven up to **infinite order in** ϵ .

Flowchart

- $\blacktriangleright \text{ Identifying } \mathcal{L}_0 \text{ and } \mathcal{L}_1$
- Identifying the surviving modes
- Specifying the definition of the projector \mathcal{P}

Flowchart

- $\blacktriangleright \text{ Identifying } \mathcal{L}_0 \text{ and } \mathcal{L}_1$
- Identifying the surviving modes
- Specifying the definition of the projector \mathcal{P}

$$\frac{d\rho}{dt} = \mathcal{L}\rho \qquad \mathcal{L} = \underbrace{\mathcal{L}_A \otimes \mathcal{I}_B}_{\mathcal{L}_0} + \underbrace{\mathcal{L}_B + \mathcal{L}_{int}}_{\epsilon \mathcal{L}_1}$$

 $\begin{aligned} \mathcal{L}_{A} \bullet &= -i\omega[a^{\dagger}a, \bullet] + \kappa \mathcal{D}[a] \bullet & \mathcal{H}_{A} \text{ damped harmonic oscillator} \\ \mathcal{L}_{B} \bullet & \text{unspecified} & \mathcal{H}_{B} \text{ arbitrary system dim } \mathcal{H}_{B} = N \\ \mathcal{L}_{\text{int}} \bullet &= -ig[a^{\dagger} \otimes L + a \otimes L^{\dagger}, \bullet] & |\mathcal{L}_{B}|, g \ll \kappa \end{aligned}$

Flowchart

- $\blacktriangleright \text{ Identifying } \mathcal{L}_0 \text{ and } \mathcal{L}_1$
- Identifying the surviving modes
- Specifying the definition of the projector \mathcal{P}

$$\mathcal{L}_0 = \mathcal{L}_A \otimes \mathcal{I}_B$$
 is trivial on B . $\mathcal{L}_A \ket{0}\!\!ig\langle 0
vert
angle = 0 \quad \langle\!\langle I_A
vert \mathcal{L}_A = 0
ight.$

Flowchart

- Identifying \mathcal{L}_0 and \mathcal{L}_1
- Identifying the surviving modes
- \blacktriangleright Specifying the definition of the projector ${\cal P}$

$$X_{s=m,n}^{R} = \bar{\rho}_{A} \otimes |b_{m}\rangle\langle b_{n}| \quad X_{s=m,n}^{L} = I_{A} \otimes |b_{m}\rangle\langle b_{n}| \quad \langle\langle X_{s}^{L}|X_{r}^{R}\rangle\rangle = \delta_{sr}$$
$$\mathcal{P}\rho = \sum_{m,n=1}^{N} \langle\langle X_{s=m,n}^{L}|\rho\rangle\rangle X_{s=m,n}^{R} = \sum_{m,n=1}^{N} \bar{\rho}_{A} \otimes \underbrace{\prod_{|b_{m}\rangle\langle b_{m}|}}_{|b_{m}\rangle\langle b_{m}|} \operatorname{tr}_{A}(\rho)\prod_{n} = \bar{\rho}_{A} \otimes \operatorname{tr}_{A}(\rho)$$

 $\mathcal{P}\rho = |0\rangle\langle 0| \otimes \underbrace{\operatorname{tr}_{A}(\rho)}_{\rho_{B}}$ ρ_{B} parametrizes the invariant subspace.

We remark: $\mathcal{PL}_0 \rho = |0\rangle\!\langle 0| \otimes \operatorname{tr}_A(\mathcal{L}_A \otimes \mathcal{I}_B \rho) = 0 \implies \mathcal{PL}_0 = 0$

$$\begin{split} & \frac{d}{dt} \mathcal{P}\rho(t) = |0\rangle\!\langle 0| \otimes \frac{d}{dt} \rho_B(t) \\ &= \left(\epsilon \mathcal{P}\mathcal{L}_1 + \epsilon^2 \int_0^{+\infty} ds \, e^{\mathcal{L}_0 s} \mathcal{Q}\mathcal{L}_1\right) |0\rangle\!\langle 0| \otimes \rho_B(t) + \mathcal{O}(\epsilon^3) \end{split}$$

