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Model reduction for open quantum systems

H HE

HTOT = H⊗HE

By tracing out the environment,
an effective model of the open

quantum system dynamics

d

dt
ρ = Lρ
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Model reduction for open quantum systems

Hf Hs HE

H = Hs ⊗Hf

Similarly, we can obtain a
further reduced model x⃗ of
the dynamics for a subsystem

d

dt
ρ = Lρ → d

dt
x⃗ = F x⃗
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A reduced model of an OQS is useful

▶ To simulate the effective dynamics of a subsystem.

Computing the full Lindblad time evolution is hard:

if H = H1 ⊗H2 ⊗ ... =⇒ dimH = dimH1 · dimH2 · ...

▶ To engineer a desired coupling to dissipative reservoir.

Bosonic codes (cat qubits, GKPs...) rely on the autonomous
stabilization of the qubit encoding subspace.
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Encoding a cat-qubit in a harmonic oscillator

1.3. Cat qubits 13

Z

X Y

0

Figure 1.4: Encoding a cat qubit in a quantum harmonic oscillator. Compu-
tational states on the Z axis of the Bloch sphere are approximately coherent
states delocalized on either side of phase space, hence providing an exponen-
tially small probability of bit-flip errors.

Schrödinger cat states [Cochrane et al. 1999, Ralph et al. 2003], according to

|0L⟩ = 1√
2

(∣∣C+
α

〉
+
∣∣C−

α

〉)
= |α⟩+O(e−2|α|2)

|1L⟩ = 1√
2

(∣∣C+
α

〉
−
∣∣C−

α

〉)
= |−α⟩+O(e−2|α|2)

(1.10)

where |±α⟩ are coherent states of the oscillator, i.e. eigenstates of the anni-
hilation operator, a |±α⟩ = ±α |±α⟩, characterized by their uniform gaussian
distribution in phase space centered on ±α. Here, |C±

α ⟩ = (|α⟩ ± |−α⟩)/N±
are the even and odd parity cat states, and N± =

√
2(1± e−2|α|2) are normal-

ization constants. A schematic of the encoding is represented on Figure 1.4.
Note that other variants of this encoding exist, most notably four-legged cat
qubits [Mirrahimi et al. 2014] that make use of four coherent states instead of
two, or pair cat codes [Albert et al. 2019] encoded in two oscillators instead
of one. They are however more difficult to stabilize and are not the subject
of this thesis.

The logical code words |0L⟩ and |1L⟩ of cat qubits (1.10) are therefore lo-
calized on opposite sides of phase space, up to exponentially small corrections.
This often leads to the claim that cat qubits are exponentially biased in noise,
since local noise cannot bring one logical state to the other under a stabiliza-
tion mechanism. This exponentially biased noise is particularly attractive for
low-overhead quantum error correcting codes, as later discussed. Note that
this is only true under the assumption of local noise — i.e. noise that may
be decomposed as small oscillator displacements in the short time regime —,
and most importantly, assuming that the stabilization indeed suppresses any
leakage out of the codespace also in a local manner. Chapter 2 will provide a
more detailed discussion of this matter.

Fig. from: R. Gautier, A. Sarlette, M. Mirrahimi, PRX
Quantum 2022

|±α⟩ coherent states localised on
opposite sides of the phase space

∣∣C±
α

〉
= (|+α⟩ ± |−α⟩)/N±

Local noise cannot bring one
logical state to the other.

Cochrane et al., PRA 1999
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Engineering the cat-qubit confinement

Exponentially fast convergence to density operators defined on the
codespace Hcat = span{|0L⟩ , |1L⟩} through dissipative dynamics:

dρB
dt

= κ2D[b2 − α2]ρB ρ̄∞B =
∑

p,q=±
cpq |Cq

α⟩⟨Cp
α|

Stabilization through dissipation engineering (buffer mode)

