Time-Convolutionless Master Equation Applied to Adiabatic Elimination

CANUM
Ile-de-Ré

Angela Riva

Quantic team, ENS-PSL, CNRS, Inria, Mines Paris, Université PSL

Masaaki Tokieda

Department of Chemistry, Graduate School of Science, Kyoto University

May 30, 2024

Model reduction for open quantum systems

$$
\mathcal{H}_{\mathrm{TOT}}=\mathcal{H} \otimes \mathcal{H}_{E}
$$

By tracing out the environment, an effective model of the open quantum system dynamics

$$
\frac{d}{d t} \rho=\mathcal{L} \rho
$$

Model reduction for open quantum systems

$$
\mathcal{H}=\mathcal{H}_{s} \otimes \mathcal{H}_{f}
$$

Similarly, we can obtain a further reduced model \vec{x} of the dynamics for a subsystem

$$
\frac{d}{d t} \rho=\mathcal{L} \rho \quad \rightarrow \quad \frac{d}{d t} \vec{x}=\mathcal{F} \vec{x}
$$

A reduced model of an OQS is useful

- To simulate the effective dynamics of a subsystem.

Computing the full Lindblad time evolution is hard:
if $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \ldots \Longrightarrow \operatorname{dim} \mathcal{H}=\operatorname{dim} \mathcal{H}_{1} \cdot \operatorname{dim} \mathcal{H}_{2} \cdot \ldots$

A reduced model of an OQS is useful

- To simulate the effective dynamics of a subsystem.

Computing the full Lindblad time evolution is hard:
if $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \ldots \Longrightarrow \operatorname{dim} \mathcal{H}=\operatorname{dim} \mathcal{H}_{1} \cdot \operatorname{dim} \mathcal{H}_{2} \cdot \ldots$

- To engineer a desired coupling to dissipative reservoir.

Bosonic codes (cat qubits, GKPs...) rely on the autonomous stabilization of the qubit encoding subspace.

Encoding a cat-qubit in a harmonic oscillator

Fig. from: R. Gautier, A. Sarlette, M. Mirrahimi, PRX Quantum 2022
$| \pm \alpha\rangle$ coherent states localised on opposite sides of the phase space

$$
\left|\mathcal{C}_{\alpha}^{ \pm}\right\rangle=(|+\alpha\rangle \pm|-\alpha\rangle) / \mathcal{N}_{ \pm}
$$

Local noise cannot bring one logical state to the other.

Engineering the cat-qubit confinement

Exponentially fast convergence to density operators defined on the codespace $\mathcal{H}_{\text {cat }}=\operatorname{span}\left\{\left|0_{L}\right\rangle,\left|1_{L}\right\rangle\right\}$ through dissipative dynamics:

$$
\frac{d \rho_{B}}{d t}=\kappa_{2} \mathcal{D}\left[b^{2}-\alpha^{2}\right] \rho_{B} \quad \bar{\rho}_{B}^{\infty}=\sum_{p, q= \pm} c_{p q}\left|\mathcal{C}_{\alpha}^{q}\right\rangle\left\langle\mathcal{C}_{\alpha}^{p}\right|
$$

Stabilization through dissipation engineering (buffer mode)

Engineering the cat-qubit confinement

Exponentially fast convergence to density operators defined on the codespace $\mathcal{H}_{\text {cat }}=\operatorname{span}\left\{\left|0_{L}\right\rangle,\left|1_{L}\right\rangle\right\}$ through dissipative dynamics:

$$
\frac{d \rho_{B}}{d t}=\kappa_{2} \mathcal{D}\left[b^{2}-\alpha^{2}\right] \rho_{B} \quad \bar{\rho}_{B}^{\infty}=\sum_{p, q= \pm} c_{p q}\left|\mathcal{C}_{\alpha}^{q}\right\rangle\left\langle\mathcal{C}_{\alpha}^{p}\right|
$$

Stabilization through dissipation engineering (buffer mode)

$$
\rho_{A B} \in \mathcal{T}\left(\mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{B}}\right) \rightarrow \rho_{B} \in \mathcal{T}\left(\mathcal{H}_{\mathcal{B}}\right)
$$

Engineering the cat-qubit confinement

Exponentially fast convergence to density operators defined on the codespace $\mathcal{H}_{\text {cat }}=\operatorname{span}\left\{\left|0_{L}\right\rangle,\left|1_{L}\right\rangle\right\}$ through dissipative dynamics:

$$
\frac{d \rho_{B}}{d t}=\kappa_{2} \mathcal{D}\left[b^{2}-\alpha^{2}\right] \rho_{B} \quad \bar{\rho}_{B}^{\infty}=\sum_{p, q= \pm} c_{p q}\left|\mathcal{C}_{\alpha}^{q}\right\rangle\left\langle\mathcal{C}_{\alpha}^{p}\right|
$$

Stabilization through dissipation engineering (buffer mode)

$$
\begin{gathered}
\rho_{A B} \in \mathcal{T}\left(\mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{B}}\right) \rightarrow \rho_{B} \in \mathcal{T}\left(\mathcal{H}_{\mathcal{B}}\right) \\
\frac{d \rho_{A B}}{d t}=-i g\left[a^{\dagger} \otimes\left(b^{2}-\alpha^{2}\right)+\text { h.c., } \rho_{A B}\right]+\kappa \mathcal{D}[a] \rho_{A B} \\
g / \kappa \ll 1 \quad \rightarrow \quad \frac{d \rho_{B}}{d t} \sim \frac{4 g^{2}}{\kappa} \mathcal{D}\left[b^{2}-\alpha^{2}\right] \rho_{B}
\end{gathered}
$$

Outline

- Goal: bridging the gap between two model reduction methods

1. Geometric approach to adiabatic elimination (AE)
2. Time convolutionless
(TCL) master equation

Outline

- Goal: bridging the gap between two model reduction methods

1. Geometric approach to adiabatic elimination (AE)
2. Time convolutionless
(TCL) master equation

- Result: TCL approach to AE

Outline

- Goal: bridging the gap between two model reduction methods

1. Geometric approach to adiabatic elimination (AE)
2. Time convolutionless
(TCL) master equation

- Result: TCL approach to AE
- Example: retrieving the cat qubit confinement

Outline

- Goal: bridging the gap between two model reduction methods

1. Geometric approach to adiabatic elimination (AE)
2. Time convolutionless
(TCL) master equation

- Result: TCL approach to AE
- Example: retrieving the cat qubit confinement
- Conclusion: discussion and outlook

1. Adiabatic elimination

$$
\frac{d}{d t} \rho(t)=\mathcal{L} \rho(t)=\left(\mathcal{L}_{0}+\epsilon \mathcal{L}_{1}\right) \rho(t) \quad \rho(t) \in T(\mathcal{H})
$$

- The spectrum of \mathcal{L}_{0} is gapped on the real axis

$$
\begin{aligned}
& \left.\left(\mathcal{L}_{0}-\lambda_{i}\right)\left|X_{i}^{R}\right\rangle\right\rangle=0 \\
& \left\langle\left\langle X_{i}^{L}\right|\left(\mathcal{L}_{0}-\lambda_{i}\right)=0\right.
\end{aligned}
$$

1. Adiabatic elimination

$$
\frac{d}{d t} \rho(t)=\mathcal{L} \rho(t)=\left(\mathcal{L}_{0}+\epsilon \mathcal{L}_{1}\right) \rho(t) \quad \rho(t) \in T(\mathcal{H})
$$

- The spectrum of \mathcal{L}_{0} is gapped on the real axis

$$
\begin{aligned}
& \left(\mathcal{L}_{0}-\lambda_{i}\right)\left|X_{i}^{R}\right\rangle=0 \\
& \left\langle\left\langle X_{i}^{L}\right|\left(\mathcal{L}_{0}-\lambda_{i}\right)=0\right.
\end{aligned}
$$

- For $0<\epsilon\left|\mathcal{L}_{1}\right| \ll \Delta$ the spectrum of \mathcal{L} is still gapped

1. Adiabatic elimination

$$
\frac{d}{d t} \rho(t)=\mathcal{L} \rho(t)=\left(\mathcal{L}_{0}+\epsilon \mathcal{L}_{1}\right) \rho(t) \quad \rho(t) \in T(\mathcal{H})
$$

Goal: reduced model $\vec{x}(t)$ of the dynamics on the invariant subspace.