We remark: $\mathcal{PL}_0 \rho = |0\rangle\!\langle 0| \otimes \operatorname{tr}_A(\mathcal{L}_A \otimes \mathcal{I}_B \rho) = 0 \implies \mathcal{PL}_0 = 0$

$$\begin{split} & \frac{d}{dt} \mathcal{P}\rho(t) = |0\rangle\!\langle 0| \otimes \frac{d}{dt} \rho_B(t) \\ &= \left(\epsilon \mathcal{P}\mathcal{L}_1 + \epsilon^2 \int_0^{+\infty} ds \, e^{\mathcal{L}_0 s} \mathcal{Q}\mathcal{L}_1\right) |0\rangle\!\langle 0| \otimes \rho_B(t) + \mathcal{O}(\epsilon^3) \end{split}$$

Reduced model of the dynamics on B

$$\frac{d}{dt}\rho_{B}(t) = \mathcal{L}_{B}\rho_{B}(t) - i\frac{4g^{2}\omega}{\kappa^{2} + 4\omega^{2}}[L^{\dagger}L,\rho_{B}(t)] + \frac{4g^{2}}{\kappa + 4\omega^{2}/\kappa}\mathcal{D}[L]\rho_{B}(t)$$

We remark: $\mathcal{PL}_0\rho = |0\rangle\!\langle 0| \otimes \operatorname{tr}_A(\mathcal{L}_A \otimes \mathcal{I}_B \rho) = 0 \implies \mathcal{PL}_0 = 0$

$$\begin{split} & \frac{d}{dt} \mathcal{P}\rho(t) = |0\rangle\!\langle 0| \otimes \frac{d}{dt} \rho_B(t) \\ &= \left(\epsilon \mathcal{P}\mathcal{L}_1 + \epsilon^2 \int_0^{+\infty} ds \, e^{\mathcal{L}_0 s} \mathcal{Q}\mathcal{L}_1\right) |0\rangle\!\langle 0| \otimes \rho_B(t) + \mathcal{O}(\epsilon^3) \end{split}$$

Reduced model of the dynamics on B

$$\frac{d}{dt}\rho_{B}(t) = \mathcal{L}_{B}\rho_{B}(t) - i\frac{4g^{2}\omega}{\kappa^{2} + 4\omega^{2}}[L^{\dagger}L,\rho_{B}(t)] + \frac{4g^{2}}{\kappa + 4\omega^{2}/\kappa}\mathcal{D}[L]\rho_{B}(t)$$

Hamiltonian correction and inherited dissipation from A.

- TCL gains a geometric interpretation (reduced description of the total dyanmics based on time-scale separation)
- AE gains a systematic way to make calculations

- TCL gains a geometric interpretation (reduced description of the total dyanmics based on time-scale separation)
- ► AE gains a systematic way to make calculations

Application to any system with time-scale separation (c-QED, dynamic nuclear polarization [A. Karabanov *et al.*, PRL (2015)])

- TCL gains a geometric interpretation (reduced description of the total dyanmics based on time-scale separation)
- AE gains a systematic way to make calculations

Application to any system with time-scale separation (c-QED, dynamic nuclear polarization [A. Karabanov *et al.*, PRL (2015)])

In prep. with Masaaki Tokieda

Time-Convolutionless Master Equation Applied to Adiabatic Elimination

Backup slides

$$\mathcal{P}(t) = [1 - \Sigma(t)]^{-1} \mathcal{P} \qquad \Sigma(t) = \int_0^t d\tau \, e^{\mathcal{QLQ\tau}} \mathcal{QLP} e^{-\mathcal{L\tau}}$$

$$\mathcal{P}(t) = [1 - \Sigma(t)]^{-1} \mathcal{P} \qquad \Sigma(t) = \int_0^t d\tau \, e^{\mathcal{QLQ\tau}} \mathcal{QLP} e^{-\mathcal{L\tau}}$$