ρAB ∈ T (HA ⊗HB) → ρB ∈ T (HB)

dρAB
dt

= −ig [a† ⊗ (b2 − α2) + h.c., ρAB ] + κD[a]ρAB

g/κ ≪ 1 → dρB
dt

∼ 4g2

κ
D[b2 − α2]ρB

M. Mirrahimi et al., New J. Phys 2014
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Outline

▶ Goal: bridging the gap between two model reduction methods

1. Geometric approach to
adiabatic elimination (AE)

2. Time convolutionless
(TCL) master equation

▶ Result: TCL approach to AE

▶ Example: retrieving the cat qubit confinement

▶ Conclusion: discussion and outlook
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1. Adiabatic elimination

d

dt
ρ(t) = Lρ(t) = (L0 + ϵL1)ρ(t) ρ(t) ∈ T (H)

▶ The spectrum of L0 is gapped on the real axis
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(L0 − λi ) |XR
i ⟩⟩ = 0

⟨⟨X L
i | (L0 − λi ) = 0

▶ For 0 < ϵ|L1| ≪ ∆ the spectrum of L is still gapped
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1. Adiabatic elimination

d

dt
ρ(t) = Lρ(t) = (L0 + ϵL1)ρ(t) ρ(t) ∈ T (H)
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Goal: reduced model x⃗(t)
of the dynamics on the
invariant subspace.

d

dt
x⃗(t) = F (ϵ)x⃗(t)

ρ(t) = K(ϵ)x⃗(t)

Invariance condition: K(ϵ)F (ϵ) = LK(ϵ)

Rémi Azouit et al. 2016 IEEE 55th CDC
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2. Time-convolutionless master equation

d

dt
ρ(t) = Lρ(t) = (L0 + ϵL1)ρ(t) ρ(t) ∈ T (H)

Projected dynamics P2 = P, Q = I − P, QP = PQ = 0.

d

dt
Pρ(t) = PL(P +Q)ρ(t)

d

dt
Qρ(t) = QL(P +Q)ρ(t)

ρ(t) = Pρ(t)+

formal solution︷ ︸︸ ︷
Qρ(t) → TCL master eq (exact, time local)

P =
∑
s

|XR
s ⟩⟩⟨⟨X L

s | Qρ(0) = 0

Breuer & Petruccione, Open quantum systems theory (2004).
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Projective formulation of adiabatic elimination

ρ(t) = [1− Σ(t)]−1Pρ(t)

d

dt
Pρ(t) = PL[1− Σ(t)]−1Pρ(t)

For simplicity, we consider Σ(t) up to first order:

[P,L0] = 0 → Σ1(t) = ϵ

∫ t

0
dτ eL0τQL1e

−L0τP +O(ϵ2)
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Projective formulation of adiabatic elimination

ρ(t) =
[
1 + Σ1(t)

]
Pρ(t) +O(ϵ2)

d

dt
Pρ(t) = PL

[
1 + Σ1(t)

]
Pρ(t) +O(ϵ3)

For simplicity, we consider Σ(t) up to first order:

[P,L0] = 0 → Σ1(t) = ϵ

∫ t

0
dτ eL0τQL1e

−L0τP +O(ϵ2)

After the fast relaxation phase, t ≫ ∆−1, we expect

Σ1(t) ≈ Σ1 = limt→∞Σ1(t)
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Showing the equivalence of AE and TCL

ρ(t) =
[
1 + Σ1

]
Pρ(t) +O(ϵ2)

d

dt
Pρ(t) = PL

[
1 + Σ1

]
Pρ(t) +O(ϵ3)

We parametrize the reduced dynamics
x⃗(t) on the invariant subspace of the
slow modes P |ρ(t)⟩⟩ =

∑
s xs(t) |XR

s ⟩⟩:

xs(t) = ⟨⟨X L
s |ρ(t)⟩⟩
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Showing the equivalence of AE and TCL

ρ(t) =
[
1 + Σ1

]
χR x⃗(t) +O(ϵ2)

d

dt
x⃗(t) = χ†

LL
[
1 + Σ1

]
χR x⃗(t) +O(ϵ3)
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Showing the equivalence of AE and TCL

ρ(t) =
[
1 + Σ1

]
χR x⃗(t) → ρ(t) = K(ϵ)

TCL x⃗(t)

d

dt
x⃗(t) = χ†

LL
[
1 + Σ1

]
χR x⃗(t) → d

dt
x⃗(t) = F (ϵ)

TCL x⃗(t)