1. Adiabatic elimination

$$
\frac{d}{d t} \rho(t)=\mathcal{L} \rho(t)=\left(\mathcal{L}_{0}+\epsilon \mathcal{L}_{1}\right) \rho(t) \quad \rho(t) \in T(\mathcal{H})
$$

Goal: reduced model $\vec{x}(t)$ of the dynamics on the invariant subspace.

$$
\begin{gathered}
\frac{d}{d t} \vec{x}(t)=\mathcal{F}^{(\epsilon)} \vec{x}(t) \\
\rho(t)=\mathcal{K}^{(\epsilon)} \vec{x}(t)
\end{gathered}
$$

1. Adiabatic elimination

$$
\frac{d}{d t} \rho(t)=\mathcal{L} \rho(t)=\left(\mathcal{L}_{0}+\epsilon \mathcal{L}_{1}\right) \rho(t) \quad \rho(t) \in T(\mathcal{H})
$$

Goal: reduced model $\vec{x}(t)$ of the dynamics on the invariant subspace.

$$
\begin{gathered}
\frac{d}{d t} \vec{x}(t)=\mathcal{F}^{(\epsilon)} \vec{x}(t) \\
\rho(t)=\mathcal{K}^{(\epsilon)} \vec{x}(t)
\end{gathered}
$$

Invariance condition: $\mathcal{K}^{(\epsilon)} \mathcal{F}^{(\epsilon)}=\mathcal{L} \mathcal{K}^{(\epsilon)}$
Rémi Azouit et al. 2016 IEEE 55th CDC

2. Time-convolutionless master equation

$$
\frac{d}{d t} \rho(t)=\mathcal{L} \rho(t)=\left(\mathcal{L}_{0}+\epsilon \mathcal{L}_{1}\right) \rho(t) \quad \rho(t) \in T(\mathcal{H})
$$

2. Time-convolutionless master equation

$$
\frac{d}{d t} \rho(t)=\mathcal{L} \rho(t)=\left(\mathcal{L}_{0}+\epsilon \mathcal{L}_{1}\right) \rho(t) \quad \rho(t) \in T(\mathcal{H})
$$

Projected dynamics $\mathcal{P}^{2}=\mathcal{P}, \mathcal{Q}=\mathcal{I}-\mathcal{P}, \mathcal{Q} \mathcal{P}=\mathcal{P} \mathcal{Q}=0$.

$$
\frac{d}{d t} \mathcal{P} \rho(t)=\mathcal{P} \mathcal{L}(\mathcal{P}+\mathcal{Q}) \rho(t) \quad \frac{d}{d t} \mathcal{Q} \rho(t)=\mathcal{Q} \mathcal{L}(\mathcal{P}+\mathcal{Q}) \rho(t)
$$

2. Time-convolutionless master equation

$$
\frac{d}{d t} \rho(t)=\mathcal{L} \rho(t)=\left(\mathcal{L}_{0}+\epsilon \mathcal{L}_{1}\right) \rho(t) \quad \rho(t) \in T(\mathcal{H})
$$

Projected dynamics $\mathcal{P}^{2}=\mathcal{P}, \mathcal{Q}=\mathcal{I}-\mathcal{P}, \mathcal{Q} \mathcal{P}=\mathcal{P} \mathcal{Q}=0$.

$$
\frac{d}{d t} \mathcal{P} \rho(t)=\mathcal{P} \mathcal{L}(\mathcal{P}+\mathcal{Q}) \rho(t) \quad \frac{d}{d t} \mathcal{Q} \rho(t)=\mathcal{Q} \mathcal{L}(\mathcal{P}+\mathcal{Q}) \rho(t)
$$

formal solution
$\rho(t)=\mathcal{P} \rho(t)+\overbrace{\mathcal{Q} \rho(t)} \rightarrow$ TCL master eq (exact, time local)

2. Time-convolutionless master equation

$$
\frac{d}{d t} \rho(t)=\mathcal{L} \rho(t)=\left(\mathcal{L}_{0}+\epsilon \mathcal{L}_{1}\right) \rho(t) \quad \rho(t) \in T(\mathcal{H})
$$

Projected dynamics $\mathcal{P}^{2}=\mathcal{P}, \mathcal{Q}=\mathcal{I}-\mathcal{P}, \mathcal{Q P}=\mathcal{P} \mathcal{Q}=0$.

$$
\frac{d}{d t} \mathcal{P} \rho(t)=\mathcal{P} \mathcal{L}(\mathcal{P}+\mathcal{Q}) \rho(t) \quad \frac{d}{d t} \mathcal{Q} \rho(t)=\mathcal{Q} \mathcal{L}(\mathcal{P}+\mathcal{Q}) \rho(t)
$$

formal solution
$\rho(t)=\mathcal{P} \rho(t)+\overbrace{\mathcal{Q} \rho(t)} \rightarrow$ TCL master eq (exact, time local)

$$
\left.\mathcal{P}=\sum_{s}\left|X_{s}^{R}\right\rangle\right\rangle\left\langle\left\langle X_{s}^{L}\right| \quad \mathcal{Q} \rho(0)=0\right.
$$

Breuer \& Petruccione, Open quantum systems theory (2004).

Projective formulation of adiabatic elimination

$$
\begin{aligned}
\rho(t) & =[1-\Sigma(t)]^{-1} \mathcal{P} \rho(t) \\
\frac{d}{d t} \mathcal{P} \rho(t) & =\mathcal{P} \mathcal{L}[1-\Sigma(t)]^{-1} \mathcal{P} \rho(t)
\end{aligned}
$$

Projective formulation of adiabatic elimination

$$
\begin{aligned}
\rho(t) & =[1-\Sigma(t)]^{-1} \mathcal{P} \rho(t) \\
\frac{d}{d t} \mathcal{P} \rho(t) & =\mathcal{P} \mathcal{L}[1-\Sigma(t)]^{-1} \mathcal{P} \rho(t)
\end{aligned}
$$

For simplicity, we consider $\Sigma(t)$ up to first order:

$$
\left[\mathcal{P}, \mathcal{L}_{0}\right]=0 \quad \rightarrow \quad \Sigma_{1}(t)=\epsilon \int_{0}^{t} d \tau e^{\mathcal{L}_{0} \tau} \mathcal{Q} \mathcal{L}_{1} e^{-\mathcal{L}_{0} \tau} \mathcal{P}+\mathcal{O}\left(\epsilon^{2}\right)
$$