1. Rewrite $\mathcal{P}(t)$ in terms of $e^{\mathcal{L}t}$ [C. Timm, Phys. Rev. B (2008)]

$$e^{\mathcal{L}t}\mathcal{P}[\mathcal{Q}+\mathcal{P}e^{\mathcal{L}t}\mathcal{P}]^{-1}\mathcal{P}$$

2. Express $e^{\mathcal{L}t}$ in the eigenbasis of \mathcal{L}

$$\mathcal{P}(t) = [1 - \Sigma(t)]^{-1} \mathcal{P} \qquad \Sigma(t) = \int_0^t d\tau \, e^{\mathcal{QLQ\tau}} \mathcal{QLP} e^{-\mathcal{L\tau}}$$

$$e^{\mathcal{L}t}\mathcal{P}[\mathcal{Q}+\mathcal{P}e^{\mathcal{L}t}\mathcal{P}]^{-1}\mathcal{P}$$

- 2. Express $e^{\mathcal{L}t}$ in the eigenbasis of \mathcal{L}
- 3. Show the existence of the **projection** $\mathcal{P}(\infty)$

$$\mathcal{P}(t) = [1 - \Sigma(t)]^{-1} \mathcal{P} \qquad \Sigma(t) = \int_0^t d\tau \, e^{\mathcal{QLQ\tau}} \mathcal{QLP} e^{-\mathcal{L\tau}}$$

$$e^{\mathcal{L}t}\mathcal{P}[\mathcal{Q}+\mathcal{P}e^{\mathcal{L}t}\mathcal{P}]^{-1}\mathcal{P}$$

- 2. Express $e^{\mathcal{L}t}$ in the eigenbasis of \mathcal{L}
- 3. Show the existence of the projection $\mathcal{P}(\infty)$
 - Image: invariant subspace $\epsilon > 0$

$$\mathcal{P}(t) = [1 - \Sigma(t)]^{-1} \mathcal{P} \qquad \Sigma(t) = \int_0^t d au \ e^{\mathcal{QLQ} au} \mathcal{QLP} e^{-\mathcal{L} au}$$

$$e^{\mathcal{L}t}\mathcal{P}[\mathcal{Q}+\mathcal{P}e^{\mathcal{L}t}\mathcal{P}]^{-1}\mathcal{P}$$

- 2. Express $e^{\mathcal{L}t}$ in the eigenbasis of \mathcal{L}
- 3. Show the existence of the **projection** $\mathcal{P}(\infty)$
 - Image: invariant subspace $\epsilon > 0$
 - Kernel: subspace spanned by the fast relaxing modes $\epsilon = 0$

$$\mathcal{P}(t) = [1 - \Sigma(t)]^{-1} \mathcal{P} \qquad \Sigma(t) = \int_0^t d au \ e^{\mathcal{QLQ} au} \mathcal{QLP} e^{-\mathcal{L} au}$$

$$e^{\mathcal{L}t}\mathcal{P}[\mathcal{Q}+\mathcal{P}e^{\mathcal{L}t}\mathcal{P}]^{-1}\mathcal{P}$$

- 2. Express $e^{\mathcal{L}t}$ in the eigenbasis of \mathcal{L}
- 3. Show the existence of the **projection** $\mathcal{P}(\infty)$
 - Image: invariant subspace $\epsilon > 0$
 - Kernel: subspace spanned by the fast relaxing modes $\epsilon = 0$
- 4. With $\Delta^{(\epsilon)} \approx \Delta$, show that

$$\mathcal{P}(t)=\mathcal{P}(\infty)+(\mathcal{P}(t)-\mathcal{P}(\infty)), \quad \mathcal{P}(t)-\mathcal{P}(\infty)\propto e^{-\Delta t}$$

