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Model reduction for open quantum systems

Hror=H O HE

By tracing out the environment,
an effective model of the open
quantum system dynamics
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Model reduction for open quantum systems

H:%s®%f

Similarly, we can obtain a
further reduced model X of
the dynamics for a subsystem
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A reduced model of an OQS is useful

» To simulate the effective dynamics of a subsystem.
Computing the full Lindblad time evolution is hard:
fFH=H19H, ®.. — dmH =dimH; -dimH> - ...



A reduced model of an OQS is useful

» To simulate the effective dynamics of a subsystem.
Computing the full Lindblad time evolution is hard:
fFH=H19H, ®.. — dmH =dimH; -dimH> - ...

» To engineer a desired coupling to dissipative reservoir.

Bosonic codes (cat qubits, GKPs...) rely on the autonomous
stabilization of the qubit encoding subspace.



Encoding a cat-qubit in a harmonic oscillator
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Fig. from: R. Gautier, A. Sarlette, M. Mirrahimi, PRX
Quantum 2022

Cochrane et al., PRA 1999

|£a) coherent states localised on
opposite sides of the phase space

€)= (I+a) £ [~a)) /Ny

Local noise cannot bring one
logical state to the other.



Engineering the cat-qubit confinement

Exponentially fast convergence to density operators defined on the
codespace Hcat = span{|0.),|1;)} through dissipative dynamics:
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Stabilization through dissipation engineering (buffer mode)
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Engineering the cat-qubit confinement

Exponentially fast convergence to density operators defined on the
codespace Hcat = span{|0.),|1;)} through dissipative dynamics:

de ~00
= ko D[b? — &?|pp pPB = Z Cpq [CINCE
p,q=%

Stabilization through dissipation engineering (buffer mode)

pag € T(Ha®Hp) — ps € T(Hn)

d
% = —ig[a' ® (b* — o®) + h.c., pag] + kD[a]pas

dps 4g2 2 2
1 - —— ~ =2D[b” —
g/r < p - [ alps

M. Mirrahimi et al., New J. Phys 2014
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1. Geometric approach to 2. Time convolutionless
adiabatic elimination (AE) (TCL) master equation
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» Goal: bridging the gap between two model reduction methods

1. Geometric approach to 2. Time convolutionless
adiabatic elimination (AE) (TCL) master equation

» Result: TCL approach to AE

» Example: retrieving the cat qubit confinement

» Conclusion: discussion and outlook



1. Adiabatic elimination

%p(t) = Lp(t) = (Lo+eLr)p(t)  p(t) € T(H)

» The spectrum of Ly is gapped on the real axis

Spectrum of £, Imaginary part
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» For 0 < €|L1| < A the spectrum of L is still gapped



1. Adiabatic elimination

d
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1. Adiabatic elimination

d

2P0 =Lp(t) = (Lo+eLa)o(t)  p(t) € T(H)

t = 0: initial time

Short-time
(t=aY

of the dynamics on the
R Invariant invariant subspace.
I~ subspace
! d
—x(t) = FlOX(t
.4 V 7 X(t) x(t)

Long-time

(t>a™ p(t) = K©OX(¢)

Goal: reduced model x(t)

Invariance condition: (9 F(9) = £xc(9)

Rémi Azouit et al. 2016 IEEE 55th CDC
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2. Time-convolutionless master equation

d

2P0 =Lp(t) = (Lo+eLa)o(t)  p(t) € T(H)

Projected dynamics P> =P, Q=7 - P, QP = PQ = 0.

%pmo:¢ﬂp+@mn %QMOZQHP+QWW

formal solution

—~=
p(t) = Pp(t)+ Qp(t) — TCL master eq (exact, time local)

P =) IXENxEH Qp(0) =0

Breuer & Petruccione, Open quantum systems theory (2004).
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9 py) = PE[1+ B (0] Po6)+ OF)

For simplicity, we consider ¥(t) up to first order:
“+oo
[P, Lo] =0 — ¥;= e/ d7 5T QL1 e HTP 4+ O(e?)
0

After the fast relaxation phase, t > A~1, we expect

Zl(l’) ~Y= limt_le(t)
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Showing the equivalence of AE and TCL

p(t) = [L+ZTa]xrx(t) — p(t) =K TCL X(t)
d

d_ _ - O -
A1) = XL+ T xRx() - X(E) = FEY R(t)
dt dt
We parametrize the reduced dynamics Specim of 4 maginary part
X(t) on the invariant subspace of the ‘\‘.\‘
slow modes P [p(t)) = >, xs(t) [ XF): .

xs(t) = (X 1p(t)) )



TCL version of £ and F
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TCL version of £ and F
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TCL version of £ and F

p(t) = [1+ Z|xrX(t) + O(€?)