Projective formulation of adiabatic elimination

$$
\begin{aligned}
\rho(t) & =\left[1+\Sigma_{1}(t)\right] \mathcal{P} \rho(t)+\mathcal{O}\left(\epsilon^{2}\right) \\
\frac{d}{d t} \mathcal{P} \rho(t) & =\mathcal{P} \mathcal{L}\left[1+\Sigma_{1}(t)\right] \mathcal{P} \rho(t)+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

For simplicity, we consider $\Sigma(t)$ up to first order:

$$
\left[\mathcal{P}, \mathcal{L}_{0}\right]=0 \quad \rightarrow \quad \Sigma_{1}(t)=\epsilon \int_{0}^{t} d \tau e^{\mathcal{L}_{0} \tau} \mathcal{Q} \mathcal{L}_{1} e^{-\mathcal{L}_{0} \tau} \mathcal{P}+\mathcal{O}\left(\epsilon^{2}\right)
$$

Projective formulation of adiabatic elimination

$$
\begin{aligned}
\rho(t) & =\left[1+\Sigma_{1}(t)\right] \mathcal{P} \rho(t)+\mathcal{O}\left(\epsilon^{2}\right) \\
\frac{d}{d t} \mathcal{P} \rho(t) & =\mathcal{P} \mathcal{L}\left[1+\Sigma_{1}(t)\right] \mathcal{P} \rho(t)+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

For simplicity, we consider $\Sigma(t)$ up to first order:

$$
\left[\mathcal{P}, \mathcal{L}_{0}\right]=0 \quad \rightarrow \quad \Sigma_{1}(t)=\epsilon \int_{0}^{t} d \tau e^{\mathcal{L}_{0} \tau} \mathcal{Q} \mathcal{L}_{1} e^{-\mathcal{L}_{0} \tau} \mathcal{P}+\mathcal{O}\left(\epsilon^{2}\right)
$$

After the fast relaxation phase, $t \gg \Delta^{-1}$, we expect

$$
\Sigma_{1}(t) \approx \Sigma_{1}=\lim _{t \rightarrow \infty} \Sigma_{1}(t)
$$

Projective formulation of adiabatic elimination

$$
\begin{aligned}
\rho(t) & =\left[1+\Sigma_{1}(t)\right] \mathcal{P} \rho(t)+\mathcal{O}\left(\epsilon^{2}\right) \\
\frac{d}{d t} \mathcal{P} \rho(t) & =\mathcal{P} \mathcal{L}\left[1+\Sigma_{1}(t)\right] \mathcal{P} \rho(t)+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

For simplicity, we consider $\Sigma(t)$ up to first order:

$$
\left[\mathcal{P}, \mathcal{L}_{0}\right]=0 \quad \rightarrow \quad \Sigma_{1}=\epsilon \int_{0}^{+\infty} d \tau e^{\mathcal{L}_{0} \tau} \mathcal{Q} \mathcal{L}_{1} e^{-\mathcal{L}_{0} \tau} \mathcal{P}+\mathcal{O}\left(\epsilon^{2}\right)
$$

After the fast relaxation phase, $t \gg \Delta^{-1}$, we expect

$$
\Sigma_{1}(t) \approx \Sigma_{1}=\lim _{t \rightarrow \infty} \Sigma_{1}(t)
$$

Showing the equivalence of AE and TCL

$$
\begin{aligned}
\rho(t) & =\left[1+\Sigma_{1}\right] \mathcal{P} \rho(t)+\mathcal{O}\left(\epsilon^{2}\right) \\
\frac{d}{d t} \mathcal{P} \rho(t) & =\mathcal{P} \mathcal{L}\left[1+\Sigma_{1}\right] \mathcal{P} \rho(t)+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

Showing the equivalence of AE and TCL

$$
\begin{aligned}
\rho(t) & =\left[1+\Sigma_{1}\right] \mathcal{P} \rho(t)+\mathcal{O}\left(\epsilon^{2}\right) \\
\frac{d}{d t} \mathcal{P} \rho(t) & =\mathcal{P} \mathcal{L}\left[1+\Sigma_{1}\right] \mathcal{P} \rho(t)+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

We parametrize the reduced dynamics $\vec{x}(t)$ on the invariant subspace of the slow modes $\left.\mathcal{P}|\rho(t)\rangle\rangle=\sum_{s} x_{s}(t)\left|X_{s}^{R}\right\rangle\right\rangle$:

$$
x_{s}(t)=\left\langle\left\langle X_{s}^{L} \mid \rho(t)\right\rangle\right\rangle
$$

Showing the equivalence of AE and TCL

$$
\begin{aligned}
\rho(t) & =\left[1+\Sigma_{1}\right] \chi_{R} \vec{x}(t)+\mathcal{O}\left(\epsilon^{2}\right) \\
\frac{d}{d t} \vec{x}(t) & =\chi_{L}^{\dagger} \mathcal{L}\left[1+\Sigma_{1}\right] \chi_{R} \vec{x}(t)+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

We parametrize the reduced dynamics $\vec{x}(t)$ on the invariant subspace of the slow modes $\left.\mathcal{P}|\rho(t)\rangle\rangle=\sum_{s} x_{s}(t)\left|X_{s}^{R}\right\rangle\right\rangle$:

$$
x_{s}(t)=\left\langle\left\langle X_{s}^{L} \mid \rho(t)\right\rangle\right\rangle
$$

Showing the equivalence of AE and TCL

$$
\begin{array}{rll}
\rho(t)=\left[1+\Sigma_{1}\right] \chi_{R} \vec{x}(t) & \rightarrow \quad \rho(t)=\mathcal{K}_{\mathrm{TCL}}^{(\epsilon)} \vec{x}(t) \\
\frac{d}{d t} \vec{x}(t)=\chi_{L}^{\dagger} \hat{L}\left[1+\Sigma_{1}\right] \chi_{R} \vec{x}(t) & \rightarrow \quad \frac{d}{d t} \vec{x}(t)=\mathcal{F}_{\mathrm{TCL}}^{(\epsilon)} \vec{x}(t)
\end{array}
$$

We parametrize the reduced dynamics $\vec{x}(t)$ on the invariant subspace of the slow modes $\left.\mathcal{P}|\rho(t)\rangle\rangle=\sum_{s} x_{s}(t)\left|X_{s}^{R}\right\rangle\right\rangle$:

$$
x_{s}(t)=\left\langle\left\langle X_{s}^{L} \mid \rho(t)\right\rangle\right\rangle
$$

TCL version of \mathcal{K} and \mathcal{F}

$$
\begin{aligned}
\rho(t) & =\left[1+\Sigma_{1}\right] \mathcal{P} \rho(t)+\mathcal{O}\left(\epsilon^{2}\right) \\
\frac{d}{d t} \mathcal{P} \rho(t) & =\mathcal{P} \mathcal{L}\left[1+\Sigma_{1}\right] \mathcal{P} \rho(t)+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

We define χ_{R} and χ_{L}^{\dagger} such that $\mathcal{P}=\chi_{R} \chi_{L}^{\dagger}, \chi_{L}^{\dagger} \chi_{R}=1$:
$\left.\left.\left.\left.\chi_{R}=\left[\left|X_{s=1}^{R}\right\rangle\right\rangle\left|X_{s=2}^{R}\right\rangle\right\rangle \cdots\right] \quad \chi_{L}^{\dagger}=\left[\left|X_{s=1}^{L}\right\rangle\right\rangle\left|X_{s=2}^{L}\right\rangle\right\rangle \cdots\right]^{\dagger}$