 $\mathcal{P}(\infty)\rho(t)$ projects a state to the invariant subspace with $\epsilon > 0$ (invariant w.r.t. \mathcal{L}). It follows:

 $\mathcal{Q}(\infty)\mathcal{L}(\infty)\mathcal{P}(\infty)=0$

 $\mathcal{P}(\infty)\rho(t)$ projects a state to the invariant subspace with $\epsilon > 0$ (invariant w.r.t. \mathcal{L}). It follows:

 $\mathcal{Q}(\infty)\mathcal{L}(\infty)\mathcal{P}(\infty) = 0$

By definition $\mathcal{Q}(\infty) = 1 - \mathcal{P}(\infty)$

$$\implies \mathcal{P}(\infty)\mathcal{LP}(\infty) = \mathcal{LP}(\infty)$$

 $\mathcal{P}(\infty)\rho(t)$ projects a state to the invariant subspace with $\epsilon > 0$ (invariant w.r.t. \mathcal{L}). It follows:

 $\mathcal{Q}(\infty)\mathcal{L}(\infty)\mathcal{P}(\infty)=0$

By definition $\mathcal{Q}(\infty) = 1 - \mathcal{P}(\infty)$

$$\implies \mathcal{P}(\infty)\mathcal{LP}(\infty) = \mathcal{LP}(\infty)$$

which is equivalent to the invariance condition:

$$\mathcal{K}_{\mathsf{TCL}}\mathcal{F}_{\mathsf{TCL}} = \mathcal{L}\mathcal{K}_{\mathsf{TCL}}$$

where $\mathcal{K}_{\mathsf{TCL}} = \mathcal{P}(\infty)\chi_R$ and $\mathcal{F}_{\mathsf{TCL}} = \chi_L^{\dagger} \mathcal{LP}(\infty)\chi_R$ correspond to the AE maps, and satisfy the invariance condition.

Derivation of TCL equation (higher orders)

From $\rho(t) = \mathcal{P}\rho(t) + \mathcal{Q}\rho(t)$ with the formal solution of $\mathcal{Q}\rho(t)$ we obtain:

$$egin{aligned} &
ho(t) = \mathcal{J}(t)\mathcal{Q}
ho(0) + [1-\Sigma(t)]^{-1}\mathcal{P}
ho(t) \ &rac{d}{dt}\mathcal{P}
ho(t) = \mathcal{PLJ}(t)\mathcal{Q}
ho(0) + \mathcal{PL}[1-\Sigma(t)]^{-1}\mathcal{P}
ho(t) \end{aligned}$$

where we assumed that $[\mathcal{P},\mathcal{L}_0]=0$

$$\mathcal{J}(t) = [1 - \Sigma(t)]^{-1} e^{\mathcal{QLQt}} \mathcal{Q}$$

 $\Sigma(t) = \epsilon \int_0^t d\tau \, e^{\mathcal{QLQ\tau}} \mathcal{QL}_1 \mathcal{P} e^{-\mathcal{L\tau}}.$

We define:

$$\mathcal{P}(t) = [1 - \Sigma(t)]^{-1} \mathcal{P}$$

To be precise on the expansion in ϵ

$$\begin{split} [1 - \Sigma(t)]^{-1} &= 1 + \epsilon \Sigma_1(t) + \epsilon^2 \Sigma_2(t) + \mathcal{O}(\epsilon^3) \\ \downarrow \\ \mathcal{P}\mathcal{L}[1 - \Sigma(t)]^{-1}\mathcal{P} \\ &= \mathcal{P}\mathcal{L}[1 + \epsilon \Sigma_1(t) + \epsilon^2 \Sigma_2(t) + \mathcal{O}(\epsilon^3)]\mathcal{P} \\ &= \mathcal{P}\mathcal{L}[1 + \epsilon \Sigma_1(t)]\mathcal{P} + \epsilon^2 \mathcal{P}\mathcal{L}\Sigma_2(t)\mathcal{P} + \mathcal{O}(\epsilon^3) \\ &= \mathcal{P}\mathcal{L}[1 + \epsilon \Sigma_1(t)]\mathcal{P} + \epsilon^2 \mathcal{P}\mathcal{L}_0\Sigma_2(t)\mathcal{P} + \mathcal{O}(\epsilon^3) \end{split}$$