We parametrize the reduced dynamics
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TCL version of K and F

ρ(t) =
[
1 + Σ1

]
Pρ(t) +O(ϵ2)

d

dt
Pρ(t) = PL

[
1 + Σ1

]
Pρ(t) +O(ϵ3)

We define χR and χ†
L such that P = χRχ

†
L, χ

†
LχR = 1:

χR =
[
|XR

s=1⟩⟩ |XR
s=2⟩⟩ · · ·

]
χ†
L =

[
|X L

s=1⟩⟩ |X L
s=2⟩⟩ · · ·

]†
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TCL version of K and F

ρ(t) =
[
1 + Σ

]
χRχ

†
Lρ(t) +O(ϵ2)

d

dt
χRχ

†
Lρ(t) = χRχ

†
LL

[
1 + Σ

]
χRχ

†
Lρ(t) +O(ϵ3)

We define χR and χ†
L such that P = χRχ

†
L, χ

†
LχR = 1:

χR =
[
|XR

s=1⟩⟩ |XR
s=2⟩⟩ · · ·

]
χ†
L =

[
|X L

s=1⟩⟩ |X L
s=2⟩⟩ · · ·

]†

We choose a parametrization x⃗(t) = χ†
L |ρ(t)⟩⟩.
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We choose a parametrization x⃗(t) = χ†

L |ρ(t)⟩⟩.

K(ϵ)
TCL =

[
1 + Σ

]
χR F (ϵ)

TCL = χ†
LL

[
1 + Σ

]
χR correspond to AE!
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Main result

Theorem. K(ϵ)
TCL and F (ϵ)

TCL satisfy the invariance condition:

K(ϵ)
TCLF

(ϵ)
TCL = LK(ϵ)

TCL +O(ϵ2)

At long times t ≫ ∆−1, the dynamics are constrained on the
invariant subspace with ϵ > 0, preserved by L.
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Example: bipartite system H = HA ⊗HB

Flowchart

▶ Identifying L0 and L1

▶ Identifying the surviving modes

▶ Specifying the definition of the projector P

dρ

dt
= Lρ L = LA ⊗ IB︸ ︷︷ ︸

L0

+LB + Lint︸ ︷︷ ︸
ϵL1

LA• = −iω[a†a, •] + κD[a] • HA damped harmonic oscillator

LB • unspecified HB arbitrary system dimHB = N

Lint• = −ig [a† ⊗ L+ a⊗ L†, •] |LB |, g ≪ κ
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Example: bipartite system H = HA ⊗HB

Flowchart

▶ Identifying L0 and L1

▶ Identifying the surviving modes

▶ Specifying the definition of the projector P

L0 = LA ⊗ IB is trivial on B.

LA ||0⟩⟨0|⟩⟩ = 0 ⟨⟨IA| LA = 0
Re

●●

●

●

●
●

Δ =
𝜅
2

Im

Eigenvalue of 
ℒ!

𝜌"/𝐼"

Each point is
𝑁#-fold degenerate
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Example: bipartite system H = HA ⊗HB

Flowchart

▶ Identifying L0 and L1

▶ Identifying the surviving modes

▶ Specifying the definition of the projector P

XR
s=m,n = ρ̄A ⊗ |bm⟩⟨bn| X L

s=m,n = IA ⊗ |bm⟩⟨bn| ⟨⟨X L
s |XR

r ⟩⟩ = δsr

Pρ =
N∑

m,n=1

⟨⟨X L
s=m,n|ρ⟩⟩XR

s=m,n =
N∑

m,n=1

ρ̄A ⊗ Πm︸︷︷︸
|bm⟩⟨bm|

trA(ρ)Πn = ρ̄A ⊗ trA(ρ)

Pρ = |0⟩⟨0| ⊗ trA(ρ)︸ ︷︷ ︸
ρB

ρB parametrizes the invariant subspace.
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Example: bipartite system H = HA ⊗HB

We remark: PL0ρ = |0⟩⟨0| ⊗ trA(LA ⊗ IBρ) = 0 =⇒ PL0 = 0

d

dt
Pρ(t) = |0⟩⟨0| ⊗ d

dt
ρB(t)

=
(
ϵPL1 + ϵ2

∫ +∞

0
ds eL0sQL1

)
|0⟩⟨0| ⊗ ρB(t) +O(ϵ3)

Reduced model of the dynamics on B

d

dt
ρB(t) = LBρB(t)− i

4g2ω

κ2 + 4ω2
[L†L, ρB(t)] +

4g2

κ+ 4ω2/κ
D[L]ρB(t)

Hamiltonian correction and inherited dissipation from A.
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Summary & Outlook

TCL master equations give alternative formulation of AE.

