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Multiscale models

Our study focuses on the multi-scale reaction diffusion equation with highly oscillatory

coefficients. One possible application is to model the neutron flux in a nuclear reactor core

whose microstructure is heterogeneous.

Two settings are interesting for the reaction diffusion equation: the time-dependent setting

and the associated eigenvalue problem. We focus here on the latter.

⇒ Our goal is to develop a Multi-scale Finite Element Method, to solve this

eigenvalue problem numerically.
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Multiscale models

We seek a numerical approximation of the first eigencouple (uε, λε) of the reaction-diffusion

problem:

1

ε2
σεuε − div (Aε∇uε) =

λε

ε2
uε in Ω, uε = 0 on ∂Ω

Aε and σε vary on a small scale ε

Finite element method (e.g. P1)

• Solution on a coarse mesh is wrong

even on the macroscopic scale

• We would need a very fine mesh

to get an accurate solution:

prohibitively computationally

expensive

We could use the homogenization theory in a periodic framework, but we do not want to

restrict ourselves to this framework. 2



MsFEM

Multiscale Finite Element Method – MsFEM (Hou and Wu 1997)

• We discretize our domain Ω using a coarse mesh TH .

Each element of that coarse mesh is itself discretized

on a fine mesh (H > ε and h ≪ ε).

• Instead of using P1 basis functions, we associate to

each node i of the coarse mesh TH , a well adapted

basis function ϕεi .

• The basis functions ϕεi are computed off-line by

solving local problems posed on each element of the

coarse mesh (using the fine mesh discretization).
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MsFEM

Multiscale Finite Element Method – MsFEM (Hou and Wu 1997)

1. Offline stage: compute local basis functions (expensive)

Multiscale basis functions:

∀K ∈ TH ,

{
F ε(ϕεi ) = 0 in K

+Boundary conditions on ∂K

where F ε is the operator of local problems we have to define.

2. Online stage: one coarse global problem (inexpensive)

Variational Formulation: Find uεH ∈ V ε
H = span

{
ϕεj

}
, λεH ∈ R

s.t. ∀ϕεi :

1

ε2

∫
Ω

σεuεHϕ
ε
i +

∫
Ω

Aε∇uεH · ∇ϕεi =
λεH
ε2

∫
Ω

uεHϕ
ε
i
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Homogenization

The delicate task lies in finding the adequate operator F ε to use in the local problems. We

make partial use of homogenization theory in a periodic framework to guide our intuition.

In this periodic framework, we therefore seek the first eigencouple (uε, λε) of:

1

ε2
σ
(x
ε

)
uε − div

(
A
(x
ε

)
∇uε

)
=
λε

ε2
uε in Ω, uε = 0 on ∂Ω

where A and σ are periodic functions.
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Homogenization

Theorem 1 (G. Allaire, Y. Capdeboscq, 2000)

Let (ψ(y), λ∞) be the first eigencouple of the cell problem:

σ(y)ψ(y)− div (A(y)∇ψ(y)) = λ∞ψ(y) in Y , y 7→ ψ(y) Y -periodic

Then,

uε(x) = v(x)ψ
(x
ε

)
+ o(1)

and

λε = λ∞ + O(ε2)

(v , ν) is the first eigencouple of the homogenized problem:

− div (A∗∇v) = νv in Ω, v = 0 on ∂Ω (1)

where A∗ is the constant homogenized matrix, depending only on the coefficients A and σ.
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Preliminary MsFEM method

uε(x) = v(x)ψ
(x
ε

)
+ o(1)

The basis functions have to encode the microscopic behaviour of the solution.

• As a preliminary step, we first assume we know the eigenfunction ψ (we

compute it off-line on a fine mesh).

• This function ψ is then used to construct the basis functions ϕε,ψi .

Variational FormulationF ε

uε,ψH

Solution of

global

problem

Construction

of

basis functions

ϕε,ψiψ
( ·
ε

)
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Preliminary MsFEM method: Construction of basis functions

We seek the first eigencouple (uε, λε) of the problem:

1

ε2
σ
(x
ε

)
uε − div

(
A
(x
ε

)
∇uε

)
=
λε

ε2
uε in Ω, uε = 0 on ∂Ω

where A and σ are periodic functions.

With the change of variables vε =
uε

ψ( ·
ε )

, we get a generalized purely diffusive eigenvalue

problem:

− div
(
ψ2

(x
ε

)
A
(x
ε

)
∇vε

)
=
νε

ε2
ψ2

(x
ε

)
vε in Ω, vε = 0 sur ∂Ω

We can solve this problem with the MsFEM-lin basis functions χεi :

∀K ∈ TH ,

−div
(
ψ2

( ·
ε

)
A
( ·
ε

)
∇χε,ψi

)
= 0 in K

χε,ψi = χP1

i on ∂K

We then use for the initial problem the basis functions ϕε,ψi = χε,ψi ψ(
·
ε
) .
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Preliminary MsFEM method: Numerical results

A(x , y) = 6+ 5 cos (2π(x + 2y)) sin (2π(x − y)) σ(x , y) = 20 (2+ cos (2π(x − 2y)) sin (2π(x − y)))

We compute on a fine mesh Th a

reference solution uε
ref with the P1 Finite

Element Method. We define the relative

H1 error as:

∥uεnum − uεref ∥H1(Ω)

∥uεref ∥H1(Ω)

• The P1-method error confirms the multiscale character of the problem.