But, due to $[\mathcal{P},\mathcal{L}_0]=0,~\mathcal{PL}_0\Sigma_2(t)=0$ and that's why

$$\mathcal{PL}[1-\Sigma(t)]^{-1}\mathcal{P}=\mathcal{PL}[1+\epsilon\Sigma_1(t)]\mathcal{P}+\mathcal{O}(\epsilon^3).$$

Up to the first order of ϵ , the limit $\lim_{t\to\infty} \Sigma(t)$ exists. But including higher orders (third and higher), this limit diverges, while $\lim_{t\to\infty} [1-\Sigma(t)]^{-1}\mathcal{P}$ exists.

In the example:

 \mathcal{H}_B arbitrary system, dim $(\mathcal{H}_B) = N$, dim $(\mathcal{T}(\mathcal{H}_B)) = N^2$, $\{|b_m\rangle\}_{m=1}^N$ orthonormal basis.

$$\begin{split} X_{s=m,n}^{R} &= \bar{\rho}_{A} \otimes |b_{m}\rangle \langle b_{n}| \quad X_{s=m,n}^{L} = I_{A} \otimes |b_{m}\rangle \langle b_{n}| \quad \langle \langle X_{s}^{L}|X_{r}^{R}\rangle \rangle = \delta_{sr} \\ \mathcal{P}\rho &= \sum_{m,n=1}^{N} \langle \langle X_{s=m,n}^{L}|\rho \rangle \rangle X_{s=m,n}^{R} = \sum_{m,n=1}^{N} \bar{\rho}_{A} \otimes \underbrace{\prod_{|b_{m}\rangle \langle b_{m}|}}_{|b_{m}\rangle \langle b_{m}|} \operatorname{tr}_{A}(\rho) \Pi_{n} \\ &= \bar{\rho}_{A} \otimes \underbrace{\operatorname{tr}_{A}(\rho)}_{\rho_{B}} \quad \rho_{B} \text{ parametrizes the invariant subspace.} \end{split}$$

We remark: $\mathcal{PL}_0 \rho = \bar{\rho}_A \otimes \operatorname{tr}_A(\mathcal{L}_A \otimes \mathcal{I}_B \rho) = 0 \implies \mathcal{PL}_0 = 0$

Therefore we obtain the projected time evolution as:

$$egin{aligned} &rac{d}{dt}\mathcal{P}
ho(t) = \mathcal{P}(\mathcal{L}_0 + \epsilon\mathcal{L}_1)\mathcal{P}^{(\epsilon)}
ho(t) = \ & \epsilon\mathcal{P}\mathcal{L}_1\mathcal{P}^{(\epsilon)}
ho(t)\sim_{\epsilon^2} \ & \epsilon\mathcal{P}\mathcal{L}_1\mathcal{P}
ho(t) + \epsilon^2\int_0^{t-t_0}ds\,e^{\mathcal{L}_0s}\mathcal{Q}\mathcal{L}_1\mathcal{P}
ho(t) \end{aligned}$$

$$\mathcal{K}(\mathcal{L}_s) = \mathcal{L}(\mathcal{K})$$

Substituting the asymptotic expansions of the maps

$$\mathcal{L}_{s}(\rho_{s}) = \sum_{n=0}^{\infty} \epsilon^{n} \mathcal{L}_{s,n}(\rho_{s}), \quad \mathcal{K}(\rho_{s}) = \sum_{n=0}^{\infty} \epsilon^{n} \mathcal{K}_{n}(\rho_{s})$$

We obtain at each order in ϵ a different invariance condition.

For $\epsilon = 0$ we need to compute the steady state $\bar{\rho}$ solution of $\mathcal{L}_0(\rho) = 0$.