▶ TCL gains a geometric interpretation (reduced description of
the total dyanmics based on time-scale separation)

▶ AE gains a systematic way to make calculations

Application to any system with time-scale separation (c-QED,
dynamic nuclear polarization [A. Karabanov et al., PRL (2015)])

In prep. with Masaaki Tokieda

Time-Convolutionless Master Equation
Applied to Adiabatic Elimination
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Backup slides



Sketch of the theorem’s proof (1)

P(t) = [1− Σ(t)]−1P Σ(t) =

∫ t

0
dτ eQLQτQLPe−Lτ

1. Rewrite P(t) in terms of eLt [C. Timm, Phys. Rev. B (2008)]

eLtP[Q+ PeLtP]−1P

2. Express eLt in the eigenbasis of L
3. Show the existence of the projection P(∞)

▶ Image: invariant subspace ϵ > 0
▶ Kernel: subspace spanned by the fast relaxing modes ϵ = 0

4. With ∆(ϵ) ≈ ∆, show that

P(t) = P(∞) + (P(t)− P(∞)), P(t)− P(∞) ∝ e−∆t
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Sketch of the theorem’s proof (2)

P(∞)ρ(t) projects a state to the invariant subspace with ϵ > 0
(invariant w.r.t. L). It follows:

Q(∞)L(∞)P(∞) = 0

By definition Q(∞) = 1− P(∞)

=⇒ P(∞)LP(∞) = LP(∞)

which is equivalent to the invariance condition:

KTCLFTCL = LKTCL

where KTCL = P(∞)χR and FTCL = χ†
LLP(∞)χR correspond to

the AE maps, and satisfy the invariance condition.
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Derivation of TCL equation (higher orders)

From ρ(t) = Pρ(t) +Qρ(t) with the formal solution of Qρ(t) we
obtain:

ρ(t) = J (t)Qρ(0) + [1− Σ(t)]−1Pρ(t)

d

dt
Pρ(t) = PLJ (t)Qρ(0) + PL[1− Σ(t)]−1Pρ(t)

where we assumed that [P,L0] = 0

J (t) = [1− Σ(t)]−1eQLQtQ

Σ(t) = ϵ

∫ t

0
dτ eQLQτQL1Pe−Lτ .

We define:
P(t) = [1− Σ(t)]−1P



To be precise on the expansion in ϵ

[1− Σ(t)]−1 = 1 + ϵΣ1(t) + ϵ2Σ2(t) +O(ϵ3)

↓

PL[1− Σ(t)]−1P
= PL[1 + ϵΣ1(t) + ϵ2Σ2(t) +O(ϵ3)]P
= PL[1 + ϵΣ1(t)]P + ϵ2PLΣ2(t)P +O(ϵ3)

= PL[1 + ϵΣ1(t)]P + ϵ2PL0Σ2(t)P +O(ϵ3)

But, due to [P,L0] = 0, PL0Σ2(t) = 0 and that’s why

PL[1− Σ(t)]−1P = PL[1 + ϵΣ1(t)]P +O(ϵ3).



To be precise on the limit t → ∞

Up to the first order of ϵ, the limit limt→∞Σ(t) exists. But
including higher orders (third and higher), this limit diverges, while
limt→∞[1− Σ(t)]−1P exists.



Specifying the action of the projector P

In the example:

HB arbitrary system, dim(HB) = N, dim(T (HB)) = N2,
{|bm⟩}Nm=1 orthonormal basis.