TCL version of \mathcal{K} and \mathcal{F}

$$
\begin{aligned}
\rho(t) & =[1+\Sigma] \chi_{R} \chi_{L}^{\dagger} \rho(t)+\mathcal{O}\left(\epsilon^{2}\right) \\
\frac{d}{d t} \chi_{R} \chi_{L}^{\dagger} \rho(t) & =\chi_{R} \chi_{L}^{\dagger} \mathcal{L}[1+\Sigma] \chi_{R} \chi_{L}^{\dagger} \rho(t)+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

We define χ_{R} and χ_{L}^{\dagger} such that $\mathcal{P}=\chi_{R} \chi_{L}^{\dagger}, \chi_{L}^{\dagger} \chi_{R}=1$:
$\left.\left.\left.\left.\chi_{R}=\left[\left|X_{s=1}^{R}\right\rangle\right\rangle\left|X_{s=2}^{R}\right\rangle\right\rangle \cdots\right] \quad \chi_{L}^{\dagger}=\left[\left|X_{s=1}^{L}\right\rangle\right\rangle\left|X_{s=2}^{L}\right\rangle\right\rangle \cdots\right]^{\dagger}$

TCL version of \mathcal{K} and \mathcal{F}

$$
\begin{aligned}
\rho(t) & =[1+\Sigma] \chi_{R} \chi_{L}^{\dagger} \rho(t)+\mathcal{O}\left(\epsilon^{2}\right) \\
\frac{d}{d t} \chi_{R} \chi_{L}^{\dagger} \rho(t) & =\chi_{R} \chi_{L}^{\dagger} \mathcal{L}[1+\Sigma] \chi_{R} \chi_{L}^{\dagger} \rho(t)+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

We define χ_{R} and χ_{L}^{\dagger} such that $\mathcal{P}=\chi_{R} \chi_{L}^{\dagger}, \chi_{L}^{\dagger} \chi_{R}=1$:
$\left.\left.\left.\left.\chi_{R}=\left[\left|X_{s=1}^{R}\right\rangle\right\rangle\left|X_{s=2}^{R}\right\rangle\right\rangle \cdots\right] \quad \chi_{L}^{\dagger}=\left[\left|X_{s=1}^{L}\right\rangle\right\rangle\left|X_{s=2}^{L}\right\rangle\right\rangle \cdots\right]^{\dagger}$
We choose a parametrization $\vec{x}(t)=\chi_{\llcorner }^{\dagger}|\rho(t)\rangle$.

TCL version of \mathcal{K} and \mathcal{F}

$$
\begin{aligned}
\rho(t) & =[1+\Sigma] \chi_{R} \chi_{L}^{\dagger} \rho(t)+\mathcal{O}\left(\epsilon^{2}\right) \\
\frac{d}{d t} \chi_{R} \chi_{L}^{\dagger} \rho(t) & =\chi_{R} \chi_{L}^{\dagger} \mathcal{L}[1+\Sigma] \chi_{R} \chi_{L}^{\dagger} \rho(t)+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

We define χ_{R} and χ_{L}^{\dagger} such that $\mathcal{P}=\chi_{R} \chi_{L}^{\dagger}, \chi_{L}^{\dagger} \chi_{R}=1$:
$\left.\left.\left.\left.\chi_{R}=\left[\left|X_{s=1}^{R}\right\rangle\right\rangle\left|X_{s=2}^{R}\right\rangle\right\rangle \cdots\right] \quad \chi_{L}^{\dagger}=\left[\left|X_{s=1}^{L}\right\rangle\right\rangle\left|X_{s=2}^{L}\right\rangle\right\rangle \cdots\right]^{\dagger}$
We choose a parametrization $\left.\vec{x}(t)=\chi_{L}^{\dagger}|\rho(t)\rangle\right\rangle$.

TCL version of \mathcal{K} and \mathcal{F}

$$
\begin{aligned}
\rho(t) & =[1+\Sigma] \chi_{R} \vec{x}(t)+\mathcal{O}\left(\epsilon^{2}\right) \\
\frac{d}{d t} \vec{x}(t) & =\chi_{L}^{\dagger} \mathcal{L}[1+\Sigma] \chi_{R} \vec{x}(t)+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

We define χ_{R} and χ_{L}^{\dagger} such that $\mathcal{P}=\chi_{R} \chi_{L}^{\dagger}, \chi_{L}^{\dagger} \chi_{R}=1$:
$\left.\left.\left.\left.\chi_{R}=\left[\left|X_{s=1}^{R}\right\rangle\right\rangle\left|X_{s=2}^{R}\right\rangle\right\rangle \cdots\right] \quad \chi_{L}^{\dagger}=\left[\left|X_{s=1}^{L}\right\rangle\right\rangle\left|X_{s=2}^{L}\right\rangle\right\rangle \cdots\right]^{\dagger}$
We choose a parametrization $\left.\vec{x}(t)=\chi_{L}^{\dagger}|\rho(t)\rangle\right\rangle$.

TCL version of \mathcal{K} and \mathcal{F}

$$
\begin{aligned}
\rho(t) & =[1+\Sigma] \chi_{R} \vec{x}(t)+\mathcal{O}\left(\epsilon^{2}\right) \\
\frac{d}{d t} \vec{x}(t) & =\chi_{L}^{\dagger} \mathcal{L}[1+\Sigma] \chi_{R} \vec{x}(t)+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

We define χ_{R} and χ_{L}^{\dagger} such that $\mathcal{P}=\chi_{R} \chi_{L}^{\dagger}, \chi_{L}^{\dagger} \chi_{R}=1$:
$\left.\left.\left.\left.\chi_{R}=\left[\left|X_{s=1}^{R}\right\rangle\right\rangle\left|X_{s=2}^{R}\right\rangle\right\rangle \cdots\right] \quad \chi_{L}^{\dagger}=\left[\left|X_{s=1}^{L}\right\rangle\right\rangle\left|X_{s=2}^{L}\right\rangle\right\rangle \cdots\right]^{\dagger}$
We choose a parametrization $\left.\vec{x}(t)=\chi_{L}^{\dagger}|\rho(t)\rangle\right\rangle$.
$\mathcal{K}_{\mathrm{TCL}}^{(\epsilon)}=[1+\Sigma] \chi_{R} \quad \mathcal{F}_{\mathrm{TCL}}^{(\epsilon)}=\chi_{L}^{\dagger} \mathcal{L}[1+\Sigma] \chi_{R} \quad$ correspond to AE!

Main result

Theorem. $\mathcal{K}_{\mathrm{TCL}}^{(\epsilon)}$ and $\mathcal{F}_{\mathrm{TCL}}^{(\epsilon)}$ satisfy the invariance condition:

$$
\mathcal{K}_{\mathrm{TCL}}^{(\epsilon)} \mathcal{F}_{\mathrm{TCL}}^{(\epsilon)}=\mathcal{L K}_{\mathrm{TCL}}^{(\epsilon)}+\mathcal{O}\left(\epsilon^{2}\right)
$$

Main result

Theorem. $\mathcal{K}_{\mathrm{TCL}}^{(\epsilon)}$ and $\mathcal{F}_{\mathrm{TCL}}^{(\epsilon)}$ satisfy the invariance condition:

$$
\mathcal{K}_{\mathrm{TCL}}^{(\epsilon)} \mathcal{F}_{\mathrm{TCL}}^{(\epsilon)}=\mathcal{L K}_{\mathrm{TCL}}^{(\epsilon)}+\mathcal{O}\left(\epsilon^{2}\right)
$$

At long times $t \gg \Delta^{-1}$, the dynamics are constrained on the invariant subspace with $\epsilon>0$, preserved by \mathcal{L}.