%;(t) = X[ L[1 4+ 2] xrX(t) + O(3)

We define xr and XTL such that P = XRXI: x],L_XR =1

Xr = [IXE) IXEL) -] xb = [IXea) IX) -]

We choose a parametrization X(t) = XJ{ Ip(t))).

IC(T%_ =[1+X]xr ]:'E'EC)L = XTL[,[l +X|xr correspond to AE!
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Main result

Theorem. IC-(F%L and .F-E-GC)L satisfy the invariance condition:

IC'(I'E%L]: 'E'CC)L = ‘C’C'(I'E()ZL

At long times t > A™1, the dynamics are constrained on the
invariant subspace with € > 0, preserved by L.

With similar arguments we can treat higher order terms:

The theorem is proven up to infinite order in e.
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Example: bipartite system H = H, ® Hp

Flowchart
» Identifying Lo and £;
» Identifying the surviving modes

» Specifying the definition of the projector P

d
P rp  L=La®Tg+Ls+ Lin
dt —_— ————
Lo el
Lpe = —iw[a'a, 8] + kD[a]®  H, damped harmonic oscillator
Lp e unspecified Hp arbitrary system dimHg = N

Linve=—iglad @ L+ax Ll o] |Lpl,g<r



Example: bipartite system H = H, ® Hp

Flowchart
» l|dentifying Lo and £
» Identifying the surviving modes

» Specifying the definition of the projector P

Each point is Im
L N?2-fold degenerate
Lo =La®Ig is trivial on B. . A= K
" 2 palla
. Re
La][OXO[) =0 ((la] La=0 .

Eigenvalue of

Lo




Example: bipartite system H = H, ® Hp

Flowchart
» l|dentifying Lo and £

» Identifying the surviving modes

» Specifying the definition of the projector P

XsR:m,n =pAa® ‘b >< n| XsL m,n — =h® |bm><bn| <<X5L|XrR>> = Ogr

N
Pp = Z << =m, n|p s m,n — Z pA ® rl,,-, trA(p)rIn = /_)A ® trA(p)
m,n=1 m,n=1

| 6m ) bm]

Pp =10X0| @ tra(p) ps parametrizes the invariant subspace.
N——

PB
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S Polt) = 0¥0] @ & pi(1)

+
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0

Reduced model of the dynamics on B

2

[LL. s () + e DlLps ()

d . 4g%w

_ t) = _j__° =
dth() Leps(t) ’/{2—1—4w2



Example: bipartite system H = H, ® Hp

We remark: PLop = |0)}0] @ tra(La®@Zgp) =0 = PL;=0

S Polt) = 0¥0] @ & pi(1)

+oo
= (ePe1+ / ds €£*0L1 ) [0)0] ® pi () + O()
0

Reduced model of the dynamics on B

4g2

K+ 4w? /K

d . 4g%w

Eﬂs(t) = Lgps(t) — 'm[LTL, pe(t)] + DIL]ps(t)

Hamiltonian correction and inherited dissipation from A.
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» AE gains a systematic way to make calculations

Application to any system with time-scale separation (c-QED,
dynamic nuclear polarization [A. Karabanov et al., PRL (2015)])

In prep. with Masaaki Tokieda

Time-Convolutionless Master Equation
Applied to Adiabatic Elimination
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Sketch of the theorem’s proof (1)

P(t)=[1-X()]'P ¥ (t) = /Ot dr eQLOT QP LT

1. Rewrite P(t) in terms of et [C. Timm, Phys. Rev. B (2008)]

e“'P[Q + PP IP

N

. Express e“t in the eigenbasis of £
3. Show the existence of the projection P ()

» Image: invariant subspace € > 0
» Kernel: subspace spanned by the fast relaxing modes ¢ = 0

. With A ~ A, show that

o



Sketch of the theorem’s proof (2)

P(c0)p(t) projects a state to the invariant subspace with € > 0
(invariant w.r.t. £). It follows:

Q(00)L(00)P(0) =0
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Sketch of the theorem’s proof (2)

P(c0)p(t) projects a state to the invariant subspace with € > 0
(invariant w.r.t. £). It follows:

Q(o0)L(00)P(0) =0
By definition Q(o0) =1 — P(o0)
= P(00)LP(c0) = LP(0)
which is equivalent to the invariance condition:
KreLFrer = LEycL

where K¢ = P(o0)xr and FrcL = XTL/JP(OO)XR correspond to
the AE maps, and satisfy the invariance condition.



