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Multiscale models

Our study focuses on the multi-scale reaction diffusion equation with highly oscillatory
coefficients. One possible application is to model the neutron flux in a nuclear reactor core
whose microstructure is heterogeneous.

Two settings are interesting for the reaction diffusion equation: the time-dependent setting
and the associated eigenvalue problem. We focus here on the latter.

= Qur goal is to develop a Multi-scale Finite Element Method, to solve this
eigenvalue problem numerically.



Multiscale mod

We seek a numerical approximation of the first eigencouple (u°, A%) of the reaction-diffusion

problem:
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e Solution on a coarse mesh is wrong
even on the macroscopic scale

e We would need a very fine mesh

833555888833388¢ to get an accurate solution:
Ymer | B prohibitively computationally
expensive

A® and o vary on a small scale ¢

We could use the homogenization theory in a periodic framework, but we do not want to
restrict ourselves to this framework. 5



MsFEM

Multiscale Finite Element Method — MsFEM (Hou and Wu 1997)

Domain Q :

: AN A e We discretize our domain € using a coarse mesh Ty.
) 17 ¥ A - . .
rdvd’d / v Each element of that coarse mesh is itself discretized
VI on a fine mesh (H > ¢ and h < ¢).
7 e Instead of using IP; basis functions, we associate to
: 4 v each node i of the coarse mesh Ty, a well adapted
a4’ : / basis function ¢F%.
1 /.7 (V) e The basis functions ¢; are computed off-line by
A ¥ AA solving local problems posed on each element of the
L drdvava coarse mesh (using the fine mesh discretization).
<+ >
H,T, h,T,



MsFEM

Multiscale Finite Element Method — MsFEM (Hou and Wu 1997)

’ 1. Offline stage: compute local basis functions (expensive) ‘

2. Online stage: one coarse global problem (inexpensive) ‘




MsFEM

Multiscale Finite Element Method — MsFEM (Hou and Wu 1997)

’ 1. Offline stage: compute local basis functions (expensive) ‘

£
Multiscale basis functions: b5
F(¢5) =0 in K

VK e Ty,
-+Boundary conditions on 0K

where .7 ¢ is the operator of local problems we have to define. .
2. Online stage: one coarse global problem (inexpensive) ‘




MsFEM

Multiscale Finite Element Method — MsFEM (Hou and Wu 1997)

’ 1. Offline stage: compute local basis functions (expensive) ‘

Multiscale basis functions: i
F(p7) =10 in K
VK € Ty, (97) N
-+Boundary conditions on 0K
where .7 ¢ is the operator of local problems we have to define.

’2. Online stage: one coarse global problem (inexpensive) ‘

Variational Formulation: Find uf € V,; = span {(bf} Ay eR
s.t. Vof :

1 Ay
5 [ o+ [ Avuip-voi = 2 [ uis
Q




Homogenization

The delicate task lies in finding the adequate operator .%#¢ to use in the local problems. We
make partial use of homogenization theory in a periodic framework to guide our intuition.

In this periodic framework, we therefore seek the first eigencouple (u®, A¥) of:

E%J (z) u® —div (A (g) VUE) = gue inQ, u®=00n0N

where A and o are periodic functions.



Homogenization

Theorem 1 (G. Allaire, Y. Capdeboscq, 2000)

Let (1(y), A>°) be the first eigencouple of the cell problem:

a(y)¢(y) — div(A()VY(y)) = A%(y) in Y,y (y) Y-periodic

Then,

and
X =A%+ 0(e?)

(v,v) is the first eigencouple of the homogenized problem:
—div(A*Vv)=vv inQ, v=0 on 0Q (1)

where A* is the constant homogenized matrix, depending only on the coefficients A and o.



Preliminary MsFEM method

U (x) = v(x) (g) +o(1)
The basis functions have to encode the microscopic behaviour of the solution.

e As a preliminary step, we first assume we know the eigenfunction ¢/ (we

compute it off-line on a fine mesh).
e This function ¢ is then used to construct the basis functions qf’w.

ngg Variational Formulation
Construction Solution of ¥
(0 (—>—> — ¢57¢_> s
e of i global H
basis functions problem
7




Preliminary MsFEM method: Construction of basis functions

We seek the first eigencouple (1, \¢) of the problem:

1 A®
2° (g) u® —div (A (g) VUE) = 5—2u5 inQ, u"=00n0N
where A and o are periodic functions.

€

With the change of variables v¢ = wL(l;), we get a generalized purely diffusive eigenvalue
problem: :
—div (’4/12 (i) A (i) Vvs) = %1/)2 (i> vein Q, v. =0 surdQ
€ € € €
We can solve this problem with the MsFEM-Ilin basis functions x5:
—div (wz (7) A (7> vxfﬂ“") —0 inK
VK e Ty, € €

XY =\ on ok

We then use for the initial problem the basis functions

o =X |




Preliminary MsFEM method: Numerical results

A(x,y) =6+ 5cos (2m(x + 2y)) sin(2m(x —y))  o(x,y) =20(2+ cos (2w(x — 2y)) sin (27 (x — y)))

1

We compute on a fine mesh T} a

\

O
© . . ..
% reference solution uZ, with the P! Finite
2o.
o 1
g i . .
5 | = P1method, coarse mesh H 1 Element Method. We define the relative
%_—)0.3 Preliminary MsFEM method i
o 0o £=0058184 | H* error as:
202 i
5 ' [Unum — Urer |
] i Unum Upef [|HL(Q)
1
1 € H
01 : [tfer ()
1/64 1/32 1/8 1/4

1/16
H (log scale)

e The Pl-method error confirms the multiscale character of the problem.

e The preliminary MsFEM method gives a much better approximation of the solution.