Main result

Theorem. $\mathcal{K}_{\mathrm{TCL}}^{(\epsilon)}$ and $\mathcal{F}_{\mathrm{TCL}}^{(\epsilon)}$ satisfy the invariance condition:

$$
\mathcal{K}_{\mathrm{TCL}}^{(\epsilon)} \mathcal{F}_{\mathrm{TCL}}^{(\epsilon)}=\mathcal{L} \mathcal{K}_{\mathrm{TCL}}^{(\epsilon)}
$$

At long times $t \gg \Delta^{-1}$, the dynamics are constrained on the invariant subspace with $\epsilon>0$, preserved by \mathcal{L}.

With similar arguments we can treat higher order terms:

Main result

Theorem. $\mathcal{K}_{\mathrm{TCL}}^{(\epsilon)}$ and $\mathcal{F}_{\mathrm{TCL}}^{(\epsilon)}$ satisfy the invariance condition:

$$
\mathcal{K}_{\mathrm{TCL}}^{(\epsilon)} \mathcal{F}_{\mathrm{TCL}}^{(\epsilon)}=\mathcal{L} \mathcal{K}_{\mathrm{TCL}}^{(\epsilon)}
$$

At long times $t \gg \Delta^{-1}$, the dynamics are constrained on the invariant subspace with $\epsilon>0$, preserved by \mathcal{L}.

With similar arguments we can treat higher order terms:
The theorem is proven up to infinite order in ϵ.

Example: bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

Flowchart

- Identifying \mathcal{L}_{0} and \mathcal{L}_{1}
- Identifying the surviving modes
- Specifying the definition of the projector \mathcal{P}

Example: bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

Flowchart

- Identifying \mathcal{L}_{0} and \mathcal{L}_{1}
- Identifying the surviving modes
- Specifying the definition of the projector \mathcal{P}

$$
\frac{d \rho}{d t}=\mathcal{L} \rho \quad \mathcal{L}=\underbrace{\mathcal{L}_{A} \otimes \mathcal{I}_{B}}_{\mathcal{L}_{0}}+\underbrace{\mathcal{L}_{B}+\mathcal{L}_{\text {int }}}_{\epsilon \mathcal{L}_{1}}
$$

$\mathcal{L}_{A} \bullet=-i \omega\left[a^{\dagger} a, \bullet\right]+\kappa \mathcal{D}[a] \bullet \quad \mathcal{H}_{A}$ damped harmonic oscillator $\mathcal{L}_{B} \bullet$ unspecified $\quad \mathcal{H}_{B}$ arbitrary system $\operatorname{dim} \mathcal{H}_{B}=N$ $\mathcal{L}_{\text {int }} \bullet=-i g\left[a^{\dagger} \otimes L+a \otimes L^{\dagger}, \bullet\right] \quad\left|\mathcal{L}_{B}\right|, g \ll \kappa$

Example: bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

Flowchart

- Identifying \mathcal{L}_{0} and \mathcal{L}_{1}
- Identifying the surviving modes
- Specifying the definition of the projector \mathcal{P}
$\mathcal{L}_{0}=\mathcal{L}_{A} \otimes \mathcal{I}_{B}$ is trivial on B.
$\left.\left.\mathcal{L}_{A} \| 0\right\rangle\langle 0 \mid\rangle\right\rangle=0 \quad\left\langle\left\langle I_{A}\right| \mathcal{L}_{A}=0\right.$

Each point is N^{2}-fold degenerate	
$\Delta=\frac{\kappa}{2}$	$\rho_{A} /$
	Re
igenvalue of	

Example: bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

Flowchart

- Identifying \mathcal{L}_{0} and \mathcal{L}_{1}
- Identifying the surviving modes
- Specifying the definition of the projector \mathcal{P}

$$
\begin{gathered}
X_{s=m, n}^{R}=\bar{\rho}_{A} \otimes\left|b_{m}\right\rangle\left\langle b_{n}\right| \quad X_{s=m, n}^{L}=I_{A} \otimes\left|b_{m}\right\rangle\left\langle b_{n}\right| \quad\left\langle\left\langle X_{s}^{L} \mid X_{r}^{R}\right\rangle\right\rangle=\delta_{s r} \\
\mathcal{P} \rho=\sum_{m, n=1}^{N}\left\langle\left\langle X_{s=m, n}^{L} \mid \rho\right\rangle\right\rangle X_{s=m, n}^{R}=\sum_{m, n=1}^{N} \bar{\rho}_{A} \otimes \underbrace{\Pi_{m}}_{\left|b_{m}\right\rangle\left\langle b_{m}\right|} \operatorname{tr}_{A}(\rho) \Pi_{n}=\bar{\rho}_{A} \otimes \operatorname{tr}_{A}(\rho)
\end{gathered}
$$

$\mathcal{P} \rho=|0\rangle\langle 0| \otimes \underbrace{\operatorname{tr}_{A}(\rho)}_{\rho_{B}} \quad \rho_{B}$ parametrizes the invariant subspace.

Example: bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

We remark: $\mathcal{P} \mathcal{L}_{0} \rho=|0\rangle\langle 0| \otimes \operatorname{tr}_{A}\left(\mathcal{L}_{A} \otimes \mathcal{I}_{B} \rho\right)=0 \Longrightarrow \mathcal{P} \mathcal{L}_{0}=0$

$$
\begin{gathered}
\frac{d}{d t} \mathcal{P} \rho(t)=|0\rangle\langle 0| \otimes \frac{d}{d t} \rho_{B}(t) \\
=\left(\epsilon \mathcal{P} \mathcal{L}_{1}+\epsilon^{2} \int_{0}^{+\infty} d s e^{\mathcal{L}_{0} s} \mathcal{Q} \mathcal{L}_{1}\right)|0\rangle\langle 0| \otimes \rho_{B}(t)+\mathcal{O}\left(\epsilon^{3}\right)
\end{gathered}
$$

Example: bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

We remark: $\mathcal{P} \mathcal{L}_{0} \rho=|0\rangle\langle 0| \otimes \operatorname{tr}_{A}\left(\mathcal{L}_{A} \otimes \mathcal{I}_{B} \rho\right)=0 \Longrightarrow \mathcal{P} \mathcal{L}_{0}=0$

$$
\begin{gathered}
\frac{d}{d t} \mathcal{P} \rho(t)=|0\rangle\langle 0| \otimes \frac{d}{d t} \rho_{B}(t) \\
=\left(\epsilon \mathcal{P} \mathcal{L}_{1}+\epsilon^{2} \int_{0}^{+\infty} d s e^{\mathcal{L}_{0} s} \mathcal{Q} \mathcal{L}_{1}\right)|0\rangle\langle 0| \otimes \rho_{B}(t)+\mathcal{O}\left(\epsilon^{3}\right)
\end{gathered}
$$