Derivation of TCL equation (higher orders)

From p(t) = Pp(t) + Qp(t) with the formal solution of Qp(t) we
obtain:

p(t) = T (£)Qp(0) + [1 — T(1)] " Pp(t)
%Pp(t) =PLI(t)Qp(0) + PL[L — Z(t)] *Pp(t)
where we assumed that [P, Lo] =0

J(t) = [1 - Z(1)]e¥2Q

t
Y(t)=¢ / dr LT QL Pe 7.
0

We define:
P(t) = [1 - S(1)] P



To be precise on the expansion in ¢

[1—S(t)] =14 eXi(t) + €2Xa(t) + O()
!
PL[—X(t)] 1P
= PL[L + eT1(t) + ETa(t) + O(3)]P
= PL[L+ X1 (D)]P + EPLIH(t)P + O(e3)
= PLI + eZ1(1)]P + EPLT2(t)P + O(3)
But, due to [P, Lo] =0, PLoX2(t) =0 and that's why

PLIL - Z()] P = PL[L + eZ1(t)]P + O(e3).



To be precise on the limit t — oo

Up to the first order of ¢, the limit lim;_,o, X(t) exists. But
including higher orders (third and higher), this limit diverges, while
lims—oo[l — Z(t)] 1P exists.



Specifying the action of the projector P

In the example:
Hp arbitrary system, dim(Hg) = N, dim(T(Hg)) = N2,

{|bm)}N_, orthonormal basis.

XsR:m,n =pA® |bm><bﬂ’ XsL m,n — la® ’bm><bn’ <<X5L’XrR>> = s
N N

Pp= Z << mn’p» s m,n — Z pA® T trA(p)rIn
;=1 m,n=1 | b )b

= pa@tra(p) pp parametrizes the invariant subspace.
——

PB



Explicit computation for the example

We remark: PLop = paQtra(La®ZIgp) =0 = PLy=0

Therefore we obtain the projected time evolution as:

d

2P0 = P(Lo + eL1)P1p(t) =
€PL1PEp(t) ~e

t—to
ePL1Pp(t) + ¢ /0 ds e“0° QL1 Pp(t)



Lindblad AE: Order by order expansion

Substituting the asymptotic expansions of the maps

Ls(ps) = ZGHES,n(PS)7 K(ps) = Ze"}Cn(ps)
n=0 n=0

We obtain at each order in ¢ a different invariance condition.

For ¢ = 0 we need to compute the steady state p solution of

Lo(p) =0.



Sketch of the proof of the main result (1)

We choose P as projection on invariant manifold wrt L.

P(t) =[1-X(t)]'P

t
Z(t):/ dr eLTQLPe LT,
0

» \We obtain the time integral of ¥(t)

> We recast the expression so that only terms with e“ appear
(we get rid of stuff like e242)

= PO(t) = [1 -2 'P



Sketch of the proof of the main result (2)

(Lo = AN =Dy =0, (1Y) (Lo - A\=Y) =,

(£ =AY =0, (9L -2\ =0

In AE, we assume that the invariant subspaces with ¢ > 0 and
€ — 0 are smoothly connected: the gap in the spectrum stays large
enough for € > 0: A9 = miny Re()\ff) — AS)).

Then, when t > [A()]~1 the trajectory is restricted to the
invariant subspace spanned by \ri(e))) = \r,-(E:O)» + |dri)).

We define the matrices M and N as Mgy = <</§E)|r£,€:0)>> and
Newr = (H1r ).



Sketch of the proof of the main result (3)

With all of these definitions we can rewrite P(t) as

=" LM (AL, (),

Sa,Sp

A(t)s,s, = (0 517

> We substitute e“t with its spectral decomposition in A(t)

» We express [A(t)]~! in terms of the M, N matrices previously
defined, and we get some decay rates for the fast components.

() — — 6) 1 =0)
- P = tlﬁgop t) = Z,‘r ) [N s << s/ |

P is a projection. P(¢) |r_§€))) = \r_gE)»: image — invariant
subspace ¢ > 0. PO \r;620)>> = 0: kernel — subspace spanned by
the fast relaxing modes with € = 0.
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