• The preliminary MsFEM method gives a much better approximation of the solution.

⇒ We will now try to obtain results as accurate as those of this preliminary

method without the a priori knowledge of the function ψ. 9



Actual numerical approach: MsFEM with oversampling

K

SK

∂Ω

We now need to find a proxy for ψ(·/ε):

For each element K of the coarse

mesh TH , we construct a

square-shaped oversampling patch

SK.

We compute on the fine mesh Th the first eigencouple (ψ̃εSK , λ̃
ε
SK
) of the problem on SK:

1

ε2
σεψ̃εSK

− div
(
Aε∇ψ̃εSK

)
=
λεSK

ε2
ψ̃εSK

in SK, x 7→ ψ̃εSK
SK-periodic

We then define ∀K ∈ TH : ψ̃
ε
K = ψ̃εSK |K 10



Actual numerical approach: MsFEM with oversampling

We are aiming at (and we indeed numerically observe that): ψ̃εK (x) ≈ ψ( x
ε
) on K .

We then use the same construction of basis functions as in the preliminary method, but with

ψ̃ε = {ψ̃εK}K∈TH
instead of ψ( ·

ε ):

Variational FormulationF ε

uε,ψ̃
ε

H

Solution of

global problem

Construction of

basis functions ϕε,ψ̃
ε

iψ̃ε
( ·
ε

)
⇒ This MsFEM-with-oversampling method does not rely on the periodicity of

the problem.
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MsFEM with oversampling: construction

Denote ψ̃ε the function such that: ψ̃ε|K = ψ̃εK .

• From the function ψ̃ε, construct the MsFEM-lin basis functions χε,ψ̃
ε

i :

∀K ∈ TH ,

−div
(
(ψ̃ε)

2
Aε∇χε,ψ̃

ε

i

)
= 0 in K

χε,ψ̃
ε

i = χP1

i on ∂K

• Therefore, for the initial problem, we use the basis functions ϕε,ψ̃
ε

i = χε,ψ̃
ε

i ψ̃ε .
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Actual numerical approach: MsFEM with oversampling

A(x , y) = 6 + 5 cos (2π(x + 2y)) sin (2π(x − y)) σ(x , y) = 20 (2 + cos (2π(x − 2y)) sin (2π(x − y)))
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Multi-query contexts

MsFEM (as any multiscale numerical approach) is beneficial in multi-query problems. Here, the

multi-query context comes:

� In the time-dependent setting, from the fact that we consider several time steps.

� For the eigenproblem, from the fact that we can consider several eigencouples (and not

only the first one).

� For the eigenproblem, with a spatial recombination of the diffusion and reaction

coefficients.
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Multi-query context: consideration of several eigencouples

We can seek a numerical approximation of other eigencouples (uε,m, λε,m) of the

reaction-diffusion problem:

1

ε2
σεuε,m − div (Aε∇uε,m) =

λε,m

ε2
uε,m in Ω, uε,m = 0 on ∂Ω

where uε,m is the eigenvector associated to the m-th eigenvalue λε,m.

We have actually the following homogenization result (in the periodic setting):

uε,m(x) = vm(x)ψ
(x
ε

)
+ o(1)

where (vm, νm) is the m-th eigencouple of the homogenized problem:

− div (A∗∇v) = νv in Ω, v = 0 on ∂Ω (2)
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Multi-query context: consideration of several eigencouples

• The first eigenvalue is simple.

• Eigenvectors uε,1 and uε,2 are

associated to the same

double eigenvalue.

• The eigenvector uε,3 is

associated to a simple

eigenvalue.
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Multi-query context: consideration of several eigencouples
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Multi-query context: consideration of several eigencouples
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Multi-query context: consideration of several eigencouples
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Multi-query context: consideration of several eigencouples
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Multi-query context: consideration of several eigencouples
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Multi-query context: spatial recombination of the coefficients

Assemblies are reordered to obtain the most

homogeneous neutron flux in the reactor core.

For each spatial combination, the first

eigencouple (uε, λε) has to be computed.

The number of combinations is huge, so MsFEM is going to be really beneficial in this context.
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Multi-query context: spatial recombination of the coefficients

A(x , y) = 6 + 5 cos(2π(x + 2y)) sin(2π(x − y)) : Recombined diffusion coefficient:

The basis functions are reordered, in the same way as the coefficients, so that we do not have

to do any offline computation again.
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Multi-query context: spatial recombination of the coefficients

if we do not go through the offline stage again, the error increases from 30% to 35%,

while the computation time is very significantly reduced. 19



Future Work

• Resolution of the time-dependent problem with the MsFEM-with-oversampling method,

either with a time-stepping method, or by decomposing the solution on the eigenvectors of

the operator.

• Adaptation of the MsFEM-with-oversampling method to other reaction diffusion equations,

such as vectorial variants.
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Appendix

A∗ is the homogenized matrix defined by:

A∗
ij =

∫
Y

ψ2(y)A(y) (∇wj + ej) · eidy

where wi are the correctors, solutions of:

− divy
(
ψ2A (∇ywi + ei )

)
= 0 in Y , y 7→ wi (y) Y -periodic
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