Reduced model of the dynamics on B
$\frac{d}{d t} \rho_{B}(t)=\mathcal{L}_{B} \rho_{B}(t)-i \frac{4 g^{2} \omega}{\kappa^{2}+4 \omega^{2}}\left[L^{\dagger} L, \rho_{B}(t)\right]+\frac{4 g^{2}}{\kappa+4 \omega^{2} / \kappa} \mathcal{D}[L] \rho_{B}(t)$

Example: bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

We remark: $\mathcal{P} \mathcal{L}_{0} \rho=|0\rangle\langle 0| \otimes \operatorname{tr}_{A}\left(\mathcal{L}_{A} \otimes \mathcal{I}_{B} \rho\right)=0 \Longrightarrow \mathcal{P} \mathcal{L}_{0}=0$

$$
\begin{gathered}
\frac{d}{d t} \mathcal{P} \rho(t)=|0\rangle\langle 0| \otimes \frac{d}{d t} \rho_{B}(t) \\
=\left(\epsilon \mathcal{P} \mathcal{L}_{1}+\epsilon^{2} \int_{0}^{+\infty} d s e^{\mathcal{L}_{0} s} \mathcal{Q} \mathcal{L}_{1}\right)|0\rangle\langle 0| \otimes \rho_{B}(t)+\mathcal{O}\left(\epsilon^{3}\right)
\end{gathered}
$$

Reduced model of the dynamics on B
$\frac{d}{d t} \rho_{B}(t)=\mathcal{L}_{B} \rho_{B}(t)-i \frac{4 g^{2} \omega}{\kappa^{2}+4 \omega^{2}}\left[L^{\dagger} L, \rho_{B}(t)\right]+\frac{4 g^{2}}{\kappa+4 \omega^{2} / \kappa} \mathcal{D}[L] \rho_{B}(t)$
Hamiltonian correction and inherited dissipation from A.

Summary \& Outlook

TCL master equations give alternative formulation of $A E$.

Summary \& Outlook

TCL master equations give alternative formulation of AE.

- TCL gains a geometric interpretation (reduced description of the total dyanmics based on time-scale separation)
- AE gains a systematic way to make calculations

Summary \& Outlook

TCL master equations give alternative formulation of $A E$.

- TCL gains a geometric interpretation (reduced description of the total dyanmics based on time-scale separation)
- AE gains a systematic way to make calculations

Application to any system with time-scale separation (c-QED, dynamic nuclear polarization [A. Karabanov et al., PRL (2015)])

Summary \& Outlook

TCL master equations give alternative formulation of $A E$.

- TCL gains a geometric interpretation (reduced description of the total dyanmics based on time-scale separation)
- AE gains a systematic way to make calculations

Application to any system with time-scale separation (c-QED, dynamic nuclear polarization [A. Karabanov et al., PRL (2015)])

In prep. with Masaaki Tokieda

Time-Convolutionless Master Equation
Applied to Adiabatic Elimination

Backup slides

Sketch of the theorem's proof (1)

$$
\mathcal{P}(t)=[1-\Sigma(t)]^{-1} \mathcal{P} \quad \Sigma(t)=\int_{0}^{t} d \tau e^{\mathcal{Q} \mathcal{L} \tau} \mathcal{Q L P} e^{-\mathcal{L} \tau}
$$

Sketch of the theorem's proof (1)

$$
\mathcal{P}(t)=[1-\Sigma(t)]^{-1} \mathcal{P} \quad \Sigma(t)=\int_{0}^{t} d \tau e^{\mathcal{Q} \mathcal{L} \tau} \mathcal{Q L P} e^{-\mathcal{L} \tau}
$$

1. Rewrite $\mathcal{P}(t)$ in terms of $e^{\mathcal{L} t}$ [C. Timm, Phys. Rev. B (2008)]

$$
e^{\mathcal{L} t} \mathcal{P}\left[\mathcal{Q}+\mathcal{P} e^{\mathcal{L} t} \mathcal{P}\right]^{-1} \mathcal{P}
$$

2. Express $e^{\mathcal{L} t}$ in the eigenbasis of \mathcal{L}

Sketch of the theorem's proof (1)

$$
\mathcal{P}(t)=[1-\Sigma(t)]^{-1} \mathcal{P} \quad \Sigma(t)=\int_{0}^{t} d \tau e^{\mathcal{Q} \mathcal{L} \tau} \mathcal{Q L P} e^{-\mathcal{L} \tau}
$$

1. Rewrite $\mathcal{P}(t)$ in terms of $e^{\mathcal{L} t}$ [C. Timm, Phys. Rev. B (2008)]

$$
e^{\mathcal{L} t} \mathcal{P}\left[\mathcal{Q}+\mathcal{P} e^{\mathcal{L} t} \mathcal{P}\right]^{-1} \mathcal{P}
$$

2. Express $e^{\mathcal{L} t}$ in the eigenbasis of \mathcal{L}
3. Show the existence of the projection $\mathcal{P}(\infty)$

Sketch of the theorem's proof (1)

$$
\mathcal{P}(t)=[1-\Sigma(t)]^{-1} \mathcal{P} \quad \Sigma(t)=\int_{0}^{t} d \tau e^{\mathcal{Q} \mathcal{L} \tau} \mathcal{Q L P} e^{-\mathcal{L} \tau}
$$

1. Rewrite $\mathcal{P}(t)$ in terms of $e^{\mathcal{L} t}$ [C. Timm, Phys. Rev. B (2008)]

$$
e^{\mathcal{L} t} \mathcal{P}\left[\mathcal{Q}+\mathcal{P} e^{\mathcal{L} t} \mathcal{P}\right]^{-1} \mathcal{P}
$$

2. Express $e^{\mathcal{L} t}$ in the eigenbasis of \mathcal{L}
3. Show the existence of the projection $\mathcal{P}(\infty)$

- Image: invariant subspace $\epsilon>0$

Sketch of the theorem's proof (1)

$$
\mathcal{P}(t)=[1-\Sigma(t)]^{-1} \mathcal{P} \quad \Sigma(t)=\int_{0}^{t} d \tau e^{\mathcal{Q} \mathcal{Q} \tau} \mathcal{Q L P} e^{-\mathcal{L} \tau}
$$

1. Rewrite $\mathcal{P}(t)$ in terms of $e^{\mathcal{L} t}$ [C. Timm, Phys. Rev. B (2008)]

$$
e^{\mathcal{L} t} \mathcal{P}\left[\mathcal{Q}+\mathcal{P} e^{\mathcal{L} t} \mathcal{P}\right]^{-1} \mathcal{P}
$$

2. Express $e^{\mathcal{L} t}$ in the eigenbasis of \mathcal{L}
3. Show the existence of the projection $\mathcal{P}(\infty)$

- Image: invariant subspace $\epsilon>0$
- Kernel: subspace spanned by the fast relaxing modes $\epsilon=0$

Sketch of the theorem's proof (1)

$$
\mathcal{P}(t)=[1-\Sigma(t)]^{-1} \mathcal{P} \quad \Sigma(t)=\int_{0}^{t} d \tau e^{\mathcal{Q} \mathcal{Q} \tau} \mathcal{Q L P} e^{-\mathcal{L} \tau}
$$

1. Rewrite $\mathcal{P}(t)$ in terms of $e^{\mathcal{L} t}$ [C. Timm, Phys. Rev. B (2008)]

$$
e^{\mathcal{L} t} \mathcal{P}\left[\mathcal{Q}+\mathcal{P} e^{\mathcal{L} t} \mathcal{P}\right]^{-1} \mathcal{P}
$$