We choose \mathcal{P} as projection on invariant manifold wrt \mathcal{L}_0 .

$$\mathcal{P}(t) = [1 - \Sigma(t)]^{-1} \mathcal{P}$$
 $\Sigma(t) = \int_0^t d au \, e^{\mathcal{QLQ} au} \mathcal{QLP} e^{-\mathcal{L} au}$

- We obtain the time integral of $\Sigma(t)$
- ► We recast the expression so that only terms with e^L appear (we get rid of stuff like e^{QLQt})

$$o \mathcal{P}^{(\epsilon)}(t) = [1 - \Sigma^{(\epsilon)}(t)]^{-1} \mathcal{P}$$

$$egin{aligned} & (\mathcal{L}_0-\lambda_i^{(\epsilon=0)}) \, | \, r_i^{(\epsilon=0)}
angle = 0, & \langle\!\langle l_i^{(\epsilon=0)} | \, (\mathcal{L}_0-\lambda_i^{(\epsilon=0)}) = 0, \ & (\mathcal{L}-\lambda_i^{(\epsilon)}) \, | \, r_i^{(\epsilon)}
angle = 0, & \langle\!\langle l_i^{(\epsilon)} | \, (\mathcal{L}-\lambda_i^{(\epsilon)}) = 0. \end{aligned}$$

In AE, we assume that the invariant subspaces with $\epsilon > 0$ and $\epsilon \to 0$ are smoothly connected: the gap in the spectrum stays large enough for $\epsilon > 0$: $\Delta^{(\epsilon)} = \min_{f,s} \operatorname{Re}(\lambda_f^{(\epsilon)} - \lambda_s^{(\epsilon)})$.

Then, when $t \gg [\Delta^{(\epsilon)}]^{-1}$, the trajectory is restricted to the invariant subspace spanned by $|r_i^{(\epsilon)}\rangle = |r_i^{(\epsilon=0)}\rangle + |dr_i\rangle$.

We define the matrices M and N as $M_{ss'} = \langle \langle I_s^{(\epsilon)} | r_{s'}^{(\epsilon=0)} \rangle \rangle$ and $N_{ss'} = \langle \langle I_s^{(\epsilon=0)} | r_{s'}^{(\epsilon)} \rangle \rangle$.

Sketch of the proof of the main result (3)

With all of these definitions we can rewrite $\mathcal{P}(t)$ as:

$$\mathcal{P}^{(\epsilon)}(t) = \sum_{s_a, s_b} e^{\mathcal{L}t} \ket{r_{s_a}^{(\epsilon=0)}} [A(t)]_{s_a s_b}^{-1} \langle\!\langle l_{s_b}^{(\epsilon=0)}
vert \,,$$

 $A(t)_{s_a s_b} = \langle\!\langle l_{s_a}^{(\epsilon=0)}
vert e^{\mathcal{L}t} \ket{r_{s_b}^{(\epsilon=0)}}
angle \,.$

• We substitute $e^{\mathcal{L}t}$ with its spectral decomposition in A(t)

► We express [A(t)]⁻¹ in terms of the M, N matrices previously defined, and we get some decay rates for the fast components.

$$.. \rightarrow \mathcal{P}^{(\epsilon)} = \lim_{t \to \infty} \mathcal{P}(t) = \sum_{ss'} |r_s^{(\epsilon)}\rangle\rangle [N^{-1}]_{ss'} \langle\langle I_{s'}^{(\epsilon=0)}|.$$

 $\mathcal{P}^{(\epsilon)}$ is a projection. $\mathcal{P}^{(\epsilon)} | r_s^{(\epsilon)} \rangle = | r_s^{(\epsilon)} \rangle$: image \rightarrow invariant subspace $\epsilon > 0$. $\mathcal{P}^{(\epsilon)} | r_f^{(\epsilon=0)} \rangle = 0$: kernel \rightarrow subspace spanned by the fast relaxing modes with $\epsilon = 0$.