XR
s=m,n = ρ̄A ⊗ |bm⟩⟨bn| X L

s=m,n = IA ⊗ |bm⟩⟨bn| ⟨⟨X L
s |XR

r ⟩⟩ = δsr

Pρ =
N∑

m,n=1

⟨⟨X L
s=m,n|ρ⟩⟩XR

s=m,n =
N∑

m,n=1

ρ̄A ⊗ Πm︸︷︷︸
|bm⟩⟨bm|

trA(ρ)Πn

= ρ̄A ⊗ trA(ρ)︸ ︷︷ ︸
ρB

ρB parametrizes the invariant subspace.



Explicit computation for the example

We remark: PL0ρ = ρ̄A ⊗ trA(LA ⊗ IBρ) = 0 =⇒ PL0 = 0

Therefore we obtain the projected time evolution as:

d

dt
Pρ(t) = P(L0 + ϵL1)P(ϵ)ρ(t) =

ϵPL1P(ϵ)ρ(t) ∼ϵ2

ϵPL1Pρ(t) + ϵ2
∫ t−t0

0
ds eL0sQL1Pρ(t)



Lindblad AE: Order by order expansion

K
(
Ls

)
= L

(
K
)

Substituting the asymptotic expansions of the maps

Ls(ρs) =
∞∑
n=0

ϵnLs,n(ρs), K(ρs) =
∞∑
n=0

ϵnKn(ρs)

We obtain at each order in ϵ a different invariance condition.

For ϵ = 0 we need to compute the steady state ρ̄ solution of
L0(ρ) = 0.



Sketch of the proof of the main result (1)

We choose P as projection on invariant manifold wrt L0.

P(t) = [1− Σ(t)]−1P

Σ(t) =

∫ t

0
dτ eQLQτQLPe−Lτ .

▶ We obtain the time integral of Σ(t)

▶ We recast the expression so that only terms with eL appear
(we get rid of stuff like eQLQt)

→ P(ϵ)(t) = [1− Σ(ϵ)(t)]−1P



Sketch of the proof of the main result (2)

(L0 − λ
(ϵ=0)
i ) |r (ϵ=0)

i ⟩⟩ = 0, ⟨⟨l (ϵ=0)
i | (L0 − λ

(ϵ=0)
i ) = 0,

(L − λ
(ϵ)
i ) |r (ϵ)i ⟩⟩ = 0, ⟨⟨l (ϵ)i | (L − λ

(ϵ)
i ) = 0.

In AE, we assume that the invariant subspaces with ϵ > 0 and
ϵ → 0 are smoothly connected: the gap in the spectrum stays large

enough for ϵ > 0: ∆(ϵ) = minf ,s Re(λ
(ϵ)
f − λ

(ϵ)
s ).

Then, when t ≫ [∆(ϵ)]−1, the trajectory is restricted to the

invariant subspace spanned by |r (ϵ)i ⟩⟩ = |r (ϵ=0)
i ⟩⟩+ |dri ⟩⟩.

We define the matrices M and N as Mss′ = ⟨⟨l (ϵ)s |r (ϵ=0)
s′ ⟩⟩ and

Nss′ = ⟨⟨l (ϵ=0)
s |r (ϵ)s′ ⟩⟩.



Sketch of the proof of the main result (3)

With all of these definitions we can rewrite P(t) as:

P(ϵ)(t) =
∑
sa,sb

eLt |r (ϵ=0)
sa ⟩⟩ [A(t)]−1

sasb
⟨⟨l (ϵ=0)

sb | ,

A(t)sasb = ⟨⟨l (ϵ=0)
sa | eLt |r (ϵ=0)

sb ⟩⟩ .

▶ We substitute eLt with its spectral decomposition in A(t)

▶ We express [A(t)]−1 in terms of the M, N matrices previously
defined, and we get some decay rates for the fast components.

... → P(ϵ) = lim
t→∞

P(t) =
∑
ss′

|r (ϵ)s ⟩⟩ [N−1]ss′ ⟨⟨l
(ϵ=0)
s′ | .

P(ϵ) is a projection. P(ϵ) |r (ϵ)s ⟩⟩ = |r (ϵ)s ⟩⟩: image → invariant

subspace ϵ > 0. P(ϵ) |r (ϵ=0)
f ⟩⟩ = 0: kernel → subspace spanned by

the fast relaxing modes with ϵ = 0.
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