2. Express $e^{\mathcal{L} t}$ in the eigenbasis of \mathcal{L}
3. Show the existence of the projection $\mathcal{P}(\infty)$

- Image: invariant subspace $\epsilon>0$
- Kernel: subspace spanned by the fast relaxing modes $\epsilon=0$

4. With $\Delta^{(\epsilon)} \approx \Delta$, show that

$$
\mathcal{P}(t)=\mathcal{P}(\infty)+(\mathcal{P}(t)-\mathcal{P}(\infty)), \quad \mathcal{P}(t)-\mathcal{P}(\infty) \propto e^{-\Delta t}
$$

Sketch of the theorem's proof (2)

$\mathcal{P}(\infty) \rho(t)$ projects a state to the invariant subspace with $\epsilon>0$ (invariant w.r.t. \mathcal{L}). It follows:

$$
\mathcal{Q}(\infty) \mathcal{L}(\infty) \mathcal{P}(\infty)=0
$$

Sketch of the theorem's proof (2)

$\mathcal{P}(\infty) \rho(t)$ projects a state to the invariant subspace with $\epsilon>0$ (invariant w.r.t. \mathcal{L}). It follows:

$$
\mathcal{Q}(\infty) \mathcal{L}(\infty) \mathcal{P}(\infty)=0
$$

By definition $\mathcal{Q}(\infty)=1-\mathcal{P}(\infty)$

$$
\Longrightarrow \mathcal{P}(\infty) \mathcal{L P}(\infty)=\mathcal{L P}(\infty)
$$

Sketch of the theorem's proof (2)

$\mathcal{P}(\infty) \rho(t)$ projects a state to the invariant subspace with $\epsilon>0$ (invariant w.r.t. \mathcal{L}). It follows:

$$
\mathcal{Q}(\infty) \mathcal{L}(\infty) \mathcal{P}(\infty)=0
$$

By definition $\mathcal{Q}(\infty)=1-\mathcal{P}(\infty)$

$$
\Longrightarrow \mathcal{P}(\infty) \mathcal{L P}(\infty)=\mathcal{L P}(\infty)
$$

which is equivalent to the invariance condition:

$$
\mathcal{K}_{\mathrm{TCL}} \mathcal{F}_{\mathrm{TCL}}=\mathcal{L}^{\mathrm{TCL}}
$$

where $\mathcal{K}_{\mathrm{TCL}}=\mathcal{P}(\infty) \chi_{R}$ and $\mathcal{F}_{\mathrm{TCL}}=\chi_{L}^{\dagger} \mathcal{L P}(\infty) \chi_{R}$ correspond to the $A E$ maps, and satisfy the invariance condition.

Derivation of TCL equation (higher orders)

From $\rho(t)=\mathcal{P} \rho(t)+\mathcal{Q} \rho(t)$ with the formal solution of $\mathcal{Q} \rho(t)$ we obtain:

$$
\begin{gathered}
\rho(t)=\mathcal{J}(t) \mathcal{Q} \rho(0)+[1-\Sigma(t)]^{-1} \mathcal{P} \rho(t) \\
\frac{d}{d t} \mathcal{P} \rho(t)=\mathcal{P} \mathcal{L} \mathcal{J}(t) \mathcal{Q} \rho(0)+\mathcal{P} \mathcal{L}[1-\Sigma(t)]^{-1} \mathcal{P} \rho(t)
\end{gathered}
$$

where we assumed that $\left[\mathcal{P}, \mathcal{L}_{0}\right]=0$

$$
\begin{gathered}
\mathcal{J}(t)=[1-\Sigma(t)]^{-1} e^{\mathcal{Q} \mathcal{L} t} \mathcal{Q} \\
\Sigma(t)=\epsilon \int_{0}^{t} d \tau e^{\mathcal{Q} \mathcal{L} \tau} \mathcal{Q} \mathcal{L}_{1} \mathcal{P} e^{-\mathcal{L} \tau} .
\end{gathered}
$$

We define:

$$
\mathcal{P}(t)=[1-\Sigma(t)]^{-1} \mathcal{P}
$$

To be precise on the expansion in ϵ

$$
\begin{aligned}
& {[1-\Sigma(t)]^{-1}=1+\epsilon \Sigma_{1}(t)+\epsilon^{2} \Sigma_{2}(t)+\mathcal{O}\left(\epsilon^{3}\right)} \\
& \downarrow \\
& \mathcal{P} \mathcal{L}[1-\Sigma(t)]^{-1} \mathcal{P} \\
& =\mathcal{P} \mathcal{L}\left[1+\epsilon \Sigma_{1}(t)+\epsilon^{2} \Sigma_{2}(t)+\mathcal{O}\left(\epsilon^{3}\right)\right] \mathcal{P} \\
& =\mathcal{P} \mathcal{L}\left[1+\epsilon \Sigma_{1}(t)\right] \mathcal{P}+\epsilon^{2} \mathcal{P} \mathcal{L} \Sigma_{2}(t) \mathcal{P}+\mathcal{O}\left(\epsilon^{3}\right) \\
& =\mathcal{P} \mathcal{L}\left[1+\epsilon \Sigma_{1}(t)\right] \mathcal{P}+\epsilon^{2} \mathcal{P} \mathcal{L}_{0} \Sigma_{2}(t) \mathcal{P}+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

But, due to $\left[\mathcal{P}, \mathcal{L}_{0}\right]=0, \mathcal{P} \mathcal{L}_{0} \Sigma_{2}(t)=0$ and that's why

$$
\mathcal{P} \mathcal{L}[1-\Sigma(t)]^{-1} \mathcal{P}=\mathcal{P} \mathcal{L}\left[1+\epsilon \Sigma_{1}(t)\right] \mathcal{P}+\mathcal{O}\left(\epsilon^{3}\right) .
$$

To be precise on the limit $t \rightarrow \infty$

Up to the first order of ϵ, the limit $\lim _{t \rightarrow \infty} \Sigma(t)$ exists. But including higher orders (third and higher), this limit diverges, while $\lim _{t \rightarrow \infty}[1-\Sigma(t)]^{-1} \mathcal{P}$ exists.

Specifying the action of the projector \mathcal{P}

In the example:
\mathcal{H}_{B} arbitrary system, $\operatorname{dim}\left(\mathcal{H}_{B}\right)=N, \operatorname{dim}\left(\mathcal{T}\left(\mathcal{H}_{B}\right)\right)=N^{2}$,
$\left\{\left|b_{m}\right\rangle\right\}_{m=1}^{N}$ orthonormal basis.

$$
\begin{aligned}
X_{s=m, n}^{R} & =\bar{\rho}_{A} \otimes\left|b_{m}\right\rangle\left\langle b_{n}\right| \quad X_{s=m, n}^{L}=I_{A} \otimes\left|b_{m}\right\rangle\left\langle b_{n}\right| \quad\left\langle\left\langle X_{s}^{L} \mid X_{r}^{R}\right\rangle\right\rangle=\delta_{s r} \\
\mathcal{P} \rho & =\sum_{m, n=1}^{N}\left\langle\left\langle X_{s=m, n}^{L} \mid \rho\right\rangle\right\rangle X_{s=m, n}^{R}=\sum_{m, n=1}^{N} \bar{\rho}_{A} \otimes \underbrace{\Pi_{m}}_{\left|b_{m}\right\rangle\left\langle b_{m}\right|} \operatorname{tr}_{A}(\rho) \Pi_{n}
\end{aligned}
$$

$=\bar{\rho}_{A} \otimes \underbrace{\operatorname{tr}_{A}(\rho)}_{\rho_{B}} \quad \rho_{B}$ parametrizes the invariant subspace.