= We will now try to obtain results as accurate as those of this preliminary
method without the a priori knowledge of the function ). 9



Actual numerical approach: MsFEM with oversampling

We now need to find a proxy for ¢(-/¢):

K For each element K of the coarse

mesh Ty, we construct a

square-shaped oversampling patch
Sk.

00

We compute on the fine mesh Tp the first eigencouple ( s, ,)\5 ) of the problem on Sk:

Y
L oo, — div (4995, ) = 505, in Sk, x5, Sw-periodic

We then define VK € Tyy: 105 = ¢§K|K 10



Actual numerical approach: MsFEM with oversampling

We are aiming at (and we indeed numerically observe that): QZ;:((X) ~ (%) on K.

We then use the same construction of basis functions as in the preliminary method, but with
Y = {g ke, instead of (2):

or €
/ Variational Formulation
v, Construction of 57@7)6 Solution of - ng
M )
w (g) > basis functions > ¢,’ >1  global problem > UH

= This MsFEM-with-oversampling method does not rely on the periodicity of

the problem.
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MsFEM with oversampling: construction

Denote ¢)° the function such that: 9°|x = 1%

e From the function 1[)5, construct the MsFEM-lin basis functions Xf’w:

—~div () AV ) =0 in K
VK e <7H, .
XY =X on oK

e Therefore, for the initial problem, we use the basis functions ¢)f’ws = Xf’wsﬁe .

12



Actual numerical approach: MsFEM with oversampling

A(x,y) =6+ 5cos (2m(x + 2y))sin (2m(x — y))  o(x,y) =20 (2 + cos (27 (x — 2y))sin (27(x — y)))

1' —=— P1 method, coarse mesh H
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Multi-query contexts

MsFEM (as any multiscale numerical approach) is beneficial in multi-query problems. Here, the

multi-query context comes:

® In the time-dependent setting, from the fact that we consider several time steps.

® For the eigenproblem, from the fact that we can consider several eigencouples (and not
only the first one).

® For the eigenproblem, with a spatial recombination of the diffusion and reaction

coefficients.

14



Multi-query context: consideration of several eigencouples

We can seek a numerical approximation of other eigencouples (u®™, A*>™) of the
reaction-diffusion problem:
e,m

1 A
?aaus’m —div (A*Vus™) = = v in Q, v =0o0n R

where v is the eigenvector associated to the m-th eigenvalue A=,

We have actually the following homogenization result (in the periodic setting):

u(x) = v () (Z) +o(1)

where (v, ™) is the m-th eigencouple of the homogenized problem:

—div(A*Vv)=vv inQ, v=0 on 9dQ (2)
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Multi-query context: consideration of several eigencouples

H=1/4
10 e The first eigenvalue is simple.
p——— e T S —
oe e Eigenvectors u®! and u®? are
5 —_— associated to the same
SoS T— double eigenvalue.
o T ] . .
goal— e e The eigenvector u®3 is
K —— Ui, msrem = Ukl associated to a simple
0.2) —— |IU;LZV1,M5FEM_u§f2F||H‘10)

€3 £ 3
rum, msrem — UreellH @

— u eigenvalue.

4 4
0.00 —— Jlugum, msrem = UrcrllHi@)

6 8 10 12 14 16 18 20
1/e
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Multi-query context: consideration of several eigencouples

H=1/8
1.0 - "ufr'u}n,MsFEM o e
¢ ||u;l:$-n, wsrem — Ugeellma
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Multi-query context: consideration of several eigencouples

H=1/16
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Multi-query context: consideration of several eigencouples

H=1/32
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Multi-query context: consideration of several eigencouples

H=1/32

i
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¥ 2
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Multi-query context: consideration of several eigencouples

H=1/32
. .1 .1
1.0 Nufim, mseem = Uree o
) 2
—— U5, msrem — Urerlli@
. .3 3
0.8 "urgvum,MsFEM = Ugerllnia
. .4 4
e —— Ui, msrem — Urerlliro
o .1 1
— 0.6 = Ui, p1 = URerlIHrQ)
T .2 2
0 —— g, 1 = Ugerliia
5 0.4-
£
4 go—\w
0.2
0.0
6 8 10 12 14 16 18 20
l/e

16



Multi-query context: spatial recombination of the coefficients

Assemblies are reordered to obtain the most
homogeneous neutron flux in the reactor core.

For each spatial combination, the first
eigencouple (u®, A°) has to be computed.

The number of combinations is huge, so MsFEM is going to be really beneficial in this context.
17
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The basis functions are reordered, in the same way as the coefficients, so that we do not have

18

to do any offline computation again.



Multi-query context: spatial recombinati

1.0
—=— MsFEM OS recombination method, recombined coefficient
—s— MsFEM OS direct method, recombined coefficient
0.8-
]
506
—
T
o
2
©0.4
[
0.2-
0.0 1.5 2.0 2.5 3.0 3.5 4.0
2H/e

if we do not go through the offline stage again, the error increases from 30% to 35%,

while the computation time is very significantly reduced. 19



e Resolution of the time-dependent problem with the MsFEM-with-oversampling method,
either with a time-stepping method, or by decomposing the solution on the eigenvectors of

the operator.

e Adaptation of the MsFEM-with-oversampling method to other reaction diffusion equations,

such as vectorial variants.

The support from ONR and EOARD is gratefully acknowledged.
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Appendix

A* is the homogenized matrix defined by:
Al = /1/; ) (Vw; + ¢)) - eidy
where w; are the correctors, solutions of:

—div, (V*A(Vyw;+¢)) =0 inY, y— wy) Y-periodic
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