Explicit computation for the example

We remark: $\mathcal{P} \mathcal{L}_{0} \rho=\bar{\rho}_{A} \otimes \operatorname{tr}_{A}\left(\mathcal{L}_{A} \otimes \mathcal{I}_{B} \rho\right)=0 \Longrightarrow \mathcal{P} \mathcal{L}_{0}=0$
Therefore we obtain the projected time evolution as:

$$
\begin{gathered}
\frac{d}{d t} \mathcal{P} \rho(t)=\mathcal{P}\left(\mathcal{L}_{0}+\epsilon \mathcal{L}_{1}\right) \mathcal{P}^{(\epsilon)} \rho(t)= \\
\epsilon \mathcal{P} \mathcal{L}_{1} \mathcal{P}^{(\epsilon)} \rho(t) \sim_{\epsilon^{2}} \\
\epsilon \mathcal{P} \mathcal{L}_{1} \mathcal{P} \rho(t)+\epsilon^{2} \int_{0}^{t-t_{0}} d s e^{\mathcal{L}_{0} s} \mathcal{Q} \mathcal{L}_{1} \mathcal{P} \rho(t)
\end{gathered}
$$

Lindblad AE: Order by order expansion

$$
\mathcal{K}\left(\mathcal{L}_{s}\right)=\mathcal{L}(\mathcal{K})
$$

Substituting the asymptotic expansions of the maps

$$
\mathcal{L}_{s}\left(\rho_{s}\right)=\sum_{n=0}^{\infty} \epsilon^{n} \mathcal{L}_{s, n}\left(\rho_{s}\right), \quad \mathcal{K}\left(\rho_{s}\right)=\sum_{n=0}^{\infty} \epsilon^{n} \mathcal{K}_{n}\left(\rho_{s}\right)
$$

We obtain at each order in ϵ a different invariance condition.
For $\epsilon=0$ we need to compute the steady state $\bar{\rho}$ solution of $\mathcal{L}_{0}(\rho)=0$.

Sketch of the proof of the main result (1)

We choose \mathcal{P} as projection on invariant manifold wrt \mathcal{L}_{0}.

$$
\begin{gathered}
\mathcal{P}(t)=[1-\Sigma(t)]^{-1} \mathcal{P} \\
\Sigma(t)=\int_{0}^{t} d \tau e^{\mathcal{Q} \mathcal{L} \tau} \mathcal{Q} \mathcal{L} \mathcal{P} e^{-\mathcal{L} \tau}
\end{gathered}
$$

- We obtain the time integral of $\Sigma(t)$
- We recast the expression so that only terms with $e^{\mathcal{L}}$ appear (we get rid of stuff like $e^{\mathcal{Q} \mathcal{L} t}$)

$$
\rightarrow \mathcal{P}^{(\epsilon)}(t)=\left[1-\Sigma^{(\epsilon)}(t)\right]^{-1} \mathcal{P}
$$

Sketch of the proof of the main result (2)

$$
\begin{gathered}
\left.\left(\mathcal{L}_{0}-\lambda_{i}^{(\epsilon=0)}\right)\left|r_{i}^{(\epsilon=0)}\right\rangle\right\rangle=0, \quad\left\langle\left\langle l_{i}^{(\epsilon=0)}\right|\left(\mathcal{L}_{0}-\lambda_{i}^{(\epsilon=0)}\right)=0,\right. \\
\left.\left(\mathcal{L}-\lambda_{i}^{(\epsilon)}\right)\left|r_{i}^{(\epsilon)}\right\rangle\right\rangle=0, \quad\left\langle\left\langle l_{i}^{(\epsilon)}\right|\left(\mathcal{L}-\lambda_{i}^{(\epsilon)}\right)=0 .\right.
\end{gathered}
$$

In AE, we assume that the invariant subspaces with $\epsilon>0$ and $\epsilon \rightarrow 0$ are smoothly connected: the gap in the spectrum stays large enough for $\epsilon>0$: $\Delta^{(\epsilon)}=\min _{f, s} \operatorname{Re}\left(\lambda_{f}^{(\epsilon)}-\lambda_{s}^{(\epsilon)}\right)$.

Then, when $t \gg\left[\Delta^{(\epsilon)}\right]^{-1}$, the trajectory is restricted to the invariant subspace spanned by $\left.\left.\left.\left|r_{i}^{(\epsilon)}\right\rangle\right\rangle=\left|r_{i}^{(\epsilon=0)}\right\rangle\right\rangle+\left|d r_{i}\right\rangle\right\rangle$.

We define the matrices M and N as $M_{s s^{\prime}}=\left\langle\left\langle l_{s}^{(\epsilon)} \mid r_{s^{\prime}}^{(\epsilon=0)}\right\rangle\right\rangle$ and $N_{s s^{\prime}}=\left\langle\left\langle l_{s}^{(\epsilon=0)} \mid r_{s^{\prime}}^{(\epsilon)}\right\rangle\right\rangle$.

Sketch of the proof of the main result (3)

With all of these definitions we can rewrite $\mathcal{P}(t)$ as:

$$
\begin{gathered}
\left.\mathcal{P}^{(\epsilon)}(t)=\sum_{s_{a}, s_{b}} e^{\mathcal{L} t}\left|r_{s_{a}}^{(\epsilon=0)}\right\rangle\right\rangle[A(t)]_{s_{a} s_{b}}^{-1}\left\langle\left\langle I_{s_{b}}^{(\epsilon=0)}\right|,\right. \\
\left.A(t)_{s_{a} s_{b}}=\left\langle\left\langle l_{s_{a}}^{(\epsilon \epsilon)}\right| e^{\mathcal{L} t} \mid r_{s_{b}}^{(\epsilon \epsilon)}\right\rangle\right\rangle .
\end{gathered}
$$

- We substitute $e^{\mathcal{L} t}$ with its spectral decomposition in $A(t)$
- We express $[A(t)]^{-1}$ in terms of the M, N matrices previously defined, and we get some decay rates for the fast components.

$$
\left.\cdots \quad \rightarrow \quad \mathcal{P}^{(\epsilon)}=\lim _{t \rightarrow \infty} \mathcal{P}(t)=\sum_{s s^{\prime}}\left|r_{s}^{(\epsilon)}\right\rangle\right\rangle\left[N^{-1}\right]_{s s^{\prime}}\left\langle\left\langle l_{s^{\prime}}^{(\epsilon=0)}\right|\right.
$$

$\mathcal{P}^{(\epsilon)}$ is a projection. $\left.\left.\mathcal{P}^{(\epsilon)}\left|r_{s}^{(\epsilon)}\right\rangle\right\rangle=\left|r_{s}^{(\epsilon)}\right\rangle\right\rangle$: image \rightarrow invariant subspace $\left.\epsilon>0 . \mathcal{P}^{(\epsilon)}\left|r_{f}^{(\epsilon=0)}\right\rangle\right\rangle=0$: kernel \rightarrow subspace spanned by the fast relaxing modes with $\epsilon=0$.

